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Abstract

Software engineers need to understand programs in or-
der to effectively maintain them. The call graph, which
presents the calling relationships between functions, is a
useful representation of a program that can aid understand-
ing. For programs that do not use function pointers, the
call graph can be extracted simply by parsing the pro-
gram. However, for programs that use function pointers,
call graph extraction is nontrivial. Many widely used C pro-
grams utilize function pointers for efficiency and ease of
implementation. We present a technique called type signa-
ture filtering for improving call graph extraction in the pres-
ence of function pointers. Filtering can be accomplished in
a single pass after pointer analysis is complete, making it
reusable across different analyses. Our results show that
for many programs our technique yields a call graph that
is nearly identical to the true call graph, even if a naive
pointer analysis is used.

1. Introduction

1.1. Motivation

As a society, we rely increasingly on software that is it-
self becoming more complex and interconnected. As such,
errors in software systems become ever more apparent, wor-
risome, and costly to the general public. A recent study by
the National Institute of Standards and Technology (NIST)
estimated that software errors cost the American economy
at least sixty billion dollars a year, and that 80% of all soft-
ware development cost is applied toward maintaining in
software [16].

Software maintenance itself can take a variety of forms.
A programmer may need to incorporate an enhancement
requested by the customer. The software may need to be

adapted for a new architecture or platform. Defects in the
design or implementation may need to be corrected. Finally,
the engineer may simply wish to restructure the system, im-
proving its design and organization, to ease incorporation of
future changes.

For all of these applications, the engineer needs to thor-
oughly understand the system in order to correctly main-
tain it. A lack of understanding could lead to additional
defects being introduced. For example, anticipating the ef-
fect of a proposed change such as adding a new feature re-
quires knowledge of the control-flow and data-flow proper-
ties of the program, if the change is to be made without in-
troducing errors. Ideally, software engineers would have ad-
equate documentation to assist them in these tasks. Require-
ments, specifications, and design documents present infor-
mation about the program in ways that are easier for the en-
gineer to understand, as compared with hand-examination
of the source code. Unfortunately, this documentation is of-
ten not available or is out of date.

To assist the software engineer in understanding a sys-
tem, static analysis tools such as program slicing tools and
invariant checkers have been proposed as a solution. For ex-
ample, a backward program slicer [24] computes the set of
statements that may have affected the value of a given vari-
able, which may aid programmers during debugging. As an-
other example, an invariant checker infers facts about the
state of the program and checks those facts against asser-
tions provided by the programmer [17]. Such tools analyze
the program source, computing information about the pro-
gram, and present that information in a way that is most use-
ful to the tool user.

1.2. Call graphs

A useful analysis is the extraction of thecall graphof a
program. The call graph is simply a visual representation of
the calling relationships between functions or procedures.
Each function is represented as a graph node. Figure 1
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main ( ) {
printf ("%d", f ( ));
printf ("%d", g ( ));

}

f ( ) {
return 1;

}

g ( ) {
return f ( ) + 1;

}

h ( ) {
return f ( );

}

printf fg

main h
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Figure 1. Example program and its call graph.

shows an example C program and its call graph. If func-
tion a calls functionb thena→ b is an edge in the graph.
Thus, the call graph can be used to determine which func-
tions are called by a particular function, as well as which
functions call a particular function. Both queries are of in-
terest to the software engineer when trying to understand a
system.

Not only is the call graph useful alone, but the proper
determination of calling relationships is a prerequisite for
other analyses as well. For example, determining how a pro-
posed change to one module of the system will affect the
rest of the system requires the knowledge of which func-
tions call which other functions. Accurate call graph extrac-
tion is also useful in software testing, since one common
goal of testing is, for example, to ensure that each function
is executed on at least one test run [15].

Unfortunately, the problem of call graph extraction is
nontrivial. Modern programming languages allow functions
to be used in ways other than just in traditional call expres-
sions. For example, most languages allow functions to be
passed as parameters to other functions. Languages such
as C and C++ allow the addresses of functions to be taken
and used as pointers. Many significant, large scale programs
such asGCC [21] rely heavily on function pointers to imple-
ment dispatch tables (tables in which the key is an integer
value designating an operation and the corresponding value
is the address of a function that performs that operation),
as shown in Figure 2, or to implement object-oriented dis-
patch. In effect, functions and procedures are used more as
“first-class” objects such as integers or pointers than solely
through simple function and procedure calls. These uses
are necessary for efficiency and often greatly simplify de-
sign. However, they complicate the construction of the pro-
gram’s call graph since the calling relationships are not ap-
parent simply by examining the lexical and syntactic struc-
ture of the program.

