
Neural Semantic Personalized Ranking for item cold-
start recommendation

Travis Ebesu1 • Yi Fang1

Received: 2 September 2016 / Accepted: 13 February 2017
� Springer Science+Business Media New York 2017

Abstract Recommender systems help users deal with information overload and enjoy a

personalized experience on the Web. One of the main challenges in these systems is the item

cold-start problem which is very common in practice since modern online platforms have

thousands of new items published every day. Furthermore, in many real-world scenarios, the

item recommendation tasks are based on users’ implicit preference feedback such as whether

a user has interacted with an item. To address the above challenges, we propose a probabilistic

modeling approach called Neural Semantic Personalized Ranking (NSPR) to unify the

strengths of deep neural network and pairwise learning. Specifically, NSPR tightly couples a

latent factor model with a deep neural network to learn a robust feature representation from

both implicit feedback and item content, consequently allowing our model to generalize to

unseen items. We demonstrate NSPR’s versatility to integrate various pairwise probability

functions and propose two variants based on the Logistic and Probit functions. We conduct a

comprehensive set of experiments on two real-world public datasets and demonstrate that

NSPR significantly outperforms the state-of-the-art baselines.

Keywords Recommender systems � Deep neural network � Implicit feedback � Pairwise

learning

1 Introduction

Recommender systems have been established as a crucial tool for many Web applications

to serve personalized recommendations to users. Successful systems span a wide variety of

platforms, including Amazon’s book recommendations, Netflix’s movie recommendations,
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and Pandora’s music recommendations. A popular and effective approach to recommen-

dations is collaborative filtering (CF), which focuses on finding users with similar interests

and recommending items favored by the like-minded (Koren 2010). One of the funda-

mental problems arising when employing CF techniques is the item cold-start problem,

which is caused by the system’s incapability of dealing with new items due to the lack of

relevant transaction history.

The problem of item cold-start is of great practical importance because modern online

platforms publish thousands of new items everyday and effectively recommending them is

essential for keeping the users continuously engaged. Content-based approaches, on the

other hand, may still produce recommendations by using the descriptions of the items, but

they tend to achieve lower accuracy. Combining CF and content becomes a common

approach to item cold-start problems. Several hybrid latent factor models were proposed in

the literature including collective matrix factorization (CMF) (Singh and Gordon 2008)

and collaborative topic regression (CTR) (Wang and Blei 2011). The key idea is to obtain

item latent factors from rating matrix and content matrix respectively and couple them in

the shared latent space. These methods extend the traditional matrix factorization models

by integrating content information, but the latent representation learned is often not

effective especially when the content information is very sparse which is the case for many

recommendation tasks where the item descriptions are usually quite short. The ineffec-

tiveness may lie in the fact that these techniques can be viewed as shallow models in

capturing latent topics from item descriptions and feedback information by applying

simple transformations (often linear) on the observed data, while the ideal latent factors

may have more complex relations with the observations.

Another challenge in many recommendation tasks is the presence of implicit feedback

where users’ explicit preferences (e.g., ratings) on items are unavailable. In the real world,

often only implicit feedback is available to learn a recommendation model. Examples of

implicit feedback are clicks, watched movies, played songs, purchases or assigned tags.

Implicit feedback is tracked automatically and thus it is much easier to collect than explicit

feedback. A characteristic of implicit feedback is that it is one-class, i.e. only positive

observations are available. Moreover, the observed implicit feedback is generally very

sparse, which makes the preference modeling even more challenging. As the result,

existing solutions often deliver unsatisfactory recommendation accuracies.

On the other hand, deep learning models recently demonstrated great success for

learning effective representations in various applications including computer vision,

speech recognition, and natural language processing (Deng and Yu 2014; LeCun et al.

2015). However, the existing literature contains very few work on developing deep

learning models for recommender systems, especially for addressing the cold-start problem

with implicit feedback. In this paper, we propose a Neural Semantic Personalized Ranking

(NSPR) probabilistic model by learning item representations using a deep neural network

(DNN). To handle implicit feedback, we adopt pairwise probability functions that aim to

discriminate between a small set of positive items and a very large set of all remaining

items. In this way, items both with and without feedback will contribute to learning the

ranking function and thus the data sparsity problem can be alleviated. DNN is used to map

high-dimensional sparse text features into low-dimensional dense features in a latent

semantic space. These low-dimensional features are tightly coupled with the latent factors

learned from the pairwise probability, which allows two-way interactions between the

content information and implicit feedback. The pairwise probability derived from the

implicit feedback can guide the learning of feature representations. The learned features

can further improve the predictive power of the pairwise model. The latent factors of new
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items can be inferred by applying the trained DNN to their content and then be used for

item ranking. The contributions of the paper can be summarized as follows:

• We address the item cold-start recommendation task by inferring semantic represen-

tation of items using deep neural network and implicit user feedback. To the best of our

knowledge, no prior work has exploited deep learning with implicit feedback for

tackling cold-start problems.

• We propose a novel probabilistic generative modeling approach to characterize how a

preference of items is observed based on implicit feedback. We derive two variants

based on various pairwise probability functions including the Logistic and Probit

functions.

• Extensive experiments on two public real-world datasets demonstrate that NSPR can

significantly advance the state of the art.

2 Related work

Generally speaking, there are two main categories of recommendation tasks: rating pre-

diction and item recommendation. The objective of rating prediction is to predict the rating

that a user may give to an item that she has not interacted with before. Movie rating

prediction in Netflix (Bennett and Lanning 2007) is such an example. For item recom-

mendation, recommender systems provide a user with a ranked list of items that she might

prefer. Examples include product recommendation in Amazon (Linden et al. 2003) and

point-of-interest recommendation in location-based social networks (Cheng et al. 2012).

This paper focuses on the item cold-start recommendation task. In the following subsec-

tions, we briefly review three categories of the existing work relevant to ours.

2.1 Deep learning in collaborative filtering

There exists few work on deep learning for recommender systems. Salakhutdinov et al.

(2007) proposed restricted Boltzmann machines (RBM) to model the ratings of movies.

