
The Design of Evolutionary Process Modeling Languages

Darren C. Atkinson, Daniel C. Weeks, and John Noll
Department of Computer Engineering

Santa Clara University
Santa Clara, CA 95053-0566 USA
{datkinson,dweeks,jnoll}@scu.edu

Abstract

To formalize a software process, its important aspects
must be extracted as a model. Many processes are used re-
peatedly, and the ability to automate a process is also de-
sired. One approach is to use a notation that already exists,
such as a programming language, and extend it. However,
the intricacies and restrictions the programming language
places on the ability to succinctly and clearly describe a
process can be problematic. An alternative approach is to
develop a language specifically for describing processes. A
significant disadvantage of this approach, however, is the
lack of tool support for ensuring model correctness. We
discuss a high-level language that encourages evolution-
ary model development and describe a tool for performing
model verification. We have used our language and tool on
the NetBeans model for distributed software development.

1. Introduction

Process descriptions [12] characterize the important as-
pects of processes from which models can be derived. One
purpose of a model is to reflect the control-flow of the pro-
cess without incorporating nonessential properties. The ob-
jective of modeling is not to recreate every minute aspect
of the process, but instead to extract the meaningful proper-
ties of the process and imitate its behavior [1].

In addition to disambiguating a complicated process,
having a written notation for process description provides
the ability both to analyze the process by checking for er-
rors and to automate it. Validating a process before enact-
ment increases quality and ensures correctness. Automation
increases efficiency and provides the facility to guide the
process through its life-cycle, only stopping for human in-
teraction when necessary.

In order to effectively check models for errors and to au-
tomate processes, aformal notation (i.e., language) is re-
quired to specify the model. The objective of the language

is to be as expressive as an unstructured description, but
changing the representation so it is unambiguous [4]. The
design of the language constrains how and where the pro-
cess model can be applied. If the language is too compli-
cated or strict, it may not be expressive or flexible enough
to be useful in a broad range of applications. If the language
definition is too loose, it may not be amenable to meaning-
ful analysis or automation.

In addition to finding problems in a process, modeling
allows the process designers to explore many different de-
signs before enactment. Complex processes may be too
costly to actually implement and refine. Modeling allows
the modeler to easily modify the process and determine if
the changes are effective. Furthermore, processes are typi-
cally designed starting with abstract concepts and are itera-
tively refined into detailed descriptions. Therefore, the lan-
guage used to describe a process needs to reflect thisevolu-
tionary development cycle, but still provide valuable infor-
mation about the process at every level of abstraction. Fi-
nally, if the conceptual and procedural aspects of a process
can be represented in a language, then tools can be designed
to automatically check the models before enactment [8].

One common paradigm for modeling processes is rule-
based or logical modeling [10, 13]. This method relies on
rules to describe the tasks and then generates a model from
the dependencies specified in the tasks. The main advan-
tage of this approach is that the modeler need only specify
individual tasks, and the associated tools will automatically
generate a model with consistent dependencies.

The most obvious problem with this method is that the
modeler has difficulty controlling the order of tasks in the
process. If two steps are independent, but the modeler wants
them to be performed in a sequence, then a false depen-
dency must be introduced in order to achieve the desired re-
sults, which adds an unnecessary layer of complexity. We
feel this method is also counterintuitive to how people think
about processes. The order in which tasks are performed is
a primary concern when defining a process, and the mod-
eler should be able to control it.

Copyright 2004 IEEE. Published in the Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC-2004), November 30–December 3, 2004, Busan, Korea.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

The paradigm that we advocate is control-based [3, 19],
which resolves many of the problems inherent in the rule-
based paradigm. In this approach, the control is specified by
the modeler, which allows her to describe the flow of control
in the process. This method can be used to model abstract
processes, detailed processes, and every layer of abstraction
between the two [11]. At a high level of abstraction, the con-
trol is sequential, which allows the modeler to imply the de-
pendencies without actually having to specify them. If it is
later decided that the model should be more specific, the ac-
tual dependencies can be introduced. This method is more
intuitive and reflects the steps that humans normally take.