Most program analyses account for these problems by
first computing the sets of pointer values (points-to sets) for
functions, and then using the pointer values to construct an
accurate call graph. Although flow-sensitive and context-
sensitive points-to algorithms potentially produce the most
precise results, they typically have running times that are

# define SIN 0
# define COS 1

...
# define POW 10

struct {
double (*func) ( );
int args;

} functab [ ] = {
{&sin, 1},
{&cos, 1},
...
{&pow, 2},

};

n = functab [i].args;
f = functab [i].func;

x = pop ( );

if (n == 1)
return (*f) (x);

y = pop ( );

if (n == 2)
return (*f) (x, y);

return 0;

(a) (b)

Figure 2. Example of dispatch tables: (a) a simple
dispatch table, and (b) its use.

not acceptable for use on larger programs (e.g., programs
with at least 50,000 lines of code). For example, many algo-
rithms haveO(n3) running times, wheren is the number of
lines of code [1]. Therefore, less expensive and less precise
analyses are often used that trade precision for performance
to enable analysis of large or complex programs. These
analyses are typically not fully flow-sensitive or context-
sensitive [20, 25]. For example, efficient, near-linear time
points-to algorithms are well known [6, 22].

Unfortunately, the results of these inexpensive analyses
are often less than desirable since they are overly conserva-
tive. That is, they must be correct for any input and execu-
tion path of the program. In addition, for C programs they
have to make additional conservative assumptions about the
program due to C’s weak type system. The resulting points-
to sets are therefore often quite large. For example, the re-
sulting points-to data may indicate that a call made through
a function pointer could possibly call any function in the
system whose address is taken. This leads to many “false”
edges in the call graph, hindering program understanding.



Level Construct Rule

Weak Qualifiers Ignored
Arguments Number of actuals at least number of formals
Specifiers One is assignable to other; structure tags need not match
Declarators Match at outermost level only, unless one is pointer

and other is integer

Strong Qualifiers Ignored
Arguments Number of actuals equal to number of formals
Specifiers One is assignable to other; structure tags must match
Declarators Match at all levels, unless one is pointer to void

and other is pointer

formals

��	 @@R
int f (int x, int y) {

...
g (x, y + 1.5);

@@I ���...
actuals}

specifier

?
const int *x, y, z ( );

6 @@I ���

qualifier declarators

Figure 3. Filtering rules for both weak and strong type signature filtering.

In this paper, we present a technique for improving the
points-to sets computed by points-to algorithms. Our ap-
proach, calledtype signature filtering, uses the declared
program types to filter the resulting points-to sets in or-
der to eliminate functions that could not be called during
any legal program execution. Our technique can be imple-
mented for any points-to analysis, since it consists of a sim-
ple post-processing step that is independent of the manner in
which the points-to sets are themselves constructed. How-
ever, since violation of the type system (i.e., type casting) is
possible in languages such as C, our approach may in fact be
unsafe for some programs in that some calls may be omit-
ted from the call graph when they in fact can occur. How-
ever, for programs that conform to standard calling conven-
tions (e.g., passing the correct number of arguments), type
signature filtering is safe.

Our results show that for many typical C programs, filter-
ing is safe and can dramatically reduce the number of graph
edges. In many cases, results from a poor points-to analy-
sis can be made equivalent to the results from better anal-
yses by using signature filtering. Often, the resulting call
graph is identical to the true graph obtained through man-
ual examination of the source code. For a few programs,
filtering is unsafe. However, even in these cases, the result-
ing call graph is closer to the true graph than if no filtering
had been performed, and can therefore still be quite use-

ful to the software engineer for the purposes of program un-
derstanding and maintenance. Furthermore, the fact that fil-
tering is unsafe can tell the software engineer interesting
things about the program (e.g., the program itself may actu-
ally contain errors). We found errors in two commonly used
programs by comparing the filtered graph with a graph con-
structed by hand. (In practice, one could use an approxima-
tion of the actual call graph obtained through profiling.) In
particular, this paper makes the following contributions:

• Using type information for function pointers is gener-
ally safe for C programs.