Georgiev and Nakov (2013) extended this work in a unified non-IID framework. Recently,

auto-encoders have been a popular architecture to address recommender systems. Auto-

encoders are a feedforward neural network which constructs a compressed representation

by forming a bottleneck in the architecture before attempting to recover the models initial

inputs. AutoRec (Sedhain et al. 2015) demonstrated the effectiveness of a simple auto-

encoder to predict movie ratings directly, improving upon previous deep learning models

previously applied to recommender systems. Incorporating corrupt inputs or noise to auto-

encoders further improved performance and as a result, many variants utilizing auto-

encoders have since emerged. One such example is Collaborative denoising autoencoders

(CDAE) (Wu et al. 2016) which integrates user latent factors with an auto-encoder to

address Top-N Recommender Systems examining both pointwise and pairwise loss

functions. Strub and Jeremie (2015) establish a methodology capable of training deep

architecture of stacked denoising auto-encoders by interpolating the corrupt input and

reconstruction error as a loss function. Neural network matrix factorization (NNMF)

(Dziugaite and Roy 2015) take a different approach by replacing the traditional inner

product of matrix factorization with a function learned from a feedforward neural network.

CoFactor (Liang et al. 2016) jointly factorizes the ratings matrix and the shifted positive
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pointwise mutual information (SSPMI) item embeddings matrix. Factoring the SSPMI

matrix has been shown to be equivalent to word2vec for item co-occurrence embeddings

(Levy and Goldberg 2014). These methods do not incorporate content information and thus

cannot address the cold-start problem.

Some recent work by Van den Oord et al. (2013) and Wang and Wang (2014) tackled

music recommendation by a two-step approach: matrix factorization is used to obtain the

latent factors for items and then conventional convolutional neural network (CNN) is

applied to learn feature representation for content information by treating these latent

factors as the output. In other words, the deep learning components of their models are

deterministic and only loosely coupled with the matrix factorization of the rating matrix.

They do not exploit the interactions between content information and ratings.

Cheng et al. (2016) tackle mobile app recommendation by jointly training a generalized

linear model and DNN on hand engineered user demographic and implicit app installa-

tions. The DNN produces diverse mobile app recommendations while the linear model

mediates overgeneralization to irrelevant recommendations. The joint recommendation

provides a middle ground between the two. Similarly, Neural Collaborative Filtering

(NCF) (He et al. 2017) partners the output of a multi-layer perceptron (MLP) concatenated

with the latent factors from matrix factorization (MF) applying a nonlinear transformation

to produce a local interaction before performing the final recommendation. The MLP and

MF each retain separate embedding spaces for the user and item latent factors accom-

modating the required complexity for the task at hand. NCF may appear similar to our

proposed model; however, NCF lacks the ability to handle content information hence

cannot be used in the cold-start problem. Recurrent Recommender Networks (RRN) (Wu

et al. 2017) represent user latent and item latent factors with two recurrent neural networks

(RNN) to capture the temporal aspect of movie recommendation. Collectively, the RNNs

hidden states represent the user’s preference and ratings at each time interval while

additional stationary factors are maintained to handle a user’s long-standing preferences.

Jing and Smola (2017) endow an RNN with survival analysis to predict the future return of

a given user. The RNN addresses the temporal aspect consulting previous hidden states

with the survival rate to address the user’s return time. Zheng et al. (2017) portray user

behavior and item properties with parallel CNNs on user reviews and item reviews

respectively, before employing a final shared interaction layer. Zhang et al. (2016a)

leverage textual, structural and visual knowledge bases with convolutional and denoising

auto-encoders to enhance the latent factor model. Zhang et al. (2016b) tackle click-

through-rates by modifying the input layer of a feedforward neural network to perform

different types of transformations over multi-field categorical data. Three transformations

are proposed based on factorization machines, restricted Boltzmann machines (RBM) and

denoising auto-encoders. However, these methods lack adaptability to our problem or

impose additional feature engineering such as knowledge bases or user demographics.

Collaborative deep learning (CDL) (Wang et al. 2015) a hierarchical Bayesian model, is

proposed to tightly couple deep representation learning for the content information and

collaborative filtering for the rating matrix, allowing two-way interaction between the two.

Collaborative deep ranking (CDR) (Ying et al. 2016) later extends CDL to include a

pairwise loss. Deep collaborative filtering (DCF) (Li et al. 2015), mitigates the compu-

tational overhead in deep learning by marginalizing a denoising auto-encoder in order to

obtain a closed form solution. The architecture consists of an item and user auto-encoder

for content information coupled with a latent factor model. CDL and DCF models both

share some similarities with NSPR. However, they directly predict user ratings and lack the

ability to address implicit feedback which is pervasive in modern recommender systems.
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While CDR does use a pairwise loss for implicit feedback it does not exploit a latent factor

model.

NSPR has notable differences from the existing work. First of all, no prior work has

studied the cold-start problems by coupling deep semantic representation with user feed-

back. Secondly, many previous deep models in recommender systems use denoising auto-

encoders to learn a feature representation from content, while NSPR utilizes a deep neural

network which allows to model the latent semantic space directly without modeling the

recovery of input as the auto-encoders do. We demonstrate the effectiveness of using a

DNN to learn robust feature representations without complex preprocessing data trans-

formations. Last but not the least, NSPR utilizes stochastic gradient descent for parameter

estimation, which is often more scalable for large datasets than the batch estimation

methods (Bottou 2010) which were used in the existing deep learning based recommen-

dation models such as CDL and DCF.

2.2 Cold-start problem

Cold-start problems are prevalent in recommender systems. They are often alleviated by

utilizing content information. Word-based similarity methods (Pazzani and Billsus 2007)

recommend items based on textual content similarity in word vector space. Collaborative

topic regression (CTR) couples a matrix factorization model with probabilistic topic

modeling to generalize to unseen items (Wang and Blei 2011). Collective matrix factor-

ization (CMF) (Singh and Gordon 2008) simultaneously factorizes both rating matrix and

content matrix with shared item latent factors. SVDFeature (Chen et al. 2012) combines

content features with collaborative filtering. The latent factors are integrated with user,

item, and global features. SVDFeature demonstrated the state-of-the-art performance in

benchmark evaluations.

2.3 Implicit feedback

Matrix factorization has been adapted to learn from implicit feedback for recommendation.

Regularized least-square optimization with case weights is proposed in Hu et al. (2008) and

Pan et al. (2008). One of the most effective techniques is based on Bayesian personalized

ranking (BPR) (Rendle et al. 2009) which has been shown to provide strong results in many

item recommendation tasks. Several extensions of BPR include pairwise interaction tensor

factorization (Rendle and Schmidt-Thieme 2010), multi-relational matrix factorization

(Krohn-Grimberghe et al. 2012), and non-uniformly sampled items (Gantner et al. 2012).