2. Modeling language design

2.1. Goals and motivation

Although there are many different approaches to process
modeling, there is a general consensus about the goals of
modeling languages [15]. These goals embody how a lan-
guage should capture the aspects of a process in order to
represent the process properly. The most common goals are:

• simplicity: a non-technical person should be able to
model a process without being encumbered by the syn-
tactic or semantic requirements of the language

• flexibility: the language can be applied to a variety of
applications such as business processes, software pro-
cesses, or any other form of process equally

• expressiveness:the ability to accurately reflect a pro-
cess is essential in order to extract useful information
about the process

• enactability:the language should enable the model to
mimic the actual execution of a process

Though these goals have been repeatedly defined and exam-
ined, many language implementations disregard these goals
in an effort to achieve additional functionality [6].

The most common approach to designing a process mod-
eling language is to build the language on top of an exist-
ing programming language, because of similar concepts and
notations in both languages. A typical example of this ap-
proach is the language APPL/A [17, 18], which is designed
as an extension to the programming language Ada.

There are many advantages to using thisbottom-upap-
proach to language design, most of which pertain to en-
actability. APPL/A was able to take advantage of features
such as concurrency, iteration, modularity, information hid-
ing, and exception handling that are integrated into Ada.
In addition, the existing compilers provide type checking
and error checking capabilities. Other modeling constructs
such as relations and tasks were effectively implemented us-
ing Ada constructs of packages and tasks. Despite numer-

ous advantages, there are some fundamental concerns raised
by this language design approach.

Though the use of an underlying programming language
has obvious benefits, it compromises many of the goals of
modeling languages. Ada 95 has a rich and varied syntax,
resulting in a modeling language that is complex, not sim-
ple as intended. A person modeling a process may not need
to know the meaning of each keyword in Ada, but they must
recognize them in order to avoid using them. Using a key-
word unintentionally could result in checking errors caused
by the lower level language that would confuse the mod-
eler because they have no relevance to problems in the ac-
tual model. This places an additional burden on the modeler
to understand aspects of both languages.

Building on a programming language also limits the ex-
pressiveness of the modeling language. Process-related ac-
tivities may not be expressible in the underlying program-
ming language and therefore cannot be expressed in the
modeling language. Ada has a requirement that concurrent
tasks that need to communicate must synchronously meet,
which is called arendezvous. This constrains the expres-
siveness of the modeling language (i.e., APPL/A) because
asynchronous activities exist in processes. The primary con-
cern with this limitation is that it is not a problem with the
modeling language. Instead, it is a limitation imposed by
the language on which it was developed. Additionally, how
the process will be enacted depends on the underlying pro-
gramming language and how the process will execute once
compiled. What may seem intuitive at the modeling level,
may not be reflected at the programming language level.

Existing tools that support the language can also be prob-
lematic. The error checking capabilities of the Ada com-
plier are designed for checking errors in computer pro-
grams. However, the errors that can occur in a process are
based on a different criteria than those of programming lan-
guages. While compilers are designed to examine programs
for static errors, processes are dynamic in nature and many
of the useful features of static checking, such as type check-
ing, are not essential for process models. This limitation is
not due to an oversight in the modeling language design, but
a conceptual difference between processes and programs.

The primary concern of this style of language design
is that it relies on a language paradigm that is not ex-
plicitly designed for process modeling. Programming lan-
guages are designed for computation, and their target appli-
cations are not the same as those of process modeling lan-
guages. Though there are many similar concepts between
programming and process modeling, there are subtle differ-
ences that separate the two. For example, although a pro-
gram may be evolved, at each step the program must be se-
mantically correct. In process modeling, the modeler may
want to experiment with partially correct models to obtain
feedback. Therefore, a new language design is needed that

focuses on and represents the concepts of process models
rather than relying on programming languages, which are a
product of a different research domain.