• Using type signature filtering can dramatically in-
crease the precision of the underlying points-to analy-
sis used.

• Even when filtering may be unsafe, the resulting call
graph is in fact closer to the actual call graph than the
unfiltered call graph. That is, the difference between
the filtered graph and the actual graph is less than the
difference between the unfiltered graph and the actual
graph.

• The fact that filtering is unsafe can provide in-
sights into discovering complex program behav-
iors. We found errors in widely used programs using
this technique.



• We constructed the true call graph by hand for a va-
riety of C programs commonly used in the research
community and provide detailed data from our experi-
ments.

The remainder of this paper is organized as follows. In
Section 2, we discuss our technique and its implementa-
tion in a call graph extraction tool for C programs. Then,
we present our experimental setup in Section 3. Section 4
presents and discusses our results, detailing where type sig-
nature filtering is unsafe and what we learned about the pro-
grams used in our experiments. Finally, Section 5 discusses
related work, and in Section 6 we present our conclusions
and discuss future work.

2. Type signature filtering

2.1. Approach

We use type information to improve the accuracy of the
points-to sets for function pointers. The points-to sets for
other types of pointers are unaffected. In general, using type
information for C and C++ programs is unsafe since the
type system can be violated by means of type casts. How-
ever, type casting of function pointers is uncommon, and
the type information itself is easy to compute. Such infor-
mation is often already available in the program represen-
tation (e.g., the symbol table or syntax tree). Consequently,
type information is an attractive alternative to other tech-
niques such as implementing a more sophisticated and ex-
pensive points-to algorithm, which still may not yield an
improved call graph, as we shall see in Section 4.

Another advantage of typefiltering is that it can be per-
formed as a post-processing step after points-to analysis is
complete. This separation allows our technique to be used
with any points-to analysis. It also does not further com-
plicate an existing points-to algorithm, reducing the chance
of introducing errors into the algorithm. One disadvantage
of filtering is that the points-to algorithm may require more
time and space than if type information was used during
the analysis itself. However, many commonly used points-
to analyses run in near-linear time and space, so any savings
are likely to be minimal.

We compute type signatures for all function definitions
and compare them against the signature implied by the func-
tion call through the function pointer. The points-to set of
the pointer is filtered in that only functions whose signatures
satisfy the matching rules are retained. Functions whose sig-
natures do not match are removed. Type signatures are simi-
lar to function prototypes. TheANSI standard provides func-
tion prototypes, which provide additional typing informa-
tion for static semantic checking by ensuring the type and
number for formal and actual arguments agree. However,

void (*p) ( );
int (*q) ( ), y;

int main ( ) {
...
(*p) (1);
(*q) (2, "a");
(*q) (3, &y);

}

void f (int x) {
y = x;

}

int g (int x) {
return x;

}

int h (int x, void *p) {
return x + *(int *) p;

}

int i (int x, char *p) {
return *p + x;

}

Figure 4. Example using function pointers.

prototypes are not required and many programs were de-
veloped before the standard, but may themselves beANSI-
compliant. Therefore, the signatures are computed from the
actual function definitions and function calls. Any function
prototypes are in fact ignored.

For flexibility, two levels of filtering are supported: weak
and strong. Weak type signature filtering assumes that the
program is only weakly compliant withANSI standards, i.e.,
the program obeys pre-ANSI conventions as loosely defined
by [10] and [9]. Strong type signature filtering assumes that
program is strictlyANSI-compliant. The rules for both lev-
els of checking are shown in Figure 3. For example, un-
der strong filtering, the declarators must match at all lev-
els, unless one is a pointer tovoid, which is the “generic”
pointer type according to the standard. Under weak filter-
ing, only the outermost declarator must match. Older pro-
grams used pointer tochar as the generic pointer type, so
requiring that the declarators match at all levels would be
too restrictive for these programs. As another example, un-
der weak filtering the number of actual arguments must be
at least the number of formal arguments, i.e., it is permissi-
ble to call a function with too many, but not too few, argu-
ments. Under strong filtering, the number of actual and for-
mal arguments must match. The C language does support
functions with a variable number of arguments, and these
functions are treated specially during filtering by ignoring
the variable argument list. In practice, however, pointers to
such functions are rare and did not occur at all in the pro-
grams in our test suite.