Pan and Chen (2013) proposed group Bayesian personalized ranking (GBPR) via introducing

group preference. Rendle and Freudenthaler (2014) incorporate an adaptive sampling method

to speed up learning convergence rate by utilizing the fact that the implicit feedback matrix

follows a tailed distribution of item popularity. All of the above BPR based models do not

consider any content information and cannot address the cold-start problems.

3 Neural Semantic Personalized Ranking

We take a pairwise approach to item recommendation by assuming that a user prefers the

items that she has interacted with rather than those items that she has not interacted with.

This assumption is more reasonable than the pointwise assumption which treats all
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observed entries in the user-item interaction/feedback matrix as positive examples and all

missing entries as negative examples.

Formally, given user i 2 U, we use jþ 2 Iþi to denote a positive item (i.e., interacted/

observed item) where Iþi is the set of all positive items for user i. Similarly, we use

j� 2 VnIþi for a negative item (i.e., uninteracted/unobserved item) where V is the set of all

items. Since item jþ is preferred over item j�, we can form a preference instance

ði; jþ; j�Þ 2 DS where DS ¼ fði; jþ; j�Þji 2 U; jþ 2 Iþi ; j
� 2 VnIþi g is the whole set of

preference instances. The total number of preference triplets is quadratic in the number of

items. Thus, we sample from DS for training instead of going over the complete set of item

pairs (Sect. 4.2 gives the details about our sampling strategy). Table 1 lists the main

notations used in the paper.

3.1 Probabilistic generative modeling

We propose Neural Semantic Personalized Ranking (NSPR) by tightly incorporating a

deep neural network (DNN) (Hinton et al. 2012) to learn effective feature representation

from item content. The DNN architecture maps the raw text features into the features in

a semantic space. The input (raw text features) to the DNN is a high dimensional term

vector, e.g., TF-IDF of terms in the item content, and the output of the DNN is a

concept vector in a low-dimensional semantic feature space. Formally, we denote dj as

the input term vector, yj as the output vector, l as the lth hidden layer (l 2 ½1; L� 1�).
al, Wl and bl are the activation output, weight matrix and bias vector respectively. We

have

Table 1 Notations

i, j Index for user and item respectively

U, V User set and item set respectively

ui Latent factor for user i

vj Latent factor for item j

r(i, j) Ranking score of item j for user i

Iþi Set of all positive items for user i

ði; jþ; j�Þ A preference triplet indicating user i prefers item jþ over item j�

Ds Set of preference triplet instances

Di Set of preference instances for user i

dj Input content vector for item j

yj Output latent feature vector for item j

al, Wl, bl Activation output, weight matrix and bias vector at the lth layer in DNN respectively

r2
u

Variance in user prior distribution

r2
v

Variance of noise in latent item factor

r2
r

Variance of noise in ranking score

K Number of latent factors

L Number of layers in DNN

N Size of vocabulary
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a1;j ¼ W1dj

al;j ¼ wðWlal�1;j þ blÞ
yj ¼ WLaL�1;j þ bL

where we use the tanh as the activation function w at the hidden layers and the identity

function for the output layer.

wðxÞ ¼ 1 � e�2x

1 þ e�2x
ð1Þ

The output concept vector yj is used to calibrate the latent item factor vector vj learned

from the feedback matrix. On the other hand, the weights and bias in DNN are learned with

the guidance of vj. In other words, yj and vj are tightly coupled, which allows two-way

interactions between the content information and implicit feedback. Specifically, NSPR

can be viewed as a probabilistic modeling approach with the generative process described

as follows (the graphical model representation of NSPR is shown in Fig. 1).

(i, j+, j−)

r(i, j+)

vj+

yj+

r(i, j−)

vj−

yj−

σ2
v

ui

σ2
u

...

dj+

...

dj−

|Di|
|U |

Fig. 1 Graphical model
representation of NSPR. The
double circled nodes represent
observed variables and other
nodes are latent variables
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1. For each item j,

(a) Map high-dimensional sparse text feature vector dj into low-dimensional dense

features yj via DNN

(b) Draw a latent item offset vector from normal distribution:

�j �Nð0; r2
vIKÞ ð2Þ

(c) Set the latent item vector to be

vj ¼ yj þ �j

2. For each user i, draw a latent user factor

ui �Nð0; r2
uIKÞ

3. For item j given user i, calculate the ranking score rði; jÞ ¼ f ðui; vjÞ. For user i, item jþ

and j�, form the preference triplet ði; jþ; j�Þ with the probability Sðrði; jþÞ � rði; j�ÞÞ
where S is a sigmoid ‘S’ shape class of functions.

Here S
�
rði; jþÞ � rði; j�Þ

�
defines a pairwise probability that is a monotonically non-

decreasing function with respect to the argument rði; jþÞ � rði; j�Þ. The intuitive expla-

nation is that if item jþ is preferred over j� for user i, the difference between their ranking

scores rði; jþÞ and rði; j�Þ is maximized given the monotonically non-decreasing function

SðxÞ. As a result, item i is more preferable than item j. In Sect. 3.3, we define two variants

over the NSPR framework drawing on the Logistic and Probit probability functions.

In this paper, we set the ranking score as rði; jÞ ¼ f ðui; vjÞ ¼ uTi v, which leads to

rði; jþÞ � rði; j�Þ ¼ uTi vjþ � vj�
� �

It is worth noting that the output of the DNN serves as a bridge between the feedback

and content information, which is the key that enables NSPR to simultaneously learn an

effective feature representation and capture the implicit preference relations between

items. The low-dimensional output obtained by DNN is tightly coupled with the latent

factors learned from the pairwise probability. The pairwise probability derived from the

implicit feedback can guide the learning of feature representations. The learned features

can further improve the predictive power of the pairwise ranking model. Thus, the low-

dimensional feature representation obtained by DNN captures the latent semantic of item

content while being predictive for item ranking, which is very desirable for addressing the

item cold-start problem.