2.2. Our approach

Instead of using existing languages to reflect processes,
we examine the requirements of process modeling lan-
guages and design a language based on those principles.
The result of our approach is the modeling languagePML [2,
14], which intrinsically supports process-related concepts
rather than implementing them in terms of concepts from a
programming language.1

This top-downapproach to language development has
many advantages that address problems inherent in the
bottom-up approach.PML is a simple language with only
thirteen keywords. This design decision has many implica-
tions: the language is much easier to learn, which makes
it more attractive to those who do not have a background
in programming. Another positive aspect ofPML is that the
syntax is very straightforward and not impacted by that of
a programming language. InPML, statements all follow a
simple form that helps to eliminate the confusion of com-
plicated grammars. The only consideration is about what
statements can be nested inside other statements, but nest-
ing is generally shallow.

Another problem that this language design addresses is
the difficulty in achieving the right level of expressiveness.
Modeling languages built on programming languages are
restricted by the underlying language, but not having that re-
striction allows for a much more adaptable grammar.PML

incorporates a language construct called aqualifier, which
is not a keyword in the language, but is a user-defined spec-
ification that enumerates the characteristics or qualities of
a resource, which allows the modeler to emphasize, con-
strain, or modify resources in the process model.

This design approach also makes the process model eas-
ier to enact. Instead of relying on a compiler to generate
code that is later executed to enact the process, the actual
process model can be enacted.PML employs an enactment
environment to interpret and enact the process model and
is designed specifically for execution of process models.
Therefore, it understands how to handle process related ac-
tivities as opposed to a program that is designed for compu-
tation. For example, the environment can rely on the user in
making decisions regarding which action to perform next.

PML is also quite flexible in that it supports evolution-
ary model development. A high-level process model can be
written easily and modified iteratively until the desired level
of detail is obtained. To illustrate this ability, we present the

1 The namePML is an acronym, originally for “Process Markup Lan-
guage.” The language quickly evolved to resemble a programming lan-
guage, but thePML name was retained for historical reasons.

syntax forPML in the context of the evolutionary develop-
ment of a process model to describe the traditional waterfall
model of software development.

3. The PML language

3.1. Language fundamentals

The most fundamental component of a process is a task
or action, which are terms that can be used interchangeably.
ThePML syntax for an action is:

act ion identifier { . . . }

With just the process and action statements it is possible to
make a non-trivial model of the waterfall process:

process w a t e r f a l l {
act ion analyze { }
act ion design { }
act ion code { }
act ion t e s t { }

}

This high-level description provides information about
what steps need to be completed and the order in which they
should be performed. Though there is little detail about any
of these steps, the model has enough information for a ba-
sic understanding of the waterfall development process.

3.2. Resources and attributes

Resources are an essential component to creating a pro-
cess model that does more than just reiterate the steps in a
process. The ability to describe the flow of resources allows
the modeler to recreate a variety of dependencies that occur
within a process. The only postulate for an action is that the
resource is available when the process enters or exits the ac-
tion. PML allows actions to require and provide resources,
which reflects the action’s need for or the production of a re-
source, but gives no indication of its origin or destination.
Using these constructs, we can modify our model to pro-
vide more information about the internals of an action:

act ion analyze {
requires { f u n c t i o n && behavior && i n t e r f a c e }
provides { requirements && analys is documenta t ion }

}

This statement illustrates the conditions that must be met
for this action to be performed and to terminate. Entrance to
the action is not possible unless the function, behavior, and
interface are available and exiting is not possible without re-
quirements and analysis documentation. Using these predi-
cates, a modeler can reconstruct the dependencies that exist
within a process by specifying its pre- and postconditions.

In most cases, resources alone are not enough to pro-
vide the detail needed for an accurate model. While many

actions in a process may require a resource, there are spe-
cific qualities or characteristics of the resource that are es-
sential and cannot be described by the resource’s name. We
previously stated that the actionanalyze:

provides { analys is documenta t ion }

However, introducing a new resource to describe the fact
that the analysis portion of the documentation is complete
complicates the process. Without being able to modify the
properties of a resource, a new resource needs to be created
to describe any change in the process. Therefore, we pro-
vide attributes to solve this problem by describing the state
of a resource and thus it would be more clear to state:

provides { documentation . ana l ys i s }

While analysis documentation is an abstract resource
created to describe the result of an action,documentation
is a concrete resource that will persist throughout the pro-
cess as new sections of the documentation are added. At-
tributes provide a means to describe changes to resources
without having to create spurious resources.