Consider the example program in Figure 4. This pro-
gram makes use of two function pointers, both of which
have a declaration, but not a complete prototype, and none
of the functions defined have a prototype. The type signa-
ture forf ( ) is simplyint→ void, and the signature forh ( )
is int×pointer(void)→ int.

Let us assume that the four functions,f ( ), g ( ), h ( ),
andi ( ), have all been merged into the same points-to set



Expression None Weak Strong

(*p) (1); {f,g,h,i} {f} {f}
(*q) (2, "a"); {f,g,h,i} {g,h,i} {h,i}
(*q) (3, &y); {f,g,h,i} {g,h,i} {h}

Table 1. Effect of type signature filtering on the
program in Figure 4.

Lexical filtering
Type filtering

WeakStrong
No filtering

Application (call graph extractor)

Steensgaard Address−takenOne−level flow

Program representation (AST / CFG)

Figure 5. Layered software architecture for the call
graph extractor.

and that bothp andq point to this set, as shown in the sec-
ond column of Table 1. By applying the rules for strong
type filtering to the signatures of the function call and def-
inition, the first function call inmain ( ) can only refer to
functionf ( ) since the other three functions return anint
andp is declared to returnvoid. The second call can refer
to either functionh ( ) or functioni ( ) since they both re-
quire two arguments and a string is assignable to thevoid
pointer argument in functionh ( ). The third call can only
refer to functionh ( ) since a pointer toint is assignable
to avoid pointer, but not to achar pointer (i.e., string lit-
eral). The results with strong prototype filtering enabled are
shown in Table 1. The results after applying the rules for
weak filtering are also shown in the table. Note thatg ( )
is included in the points-to sets because it is now permissi-
ble to pass extra arguments to a function.

2.2. Tool design

As mentioned, filtering the points-to sets has the added
advantage that the points-to algorithm itself is unaltered.
Figure 5 shows the software architecture for our call graph
extractor,cgraph, which is part of theICARIA tool set for
analyzing C programs [14, 2, 5]. As shown in the figure,
the type signature filtering component is separate from the
points-to analyses. Three different points-to analyses have

in fact been implemented: a simple address-taken scheme
in which a pointer may point to any function whose ad-
dress has been taken, Steensgaard’s near-linear time algo-
rithm that computes equivalent classes of memory loca-
tions [22], and Das’s one-level flow algorithm that is an im-
provement on Steensgaard’s [6]. The one-level flow algo-
rithm has been shown to yield results as precise as Ander-
sen’s well-known algorithm [1]. The results from Ander-
sen’s algorithm, in turn, have been shown [11] to be compa-
rable to results from some other well-known pointer analy-
sis algorithms [11, 18]. Having the filtering component sep-
arate was key to successfully implementing and testing each
points-to algorithm.

The call graph application interfaces with the points-
to data through the filtering layer. The application can re-
quest no filtering, weak type signature filtering, or strong
type signature filtering. In order to determine the effective-
ness of our technique, we also computed the true points-to
sets for function pointers by examining the code by hand.
These points-to sets are used to extract the actual or true
call graph, which can be used as a baseline for evalua-
tion. During this process, we discovered that many pro-
grams use naming conventions for functions. For example,
for thefind application, any call through a pointer named
“parse function” resolved to any function whose name
began with “parse ”. Therefore, to make specification of
the true points-to sets easier and more compact, we decided
to exploit such conventions by adding a module for lexical
filtering, as shown in Figure 5. Both the function call ex-
pression and set of called functions can be specified as reg-
ular expressions.

3. Experiments

To evaluate our technique, we computed the call graphs
of several C programs. We chose to include programs from
the SPEC 2000 benchmark suite since they are of con-
siderable size, perform a variety of different computations
(graphics, compression, mathematical computations, sim-
ulation), and are used in practice. (They are submitted to
the SPEC consortium based on their relevance and repre-
sentativity of actual computing practice.) We also included
programs that others have used in their call graph experi-
ments [13, 3], many of which are commonly usedUNIX util-
ities. Although there is no general consensus on what con-
stitutes a typical C program, we have tried to include a suf-
ficient number and variety of programs to substantiate our
claims.