3.2 Parameter estimation

Based on the NSPR framework above, the posterior likelihood of observing all the pref-

erence triplets is:

L ¼
Y
i

Y
jþ; j�

S
�
rði; jþÞ � rði; j�Þ

�Y
jþ;j�

N vjjyj; r2
vI

� �Y
i

N uij0; r2
uI

� �

By taking the log of the likelihood and simplifying we obtain
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L ¼
X
i

X
jþ;j�

logS
�
rði; jþÞ � rði; j�Þ

�

� 1

2r2
v

X
jþ;j�

jjvj � yjjj22 �
1

2r2
u

X
i

jjuijj22
ð3Þ

The parameters to be learned include latent factors ui and vj, and the weights Wl and

bias bl in the DNN. The second term in the objective function above is to encode a deep

neural network using the latent item vectors vj as the target.

We use Stochastic Gradient Descent (SGD) to obtain the Maximum A Posteriori (MAP)

estimate. For a given triplet of latent factors ðui; vjþ ; vj�Þ, we compute the stochastic

gradients given the current outputs of the DNN (i.e. yj).

oL
oui

¼ 1

S
oS
ox

�
vjþ � vj�

�
� 1

r2
u

ui ð4Þ

oL
ovjþ

¼ 1

S
oS
ox

ui �
1

r2
v

�
vjþ � yjþ

�
ð5Þ

oL
ovj�

¼ � 1

S
oS
ox

ui �
1

r2
v

�
vj� � yj�

�
ð6Þ

where oS
ox

is the stochastic gradient of the pairwise probability Sð�Þ with respect to its input

ranking score preference. Section 3.3 will derive oS
ox

for various forms of Sð�Þ.
Given the current vjþ and vj� , we can then update the weights Wl and biases bl for each

layer of the DNN using the backpropagation algorithm (Rumelhart et al. 1988). The

stochastic gradients of the likelihood with respect to Wl and biases bl are as follows:

oL
oWl

¼ dl;ja
T
l;j and

oL
obl

¼ dl;j

where dl;j ¼ WT
lþ1dlþ1;j � ð1� al;j � al;jÞ

and dL;j ¼ vj � yj

where � is the element-wise product. The algorithm iterates over the gradient updates for

each preference triplet ði; jþ; j�Þ until convergence. Section 4.2 discusses the details about

the setting of the algorithm.

3.3 Pairwise probability

NSPR seamlessly integrates with a multitude of pairwise probability functions for Sð�Þ. In

our case, the two pairwise functions we chose can also be interpreted as cumulative

distribution functions. We define two variants over the NSPR framework to demonstrate its

capabilities.

3.3.1 Logistic probability

One of the most widely used sigmoid functions is the Logistic function, defined as
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SðxÞ ¼ 1

1 þ expð�xÞ ð7Þ

It is worth noting in this setting, if r2
v goes to infinity, the maximization of the objective

function Eq. (3) is degenerated to the BPR-MF model (Rendle et al. 2009). The use of non-

zero r2
v in NSPR enables the coupling between the semantic item representation learned by

the deep neural network and the latent item factors learned from the pairwise implicit

feedback. This tight coupling is missing in the BPR based models.

Computing the stochastic gradient, we obtain the following

oS
ox

¼
�

1 � S
�
rði; jþÞ � rði; j�Þ

��
S
�
rði; jþÞ � rði; j�Þ

� ð8Þ

Plugging Eq. (8) into Eqs. (4), (5) and (6), we obtain the parameter estimation update for

the Logistic variant of NSPR, called as NSPR-L.

3.3.2 Probit probability

In statistics, closely related to the Logistic function are the Probit function and Probit

model (McCullagh and Nelder 1989). The Logistic and Probit are both sigmoid functions

with a domain between 0 and 1, which makes them both quantile functions—i.e., inverses

of the cumulative distribution function (CDF) of a probability distribution. In fact, the

Logistic is the quantile function of the Logistic distribution, while the Probit is the quantile

function of the Gaussian distribution. We derive the Probit variant of NSPR, denoted as

NSPR-P, by setting SðxÞ ¼ UðxÞ as the cumulative distribution function of the Gaussian

distribution as follows:

UðxÞ ¼
Z x

�1

1

r
ffiffiffiffiffiffi
2p

p exp �ðx� lÞ2

2r2

 !
dx

We can then obtain the stochastic gradient of the objective function as follows:

oS
ox

¼ N
�
rði; jþÞ � rði; j�Þ

�

where

N ¼ 1

r
ffiffiffiffiffiffi
2p

p exp �ðx� lÞ2

2r2

 !
:

For simplicity we set l ¼ 0 and r2 ¼ 1 yielding the standard normal Gaussian distri-

bution. Figure 2 plots the Logistic, Probit, and Heaviside step functions. As we can see,

these functions have a similar ‘S’ shape. The Logistic has a slightly flatter tail while the

Probit curve approaches the axes more quickly. In the Probit function, as we increase the

variance the curve will become flatter and elongated. The experiments in Sect. 4 compare

the performance of the two variants of NSPR.

3.4 Prediction for cold-start items

Once the NSPR model is trained, the parameters are used to calculate the ranking score

r(i, j) for item j given user i. The items are ranked in descending order of r(i, j) for
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providing personalized recommendation. Similar to Wang and Blei (2011), we use the

MAP point estimates of parameters to calculate the predicted ranking score

rði; jÞ � ðu�i Þ
Tðyj þ ��j Þ ¼ ðu�i Þ

Tðv�j Þ ð9Þ

where u�i and v�j are the point estimates by SGD in Sect. 3.2 for the random variables u and

v. y is deterministic mapped from the content feature vector d.

For the cold-start problem when the item j is unseen in the training data, we set the noise

offset ��j in Eq. (9) to be zero and obtain the predicted ranking score as follows

rði; jÞ � ðu�i Þ
T WLaL�1;j þ bL
� �

ð10Þ

where WLaL�1;j þ bL is the output of DNN based on item content input dj.

4 Experiments

4.1 Datasets

We evaluate our model on two public datasets from CiteULike1 and Yahoo! Movies.2

CiteULike is a web service that allows users to save and share citations to academic papers.

The first dataset citeulike-a3 (Wang and Blei 2011) contains 5551 users, 16,980 items with

204,987 positive entries. Implicit feedback is encoded as positive if the user has the item in

their personal library and encoded as negative otherwise. The second dataset, Yahoo!

Movies consists of users rating movies on a scale of 1–5 with a short synopsis. To be

consistent with the implicit feedback setting, we extract only positive ratings (rating 5) for

training and testing. After removing movies without a synopsis, this yields 7642 users,

11,915 items, and 221,367 positive ratings. The characteristics of the dataset are sum-

marized in Table 2. It is worth noting that citeulike-a is sparser in ratings and has over

twice the number of average words per a document while the contrary is true for Yahoo!