Finally, attributes alone cannot always adequately de-
scribe specific qualities and states of resources or their prop-
erties. Actions often rely on attributes having specific val-
ues and as the model evolves and detail is added, constrain-
ing the state of resources and attributes provides more ex-
plicit control. By adding expressions the model transitions
to another level of detail and can represent state:

provides { documentation . ana l ys i s = = ‘ ‘ complete ’ ’ }

This statement is an assertion regarding the state of the
attribute of a resource, and does not affect the value of the
attribute. The enactment environment simply ensures that
the attribute has the correct state when the action terminates.
Such level of detail can be gradually added to further spec-
ify or constrain the model.

3.3. Control constructs

PML has four mechanisms for describing the control of
a process. These control-flow constructs reflect process-
related activities and describe the ordering of steps in a pro-
cess.

3.3.1. Sequence.A sequence is the most basic form of
control and is the default control mechanism when noth-
ing else is specified. The actions in asequence construct
are performed in the order that they are specified:

sequence {
act ion f i r s t { }
act ion second { }
act ion t h i r d { }

}

This construct is the most natural and intuitive form of con-
trol for a process. When one thinks about performing any
process, a simple sequence of steps to accomplish the fi-
nal goal is often the easiest representation.

3.3.2. Iteration. A condition that occurs quite frequently
within processes is the need to repeat certain steps. While it-
erating over these steps, there are two concerns that must be
addressed: when to go back and repeat the steps, and when
to stop repeating and continue the process. Generally, this
decision is handled by an expression that is evaluated to de-
termine if the steps need to be repeated. This method works
well if the number of repetitions is known when the loop
begins, but the dynamic nature of a process often results
in this information being unavailable. An example of this
non-deterministic nature processes is making a cake where
the instructions state: add flour, stir mixture, test for con-
sistency, andrepeatuntil mixture is thick and consistent,
which is clearly subjective. The syntax for aniteration fol-
lows the same structure as a sequence:

i t e r a t i o n {
act ion f i r s t { }
act ion second { }
act ion t h i r d { }

}
act ion post { }

When determining which path to take inPML, the predi-
cates of the first action in the loop,first, and the first action
following the loop,post, are the points of interest. When the
last action in a loop is complete, the loop determines how
to proceed based on whether or not the requirements in the
first action of the loop and the first action following the loop
are satisfied.

At first this decision procedure may appear to be incon-
venient because processes may need to wait for a human to
choose the proper path, but it actually allows the process to
be more dynamic by providing multiple options when they
exist and suppressing them when only one path is available.
Also, there are many conditions in processes that are based
on human judgment and cannot be evaluated by a machine.

3.3.3. Selection.Selecting one of many paths requires that
a decision be made about which direction to take. These-
lection construct inPML defines possible paths of execution
with only one being performed:

select ion {
act ion choice 1 { }
act ion choice 2 { }
act ion choice 3 { }

}

The decision procedure for determining which path to
take is handled in a similar manner to iterations. In this case,
the predicates of the first actions in each possible path are
the focus.

This type of decision in process models cannot always
be automatically determined and therefore may rely on hu-
man interaction to choose which path to take. Though it is
possible to simply choose the first available path, therefore
avoiding human interaction, there might be external consid-
erations about which path should be taken that an automatic
procedure cannot foresee.