Table 2 provides sizes and descriptions of programs used
in the experiments. The number of lines of code was deter-
mined simply by using theUNIX wc utility. The number of
indirect call sites indicates the number of static occurrences
of functions calls through pointers.



Program Lines of code Indirect call sites Source Description

gzip 7757 4 SPEC 2000 compression
diff 11755 3 GNU (v2.7) file comparison
grep 13084 18 GNU (v2.4.2) pattern matching
find 13122 22 GNU (v4.1) filesystem searching
ammp 13263 24 SPEC 2000 molecular dynamics
m4 14007 5 GNU (v1.4) macro processing
unzip 17759 305 Info-ZIP (v.5.50) compression
less 18305 4 GNU (v358) text file viewing
mesa 49701 671 SPEC 2000 graphics
burlap 49845 18 FELT (v3.05) finite element solver
vortex 52633 15 SPEC 2000 object-oriented database
perlbmk 58221 57 SPEC 2000 text processing
gcc 205743 140 SPEC 2000 compilation

Table 2. Sizes and descriptions of programs used in the experiments.

Since we will evaluate the merits of our technique (Sec-
tion 4) by comparing the number of edges in a call graph,
a discussion of which edges are included and counted is
appropriate. Many studies do not discuss how edges are
counted, and others such as [13] do not provide edge counts
at all, but rather discuss factors of improvement, making
comparison between techniques difficult. To assist in repro-
ducing our results, we discuss here several issues in call
graph construction:

• Multiple calls: Multiple calls to a functionb from a
result in multiple edgesa → b in the graph. For ex-
ample, in Figure 1,main ( ) callsprintf ( ) twice, so
two edges are included. Thus, the call graph is a multi-
graph.

• Undefined functions: Calls to undefined functions
are included in the graph. For example, in Figure 1,
printf ( ) is undefined, but calls to it are included.

• Unreachable functions: If functions are unreachable
from main ( ), then the call graph will have multiple
roots. For example, in Figure 1,h ( ) is unreachable.
The edge counts presented in Section 4 includeonly
reachable functions. Programmers may leave func-
tions for debugging and testing in the source code.
These functions are unreachable and should not be
counted as part of the program proper. Therefore, they
are excluded.

Therefore, if the program presented earlier in Figure 1
were used in the experiments, its call graph would have an
edge count of five.

4. Results

4.1. Experimental data

For each program, we built its call graph using each of
the three points-to algorithms discussed in Section 2.2. In
turn, for each algorithm, we counted the number of edges in
the graph constructed using the unfiltered points-to data, us-
ing weak type signature filtering, and using strong type sig-
nature filtering. We also computed the number of edges in
the “actual” or “true” call graph through hand examination
of the code. To the best of our knowledge, this manually cal-
culated graph is correct and more precise than any known
points-to analysis could yield. For example,gcc uses multi-
dimensional arrays of function pointers, where one index
is (almost) always a constant. In our construction, we were
able to take advantage of the fact that one index is either
a constant (or a variable whose value is determined to be
a constant) and separate the individual array dimensions,
something that a pointer analysis would be unlikely to do.

The numeric data is shown in Table 3. Entries in bold-
face indicate where strong type signature filtering may be
unsafe. If the number of edges in the filtered graph is less
than the number of edges in the true graph, then filtering is
obviously unsafe. This fact is most apparent forgcc. How-
ever, even if the edge count is greater, filtering may still
be unsafe. Filtering tries to remove “false” edges from the
graph, but may erroneously also remove true edges. To en-
sure safety, the actual call graph must be a subgraph of the
filtered graph. For programs other than those indicated, we
determined that filtering was safe by performing this sub-
graph check.