Movies. Similar to Wang and Blei (2011) and Wang et al. (2015), we preprocess the data

Fig. 2 Logistic and Probit pairwise probability functions in NSPR

1 http://www.citeulike.org.
2 R4 - Yahoo! Movies User Ratings and Descriptive Content Information, v.1.0 http://webscope.sandbox.
yahoo.com/.
3 http://www.cs.cmu.edu/*chongw/data/citeulike.
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by removing the users with fewer than 3 positive entries, concatenating the title and

abstract (movie synopsis), removing stopwords, stemming and construct our vocabulary

from the top N terms based on TF-IDF then use raw term counts. We randomly hold out

20% of the items for testing and the remaining 80% of the items are used for training. The

split of data yields the cold-start setting since the items in each set are disjoint from the

other sets, and are new items for the users. We set the vocabulary size (N) to 8000 and

20,000 for the citeulike-a and Yahoo! Movies datasets, respectively.

4.2 Baselines and settings

We use the following baselines for comparison in the experiments. They are the state-of-

the-art recommendation algorithms for recommendation tasks and consider content

information a requirement for an algorithm to address the item cold-start problem.

• SVDFeature (Chen et al. 2012), which performs feature-based matrix factorization

allowing for additional content and relationships.

• Collective matrix factorization (CMF) (Singh and Gordon 2008), which simultaneously

factors multiple matrices to learn integrating relations between them.

• Collaborative topic regression (CTR) (Wang and Blei 2011), which combines

probabilistic topic modeling with a latent factor model.

• Collaborative deep learning (CDL) (Wang et al. 2015), which creates a deep feature

representation using stacked denoising auto-encoders with CTR.

• Neural Semantic Personalized Ranking (NSPR) with two variants: Logistic (NSPR-L)

and Probit (NSPR-P) which we proposed in Sect. 3.

We select all hyperparameters by cross-validation grid search, holding out 10% of the

training data to create a separate validation set. We then tune hyperparameters according to

Recall@300 achieved on the validation set. In our experimental results, we utilize both the

training and validation sets as training data. For SVDFeature, we use the ranking setting

and found good results when ku and kv are set to 0.04. In CMF, we set both matrices (rating

and item content) to the sparse setting and 0.1 and 0.05 for the ratings and item content

matrices respectively. CTR performed best when we set a ¼ 1, b ¼ 0:01, ku ¼ 0:1, and

kv ¼ 10. CDL performed best with the architecture ‘‘200–200–K–200–200’’ with kv ¼ 10,

ku ¼ 1 and kn ¼ 100.

For the SGD algorithm of our NSPR models, we use the adaptive subgradient method

(AdaGrad) (Duchi et al. 2011) to schedule the learning rate with the initial value of 0.1.

The regularization parameter r2
u of latent user factors are set to be 9. We randomize the

preference triplets ði; jþ; j�Þ for SGD training by uniformly randomly sampling a user from

Table 2 Dataset statististics
citeulike-a Yahoo! Movies

Users 5551 7642

Items 16,980 11,915

Ratings 204,987 22,136

Sparsity (%) 99.78 99.76

Vocabulary size 68,911 39,664

Avg. words/document 187.97 68.26

Avg. ratings/user 37.92 118.50
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U, a positive item from Iþi , and a negative item from VnIþi , respectively. This sampling

strategy reduces the chance of updating the same user-item combination in consecutive

iterations, which otherwise may lead to poor convergence (Rendle et al. 2009). The initial

values of the parameters in the SGD algorithm are uniformly randomly sampled from

[0, 1] and the stopping criteria is when the relative change of the likelihood function is less

than 0.01%. The default number of nodes for each hidden layer is 256. We set the default

parameters for both variants on the citeulike-a dataset with 128 latent factors, r2
v to 500 and

dropout to 0.1 with two hidden layers. In the Yahoo! Movies dataset, both variants use two

hidden layers with K ¼ 16. We set r2
v to 9 and 200 for NSPR-L and NSPR-P respectively.

We use the default parameter values in the experiments unless otherwise specified.

4.3 Evaluation metrics

The accuracy of a recommendation model is measured by using three commonly used

metrics, namely Mean average precision (MAP), Normalized discounted cumulative gain

(NDCG), and Recall (R) (Manning et al. 2008). MAP is widely adopted for evaluation of

item recommendation. Because users are usually interested in a few top-ranked items,

NDCG@N is used to compare the top-N recommendation performance. We also use Recall

because the feedback information is implicit. Precision oriented metrics such as MAP and

NDCG may not be sufficient since a negative entry could be caused by the fact that the user

is not interested in the item, or that the user is not aware of its existence.

4.4 Results

4.4.1 Number of latent factors

Selecting the optimal number of latent factors and hidden layers can have a devastating

effect on performance as we demonstrate in this section. Varying these hyperparameters

may introduce noise causing difficulty in isolating the actual effect. To account for the

variance, we perform tenfold cross-validation by splitting the items into ten equal parts.

We use ninefolds as training data and the final fold as testing such that we yield a cold-start

setting as described earlier in Sect. 4.2. We repeat this process ten times each with a

different test fold and report the average Recall@300 and NDCG@10.

Figure 3 illustrates the effect of varying the number of latent factors

(K ¼ 16; 32; 64; 128, and 256) and hidden layers (L ¼ 1; 2; 3; 4) for both NSPR variants

reporting the mean Recall@300 and NDCG@10 for the citeulike-a dataset. In both vari-

ants, as the number of latent factors increases a corresponding climb in performance is seen

on both metrics despite the number of hidden layers. Each particular configuration obtains

peak performance on both metrics at 128 latent factors with the exception of NSPR-L

where the curve continues to increase with 256 latent factors and four hidden layers. With

respect to the number of hidden layers in the DNN, a single hidden layer struggles to

capture the intricate non-linear semantics. The optimal Recall and NDCG occurs at two

and three hidden layers where sufficient modeling capacity exists. NSPR-L (bottom) with

two hidden layers obtains the best performance for Recall@300 with 128 latent factors.