3.3.4. Branch. The branch construct specifies a set of
concurrent actions within a process:

branch {
act ion path 1 { }
act ion path 2 { }
act ion path 3 { }

}

Concurrency is usually employed as an optimization,
which is generally performed implicitly and does not have
a decision procedure associated with it. Each path must be
performed, which removes any need for human interaction
related to control. Unlike APPL/A,PML does not restrict
the way that a rendezvous is handled. Instead, aPML inter-
preter must decide whether a synchronous or asynchronous
rendezvous is used. We realize that this introduces an am-
biguity as to what will actually happen at a rendezvous, but
processes do not adhere to the strict nature of programming
languages and the dynamic nature of processes requires that
the decision be left to the modeler. Of course, artificial con-
straints in an asynchronous implementation can be intro-
duced to recreate a synchronous rendezvous.

The waterfall model states that testing should be done af-
ter the code is written, but writing tests is often started at
the same time as coding, so that tests can be prepared as the
code is written rather than having to wait until the code is
complete. To represent this we can change our model to:

branch {
act ion code { }
act ion w r i t e t e s t s { }

}

3.4. Advanced language features

Though attributes and expressions provide methods for
describing properties and states of resources, not every
quality of a resource can be expressed in this manner. There
are aspects of a resource that are extrinsic to the resource
and apply to how the resource is handled, modified, and re-
stricted. For example, consider an action in a model that
requires both design and funding. This action has two re-
quirements that consist of some tangible resource. The de-
sign is an inexhaustible resource in that it can conceivably
be used over and over again without losing any of its sub-
stance or quality. However, funding is exhaustible and can
only be used until the funding is gone. Some languages pro-
vide keywords associating a resource with being consumed
by an action [13]. Though adding keywords will make mod-
eling a specific situation, such as this one, much easier, there
are many possible situations that cannot be conceived of
while designing the language. Furthermore, adding a lan-
guage construct to clarify how each situation should be han-
dled explicitly violates our goal of simplicity and the ex-
pressiveness of the language would rely on how many situ-
ations we could envision.

A similar problem occurs when creating a new resource.
Providing more information about how a resource was cre-
ated is not possible with the basic language constructs of
PML. For example, code does not spontaneously appear in
the coding stage, but is derived from the design, but it is not
possible to illustrate this quality of the code without addi-
tional levels of specification.

To alleviate these problems,PML has a construct called
a qualifier. The qualifier is used to describe characteristics
or qualities of a resources that are beyond the scope of the
language’s regular syntax. With this construct we can state:

(pa r t ia l l y consumed) fund ing

In this example,partially consumed is a user-defined qual-
ity of the resourcefunding. This language feature also sup-
ports multiple layers of qualifiers, such as:

(new) (generated) executable

With this construct, the model can better represent the
process, but there are some difficulties associated with us-
ing a qualifier. For the process to be enacted, the environ-
ment must understand how to handle the qualifier if it has
a direct impact on the execution of the process. This means
that additional functionality must be provided to interpret
the meaning of a qualifier, otherwise it will be ignored.

Using the language features ofPML, we present a de-
tailed, idealized waterfall process model in Figure 1. This
example is one of many possible models of the waterfall
development process. Even this model can be refined to in-
clude more detail to meet the needs of the person perform-
ing the process, such as adding scheduling, funding, and
project-specific information. However, this model can be
applied to any waterfall development process without mod-
ification because it is at a high enough level to describe
the general process, but low enough to capture the essen-
tial control and resources.

We started with a simple model to describe the waterfall
process. By adding resources, attributes, expressions, and fi-
nally qualifiers, we gradually introduced more and more de-
tail to make the original model more specific. At any point
in this evolution, we could have stopped and used the ex-
isting model. For example, even the first model presented
that consisted solely of actions is enactable. We feel that this
type of evolutionary development of models reflects the top-
down way in which people reason about and describe most
processes, at least at an initial, conceptual level.