Figure 6 shows the effect of weak type signature fil-
tering on call graph size. The graph shows the number of
graph edges normalized as the percentage of the unfiltered



One-level flow Steensgaard Address-taken
Program Actual strong weak none strong weak none strong weak none

gzip 307 307 307 307 307 307 307 307 378 378
diff 620 620 620 620 620 620 620 620 625 648
grep 712 712 712 741 712 727 780 712 736 794
find 1116 1116 1116 1116 1116 1716 1765 1116 2316 2964
ammp 1545 1545 1545 1545 1545 1545 1545 1556 1556 1953
m4 1034 1033 1034 1034 1033 1034 1034 1036 1047 1206
unzip 1351 1352 1651 2257 1352 1651 2257 1352 1969 2886
less 1688 1688 1688 1688 1688 1688 1688 1688 1701 1731
mesa 1673 13915 77831 171297 13915 77831 171297 13915 77889 171681
burlap 4133 4268 5466 6632 4268 5466 6632 4273 5473 6646
vortex 6847 6645 6895 7126 6645 6895 7126 6657 7112 7296
perlbmk 9060 9312 16438 18467 9312 16438 18467 9342 27948 33105
gcc 24783 24119 34329 40588 24119 34331 40884 24628 38806 54859

Table 3. Number of call graph edges. Boldface entries indicate where strong filtering may be unsafe.

address-taken data, i.e., the graph with the largest number of
edges. The outlined bars show the unfiltered data for each
algorithm. For some applications, weak filtering has little
effect on the results from Steensgaard’s and the one-level
flow algorithms. This is because the graphs generated by
these algorithms are already quite close to the actual call
graph, so there is little room for improvement. However,
it generally improves the naive address-taken scheme by a
greater factor, thus closing the gap with the other more so-
phisticated algorithms.

Figure 7 shows the effect of strong type signature filter-
ing on call graph size. For the majority of the applications,
the resulting call graphs are now almost identical to the true
call graphs. Only,mesa still shows a considerable gap, due
to the fact that most of its function pointers are in struc-
tures and none of the analyses differentiate structure fields
(i.e., the structure is treated as a single object). Our results
are twofold. First, strong type filtering can dramatically im-
prove the results of points-to analyses, with regard to func-
tion pointers and call graph size. Second, strong type filter-
ing can overcome the simplicity of algorithms such as the
address-taken scheme.

Consequently, type information appears to be of greater
benefit to the accurate determination of points-to sets than
the complexity and sophistication of the algorithm, at least
for function pointers. Although this result has been shown
for type safe languages such as Modula-3 [7] and for call
graph construction in type safe languages such as Java [23],
using type information to improve the results of points-to
analyses of C programs as they pertain to call graph con-
struction has not generally been considered.

4.2. Safety considerations

In Table 3, four of the applications,m4, burlap, vortex,
andgcc, are indicated as programs for which strong type
filtering is unsafe. However, for all four programs, the call
graph constructed using strong prototype filtering is at least
as accurate as the unfiltered graph, and is usually better. A
closer examination of the applications yielded some inter-
esting discoveries. Form4, the program itself is incorrect.
A function that can be used during debugging (for dump-
ing the contents of the symbol table) is not passed the cor-
rect number of arguments. Similar problems exist ingcc,
where extra arguments are passed to functions or where too
few arguments are passed, but the functions called actually
do not use the missing arguments, so no run-time errors oc-
cur. We found it surprising that programs as “robust” and
old asm4 andgcc actually contain errors, although they may
be “harmless”.

However, forgcc, the errors described do not account
for the entire difference between the actual and type-filtered
call graphs. As previously discussed, the actual call graphs
were determined by hand examination of the code. This was
particularly difficult forgcc, given its size and complexity.
After a thorough examination of the source, we found that
the hand-constructed graph was actually too conservative.
In the program, there are several places where a function
in a dispatch table (cf. Figure 2) is called. However, based
on the number of arguments passed in the call, only certain
functions could be called and operate without error. (This
was not a case where the missing arguments were unused
by the called function.) Presumably the index (a machine
opcode) to the table selects a correct subset of the functions
that have a related operation, such as moving data, since
gcc works correctly. However, we had no way of knowing
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Figure 6. Effect of weak type signature filtering on call graph size.
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this during our examination of the code. Only after exam-
ining the results from strong type signature filtering did we
discover this fact.

For burlap, there was one call site in which additional
arguments were (harmlessly) passed to the called function.
For vortex, strong prototype filtering is actually inappro-
priate because the program does not conform toANSI con-
ventions. We determined that the program is written in an
object-oriented style using inheritance and polymorphism.
In C, these can be achieved simply by ensuring that the
first fields of two structure types correspond. A pointer to
the “derived” class can be passed wherever a pointer to the
“base” class is expected, since the derived class has the
same initial structure as that of the base class. However,
such a call clearly violates the rules for strong prototype fil-
tering, since the two pointer types are unassignable.