NSPR-P (top) simultaneously performs the best on Recall and NDCG with three hidden

layers and 128 latent factors. Multiple parameter configurations demonstrate competitive

performance across both metrics. We report the variance over the tenfolds in Table 3 where

we find the variance is relatively small. Overall, lower fluctuations were reported with
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latent factors in the range of [32, 64] and two hidden layers in both variants. Conversely,

the highest volatility is achieved with three hidden layers and 256 latent factors

In Fig. 4, both NSPR variants show the best performance with two hidden layers and

latent factors in the range of [32, 64] on the Yahoo! Movies dataset. In general, NSPR with

a single hidden layer lacks the capability to model the complex relations present. As three

or more hidden layers are used a diminish in performance may suggest overfitting. NSPR-P

with one and two hidden layers show similar performance and a balance between Recall

and NDCG. Illustrating an equilibrium between the pairwise, latent factors and DNN

Fig. 3 Recall@300 (left) and NDCG@10 (right) for varying number of latent factors (K) and hidden layers
(L) averaged over tenfolds on the citeulike-a dataset

Table 3 Variance over tenfolds of NSPR variants for varying the number of latent factors (K) and hidden
layers (L) on the citeulike-a dataset

Recall@300 NDCG@10

16 32 64 128 256 16 32 64 128 256

P/1 0.0020 0.0022 0.0003 0.0012 0.0152 0.0001 0.0002 0.0001 0.0001 0.0011

P/2 0.0009 0.0010 0.0002 0.0003 0.0072 0.0001 0.0002 0.0002 0.0000 0.0008

P/3 0.0026 0.0017 0.0003 0.0003 0.0242 0.0001 0.0002 0.0003 0.0001 0.0012

P/4 0.0046 0.0020 0.0068 0.0025 0.0020 0.0002 0.0002 0.0008 0.0005 0.0004

L/1 0.0021 0.0007 0.0032 0.0011 0.0040 0.0001 0.0000 0.0002 0.0000 0.0001

L/2 0.0040 0.0003 0.0003 0.0001 0.0039 0.0002 0.0001 0.0002 0.0001 0.0006

L/3 0.0096 0.0007 0.0003 0.0003 0.0104 0.0003 0.0002 0.0002 0.0002 0.0010

L/4 0.0030 0.0011 0.0003 0.0008 0.0002 0.0004 0.0002 0.0002 0.0003 0.0001

We denote P/1 to indicate NSPR-Probit with one hidden layer and similarly, L/2 to indicate NSPR-Logistic
with two hidden layers
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architecture is achievable. In some cases, high Recall does not directly translate to the

NDCG metric. Particularly we observe this behavior in NSPR-L with four hidden layers

and 256 latent factors, where Recall is among the lowest obtained yet NDCG is among the

highest. Demonstrating NSPR is flexible, and its architecture can be fine tuned for specific

metrics.

Table 4 summarizes the variance of NSPR over each of the tenfolds for Recall and

NDCG@10. Similar to the citeulike-a dataset, the variance is generally low across different

Fig. 4 Recall@300 (left) and NDCG@10 (right) for varying number of latent factors (K) and hidden layers
(L) averaged over tenfolds on the Yahoo! Movies dataset

Table 4 Variance over tenfolds of NSPR variants for varying the number of latent factors (K) and hidden
layers (L) on the Yahoo! Movies dataset

Recall@300 NDCG@10

16 32 64 128 256 16 32 64 128 256

P/1 0.0205 0.0184 0.0116 0.0140 0.0134 0.0001 0.0002 0.0001 0.0001 0.0002

P/2 0.0146 0.0060 0.0053 0.0137 0.0128 0.0001 0.0000 0.0000 0.0005 0.0001

P/3 0.0091 0.0136 0.0171 0.0096 0.0107 0.0003 0.0001 0.0005 0.0001 0.0003

P/4 0.0166 0.0089 0.0058 0.0067 0.0119 0.0000 0.0000 0.0004 0.0004 0.0001

L/1 0.0124 0.0190 0.0185 0.0135 0.0246 0.0000 0.0000 0.0000 0.0002 0.0000

L/2 0.0196 0.0071 0.0138 0.0137 0.0166 0.0004 0.0016 0.0003 0.0001 0.0001

L/3 0.0121 0.0122 0.0167 0.0137 0.0140 0.0001 0.0002 0.0001 0.0002 0.0000

L/4 0.0123 0.0138 0.0118 0.0134 0.0143 0.0007 0.0000 0.0000 0.0000 0.0005

We denote P/1 to indicate NSPR-Probit with one hidden layer and similarly, L/2 to indicate NSPR-Logistic
with two hidden layers
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configurations. Since the diversity on NDCG is too small, we limit our discussion to the

Recall metric. NSPR demonstrates the highest variance with a single hidden consisting of

16 and 256 latent factors for NSPR-P and NSPR-L respectively. Cumulatively, NSPR-L

has more variance. However, the variance reduces as the number of layers increases. A

similar yet more subtle trend is present in the Probit version. We could speculate the

optimization of the non-convex nature causes the DNN to become stuck at a saddle point or

bad local minimum producing the variance. Nevertheless, the small size of the dataset

could easily lead to overfitting a large number of parameters. In this case, initializing the

DNN weights with pretrained word embeddings may improve performance. In short, the

Yahoo! Movies dataset contains denser ratings with sparse item content leading to a more

complex relation where deeper architectures can capture these nonlinearlities.

4.4.2 Baseline comparison

Table 5 contains the results of NSPR compared to the baseline models measuring

Recall@M, MAP@500, NDCG@5, and NDCG@10 on the citeulike-a dataset. We can see

that both NSPR models perform equally well and outperform all baselines across all

metrics. The nearest competitor is CTR for Recall@300. Concerning MAP@500 and

NDCG, the three models using deep learning (NSPR-P, NSPR-L and CDL) obtain superior

performance over models that do not. We can speculate deep learning methods utilize

learned latent semantics from item content to prioritize more relevant items. CMF out-

performs SVDFeature when the metric is at a higher level, i.e. when Recall is at 100 or

greater but SVDFeature reports better NDCG while both have similar performance on

MAP@500. SVDFeature may place a higher priority on relevant recommendations by

drawing upon stronger user-based features. Both models use relatively simple linear

transformations on the item content deteriorating performance to generalize to new items.

These results indicate the benefits of using deep learning to construct robust feature rep-

resentations of item content for the cold-start problem.