5. Related work

The use of type information for function pointers to im-
prove program slicing [24] is discussed in [4]; however,
the effect on the call graph itself is not discussed. Mock
et al. [14] discuss the use of dynamic points-to data in pro-
gram slicing and report that accurate points-to data for func-
tion pointers is more important than accurate points-to data
for other variables. Dynamic function pointer data could be
used to inexpensively construct a call graph for compari-
son with graphs obtained using type signature filtering. If
an edge is present in the dynamic call graph but absent in
the filtered graph, then filtering is obviously unsafe.

Both [25] and [8] discuss context-sensitive alias and
points-to algorithms for C programs. Since the algorithms
are context-sensitive, they must resolve the points-to sets for
function pointers “on-the-fly” while computing the points-
to data for other variables. The latter work discusses the use
of type information and declares it unsound (which we do
not dispute).

Type filtering in C++ is discussed in [19], and [12] dis-
cusses points-to analyses for Java. For object-oriented lan-
guages such as C++ and Java, the class hierarchy can be
used to help resolve the set of called functions for virtual
methods invoked through dynamic dispatch (i.e., through a
function pointer). Finally, [7] discusses the use of type in-
formation to compute alias information in Modula-3, a type-
safe language.

6. Conclusion

6.1. Discussion

Software systems are too difficult to understand without
the aid of tools. The call graph is a useful representation of
a program that can greatly aid understanding. An accurate

call graph is also necessary before any subsequent interpro-
cedural data-flow analysis can be performed. However, call
graph extraction of a C program is difficult if the program
uses function pointers. A pointer analysis must first be per-
formed to compute the points-to sets for the function point-
ers. Although many practical points-to algorithms are avail-
able, the results are typically less than satisfactory. The re-
sulting call graph contains too many “false” edges to be gen-
erally useful.

We have developed a technique called type signature fil-
tering for improving the results for function pointers from
points-to analyses. Our technique is implemented in a sep-
arate pass over the points-to sets, once pointer analysis is
complete, making it reusable across many different pointer
analyses. Although the use of type information may be un-
safe for some C programs, for many programs using type
information for function pointers is safe.

Our results showed that by filtering the sets for func-
tion pointers, an accurate call graph can be obtained. For
the majority of programs in our test suite, the call graph
constructed using the filtered sets was virtually identical to
the actual call graph that was obtained by hand. Further-
more, filtering was so effective that the results from a naive
points-to algorithm were made equal to those from more so-
phisticated and complex algorithms. For deriving an accu-
rate call graph, type information is therefore more impor-
tant than the intelligence of the underlying pointer analy-
sis.

For some programs, filtering can be unsafe. However, a
close approximation of the true call graph can still be con-
structed. If the program is not written in strict accordance
with ANSI standards, a weaker version of the filtering rules
can be used. For those programs where filtering was unsafe,
we were able to gain insight into design and implementa-
tion of the programs. We believe that the use of type in-
formation is an attractive method for improving the results
from pointer analyses in the areas of system understanding
and maintenance.

6.2. Future work

Strong filtering is unsafe on many programs due to the
restriction on the number of actual and formal arguments.
In contrast, weak type signature filtering is generally safe
and does not have this restriction. Therefore, a version of
strong filtering that relaxes this restriction may be quite ef-
fective and yet still safe for most programs.

Although lexical filtering was useful as a compact way
of specifying the points-to sets for the actual call graph, it
is only useful if naming conventions are used. Furthermore,
the tool user must be familiar enough with the program to
know those conventions. Therefore, for the purposes of pro-
gram understanding, lexical filtering is likely not generally



useful. It may however be useful for other purposes, such as
programmer-directed optimizations during compilation.

Finally, since type signature filtering was so effective at
improving call graph extraction for the programs in our test
suite, using type information to filter all pointers seems at-
tractive. Such filtering would obviously be unsafe for most
C programs, but could be used to reflect on the effective-
ness of points-to algorithms. Furthermore, a pointer analy-
sis for C could be developed that assumes type safety, or
at least that the type system is violated only in predictable,
stylized ways, rather than assuming that using type infor-
mation is completely unsafe.
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