In the Yahoo! Movies dataset, NSPR models outperform or demonstrate competitive

performance against each baseline for all metrics shown in Table 6. Again, NSPR-L

Table 5 Experimental results for different methods on the citeulike-a dataset

SVDFeature CMF CTR CDL NSPR-P NSPR-L

R@10 0.0039 0.0023 0.0692 0.0919 0.1294 0.1290

R@25 0.0095 0.0055 0.1516 0.1693 0.2324 0.2308

R@50 0.0188 0.0110 0.2518 0.2580 0.3402 0.3378

R@100 0.0335 0.0562 0.3802 0.3634 0.4716 0.4646

R@150 0.0493 0.0919 0.4616 0.4304 0.5526 0.5443

R@200 0.0666 0.1066 0.5197 0.4807 0.6100 0.6042

R@250 0.0825 0.1198 0.5647 0.5203 0.6547 0.6515

R@300 0.0985 0.1459 0.6044 0.5514 0.6862 0.6859

MAP@500 0.0025 0.0026 0.0522 0.0672 0.0923 0.0906

NDCG@5 0.0027 0.0024 0.0457 0.0773 0.1296 0.1259

NDCG@10 0.0039 0.0026 0.0578 0.0809 0.1432 0.1418

The best results in each metric are bold
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performs best with NSPR-P performing very closely. As noted earlier, the dataset is

characterized by denser ratings and sparser item content may lead to a more complex

relation. Subsequently, topic models may lack the ability to capture this intricate rela-

tionship with sparser documents leading to CTR’s poor performance. SVDFeature and

CMF both obtain better Recall@300 at 0.1259 and 0.1551, respectively. The fact that CDL

outperforms other baselines additionally with NSPR’s performance demonstrate the

advantages of deep learning models which aim to capture complex and subtle relations

between item content and latent features. The NSPR framework’s flexibility to integrate

different types of pairwise probability functions demonstrates its adaptability. Furthermore,

the difference in NSPR variations performance is the pairwise function. The Probit

function’s hyperparameters l and r2 could be further optimized to suit different dataset

characteristics which we leave to future work. These results prove the effectiveness of

NSPR using a pairwise probability for implicit feedback and utilizing DNN for learning

latent semantics from item content, compared to the pointwise loss and auto-encoder in

CDL. As we can see, the NSPR models demonstrate competitive or superior performance

over the state-of-the-art baselines across all metrics.

4.4.3 Architecture of NSPR

In this section, we more closely examine the architecture of NSPR by varying the number

of hidden layers from L ¼ 1; 2; 3; 4 using the default parameters. Table 7 reports the

Table 6 Experimental results for different methods on the Yahoo! Movies dataset

SVDFeature CMF CTR CDL NSPR-P NSPR-L

R@10 0.0042 0.0013 0.0051 0.0234 0.0200 0.0453

R@25 0.0109 0.0040 0.0112 0.0414 0.1193 0.1361

R@50 0.0209 0.0090 0.0200 0.0653 0.0619 0.0840

R@100 0.0427 0.0324 0.0336 0.1071 0.2054 0.2127

R@150 0.0625 0.0769 0.0495 0.1439 0.2764 0.3010

R@200 0.0837 0.1161 0.0639 0.1816 0.3377 0.3559

R@250 0.1046 0.1395 0.0778 0.2181 0.4436 0.4437

R@300 0.1259 0.1551 0.0903 0.2518 0.5179 0.5266

MAP@500 0.0034 0.0022 0.0042 0.0168 0.0173 0.0221

NDCG@5 0.0028 0.0015 0.0044 0.0172 0.0094 0.0217

NDCG@10 0.0035 0.0018 0.0046 0.0175 0.0186 0.0380

The best results in each metric are bold

Table 7 Recall@300 for NSPR with different number of hidden layers (L ¼ 1; 2; 3; 4) for citeulike-a

Hidden layers (L) citeulike-a

1 2 3 4

NSPR-P 0.6730 0.6862 0.6663 0.6674

NSPR-L 0.5696 0.6859 0.6638 0.6381
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values of the citeulike-a dataset. We can see the performance is relatively stable across

different number of hidden layers for NSPR-P. For NSPR-L, we can see a single hidden

layer does not provide enough modeling capacity as performance increases with additional

layers. Both models obtain the best results with two hidden layers and increasing the

number of layers may result in overfitting. In the Yahoo! Movies dataset, we see perfor-

mance also peaking around two hidden layers and then sharply decreasing at four hidden

layers in Table 8. We believe this to be an overfitting issue from the DNN, also observed

by Salakhutdinov et al. (2007). Dropout lead to a decrease in performance and subse-

quently decreased the stability of the method across the number of hidden layers in contrast

to the previous results on the citeulike-a dataset. In general, a single hidden layer archi-

tecture lacks the modeling capacity to capture these nonlinearlities where the two hidden

layer architecture excelled. Additional layers lead to overfitting possibly due to the small

size of the dataset. In future work, we plan to apply deeper architectures with large-scale

test beds and exploit external knowledge such as pretrained word embeddings.

In the core architecture of NSPR, the DNN is approximating the item latent space and

not a directly observable variable. One could view the item latent factor as an additional

hidden layer connecting to the DNN. The initial error propagates to the latent item vector

then we evaluate another error function with respect to the DNN output. We experi-

mented with different combinations of activation functions ranging from the tanh,

Logistic, Rectified Linear Unit (ReLU) (Nair and Hinton 2010) and identity. We found

the best performance with the tanh function and the identity as the output. The Logistic

function provided slightly deteriorated performance. One explanation may be the

Logistic function is bound from [0, 1] slowing learning by outputting a positive mean as

inputs to subsequent hidden layers whereas the symmetry of tanh generally provides a

zero centered mean typically leading to better convergence (LeCun et al. 2012). In our

particular problem, we did not find ReLU’s to enhance performance as demonstrated in

Cheng et al. (2016).

4.4.4 Impact of item variance

The item variance r2
v in Eq. (2) models the interaction between the semantic learning of

DNN from item content and latent factor learning from implicit feedback. In this section,

we investigate the impact of r2
v on the NSPR models and vary it from the default values

specified in Sect. 4.2. We vary r2
v by ±5 of our default values followed by more extraneous

values. Table 9 demonstrates the effect of r2
v on the citeulike-a dataset. As we can see,

NSPR’s performance is relatively robust over a broad range of values and generally, shows

relatively subtle changes with the exception when r2
v is small i.e. 0.1. In contrast, the

Yahoo! Movies dataset shows more sensitivity to r2
v in performance as shown in Table 10.

Table 8 Recall@300 for NSPR with different number of hidden layers (L ¼ 1; 2; 3; 4) for Yahoo! Movies

Hidden layers (L) Yahoo! Movies

1 2 3 4

NSPR-P 0.4583 0.5179 0.3921 0.1414

NSPR-L 0.4548 0.5266 0.4393 0.0941
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When r2
v is small, the DNN strongly influencing the item latent factor overfitting to item

content. As the value of r2
v increases, the DNN item content integration starts to diverge

from the item latent factor and as r2
v goes to infinity the model degenerates to the BPR

criterion. These results demonstrate the importance of keeping a balance between pairwise

probability and latent semantic learning of DNN.

4.5 Qualitative evaluation

To further investigate the effectiveness of NSPR, we compare the interpretability of the

top 5 recommended items against baselines for a given user. Table 11 lists the recom-

mended articles for citeulike-a by NSPR-L, CDL, and CTR. We might hypothesize that

this user is interested in library and information sciences. CTR correctly recommends

only two articles while four out of the five article titles recommended contain the root

word ‘science.’ The remaining article is ‘In a paperless world a new role for academic

libraries: providing open access’ which we can also expect the terms ‘academic’ and

‘library’ to co-occur with ‘science’ leading CTR astray. Similarly, CDL identified words

‘technology’ and ‘publication’ while correctly recommending one item. CDL incorrectly

recommends the article ‘The Molecular Biology Database Collection: 2005 update’.

Upon inspecting the training data, the user does not have any interests in biology. CDL

may have identified ‘database’ as a term co-occurring with ‘digital’, ‘libraries’ and

‘publications.’ NSPR-L captures more semantics related to the users primary interests

such as digital library and citation metrics.

The top 5 recommended movies from the Yahoo! Movies dataset is listed in Table 12.

Analyzing the genres of each movie recommended we may speculate the user has diverse

tastes in movies from a variety of genres spanning comedy, action, and adventure. CTR

and CDL do not identify the action and adventure genre which comprises a significant

portion of the user’s preferences while NSPR-L discovered the association, particularly in

recommending ‘Indiana Jones and the Last Crusade.’ It may seem odd that NSPR-L

recommended the horror films ‘Bloody Murder’, however, inspecting the users library

revealed additional horror movies such as ‘Texas Chainsaw Massacre.’

Table 9 Recall@300 for different values of r2
v on the citeulike-a dataset

r2
v

0.1 495 500 505 1000

NSPR-P 0.0875 0.6794 0.6862 0.6812 0.6626

NSPR-L 0.0802 0.6763 0.6859 0.6474 0.6410

Table 10 Recall@300 for dif-

ferent values of r2
v on the Yahoo!

Movies dataset

r2
v

0.1 195 200 205 250

NSPR-P 0.2619 0.4211 0.5179 0.4475 0.4696

r2
v

0.1 4 9 13 100

NSPR-L 0.2889 0.4125 0.5266 0.4833 0.4873
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Table 11 Top-5 recommended articles by NSPR-L, CDL and CTR

NSPR-L

1. Ten-Year Cross-Disciplinary Comparison of the Growth of Open Access and How it Increases
Research Citation Impact

2. Peer Review in the Google Age: Is technology changing the way science is done and evaluated?

3. Defrosting the digital library: bibliographic tools for the next generation web

4. What are digital libraries? Competing visions

5. A New Era in Citation and Bibliometric Analyses: Web of Science, Scopus, and Google Scholar

CTR

1. Do pressures to publish increase scientists’ bias? An empirical support from US states data

2. Unavailability of online supplementary scientific information from articles published in major
journals

3. Strategic reading, ontologies, and the future of scientific publishing

4. In a paperless world a new role for academic libraries: providing open access

5. Universality of citation distributions: Toward an objective measure of scientific impact

CDL

1. Where do educational technologists really publish? An examination of successful emerging scholars’
publication outlets

2. The Molecular Biology Database Collection: 2005 update

3. Strategic reading, ontologies, and the future of scientific publishing

4. Peer Review in the Google Age: Is technology changing the way science is done and evaluated?

5. Déjà? vu—a study of duplicate citations in Medline

The positive items are bold

Table 12 Top-5 recommended
movies by NSPR-L, CDL and
CTR

The positive items are bold

NSPR-L

1. American Wedding (2003)

2. Tarzan and the Lost City (1998)

3. Indiana Jones and the Last Crusade (1989)

4. Bloody Murder (1999)

5. Bloody Murder 2 (2003)

CDL

1. Virus (1980)

2. Take This Job and Shove It (1981)

3. Going Greek (2001)

4. Shine (1997)

5. Bless the Beasts and Children (1972)

CTR

1. Ricochet River (2001)

2. Buffalo Soldiers (1988)

3. Tempest (1982)

4. Two Hands (1999)

5. JFK (1991)
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5 Conclusion and future work

Item cold-start and implicit user feedback present two of the greatest challenges to the real-

world recommender systems. In this paper, we tackle the challenges by proposing a novel

probabilistic generative modeling approach to integrate deep neural network (DNN) with

three pairwise ranking variants. With the modeling power of deep learning, we can extract

semantic representation of items and couple it with the latent factors learned from implicit

feedback. The experiments show that the proposed approach significantly outperforms the

competitive baselines on two real-world public datasets.

This work is just an initial step towards a promising new direction. In future work, we

plan to incorporate other types of deep learning architectures such as CNN (LeCun et al.

1998), Deep belief network (DBN) (Hinton et al. 2006), and Recurrent neural network

(RNN) (Bengio et al. 2003). Further performance boost may be possible when using such

deep learning models since these models can explicitly take the context and ordering of

words into account. Moreover, we plan to explore deeper architectures by applying data

normalization techniques (Ioffe and Szegedy 2015; Ba et al. 2016) to help model stability

and a better local optimum. Last but not the least, the proposed NSPR framework can be

readily extended to handle the listwise preferences if ranked lists of items are given as

ground truth for recommendations. The listwise learning to rank likelihood functions such

as ListMLE and ListNet (Liu 2009) can be directly plugged into the proposed generative

framework. The listwise approach may be able to handle more complex user feedback than

pairwise preferences.
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