4. Model verification

4.1. Tool motivation

Using a process modeling language to recreate an ac-
tual process is a complex procedure because the modeler
must extract important information about tasks, resources,

process w a t e r f a l l {
act ion analyze {

requires { f u n c t i o n && behavior && i n t e r f a c e }

provides { requirements }
provides { documentation . ana l ys i s = = ‘ ‘ complete ’ ’ }

}
act ion design {

requires { requirements }
requires { documentation . ana l ys i s = = ‘ ‘ complete ’ ’ }

provides { design }
provides { documentation . design = = ‘ ‘ complete ’ ’ }

}
branch {

act ion code {
requires { design }
requires { documentation . design = = ‘ ‘ complete ’ ’ }

provides { documentation . code = = ‘ ‘ complete ’ ’ }
provides { (der ived) code && (new) executable }

}
act ion w r i t e t e s t s {

requires { requirements && design }
requires { documentation . design = = ‘ ‘ complete ’ ’ }

provides { t es t cases }
}

}
act ion t e s t {

requires { code && tes t cases && executable }

provides { code . tes ted }
}

}

Figure 1. An elaborated waterfall model.

and control in such a way that the model will properly re-
flect the process. Consequently, the resulting model often
contains errors that can be attributed to two sources: the
process and the modeler. Errors that are contained within
the process are problematic in that they represent some in-
efficiency or mistake in the process that could result in any
number of problems including slow performance or even
preventing the process from continuing after it reaches a
certain point. Problems introduced by the modeler repre-
sent human error by either improperly representing the pro-
cess, or making a typographical error that has repercussions
throughout the model. With the help of tools that look for
these errors, models can be more efficient and accurate.

We noted that modeling languages implemented us-
ing programming languages have inherited tool support for
checking errors in models, but these tools are not specif-
ically designed for process-related errors. Compilers per-
form type-checking, look for undeclared variables, and
check for other syntactic errors. The problem with using
these methods is that they do not represent the kind of er-
rors that occur in a process model. Therefore, we need
to explore the types of errors that might occur in a pro-
cess and how they would be reflected in a model.

In evolutionary process modeling, any errors are usually
related to the many levels of abstraction that the model must

pass through before arriving at a detailed representation of
the process. The first level of abstraction in a model is a
list of tasks that must be performed. However, at this level,
the errors that can be introduced by a modeler are simple
and include problems such as syntax errors or typographi-
cal mistakes.

Transitioning to a lower level of abstraction incorporates
adding resources to the model which begins the develop-
ment of dependencies and may result in a considerable num-
ber of errors related to modeling. If the name of a resource
is misspelled and another step in the model needs that re-
source, the dependency will be broken because the task was
expecting the resource to have a different name. A modeler
might also forget to state that a step has requirements or that
it provides something. These types of errors manifest them-
selves as broken dependencies and extraneous steps in the
model. Similarly, if a modeler fails to note what a step re-
quires, but does note what it produces, then it appears that
the step is creating some resource out of nothing. Though
some steps in a process may only rely on abstract concepts
or ideas that would not be properly represented by a require-
ment, this type of mistake is generally a problem that is in-
troduced as an oversight. The same type of concern is raised
when a step requires resources but a product for the task is
not specified.

Dependencies at low levels of abstraction have a direct
impact on the control of the process, which can lead to dif-
ficulties in trying to satisfy both control flow and dependen-
cies put in place by the modeler. If the modeler wants to
specify that two steps in the process are concurrent, but un-
intentionally creates a dependency that would prevent con-
currency, such as having the first concurrent thread rely on
a product of the second concurrent thread, then the model
would not represent the real process. This type of error is
the result of either not understanding the dependencies of
the process or over-specification of concurrency within the
process.

Other control-flow aspects of a model are compromised
by common modeling errors. If there are many possible
paths in the process, but only one can be taken, then fulfill-
ing dependencies is critical for the modeler. If the modeler
notes that a step after a path selection depends on a prod-
uct that is produced during the path selection, then all pos-
sible paths must produce that resource or the modeler has
introduced the potential for a stall in the process. As pos-
sible paths become more numerous and more complicated,
it becomes difficult to track what is produced and where it
will be available.

Once a process model has been effectively implemented
at a level of resource specification, it is possible to transition
to a lower level of abstraction that will illustrate constraints
on the state of objects within the process. This level of ab-
straction is the most detailed and also the most error prone.

i t e r a t i o n {
act ion f i r s t { }
act ion second { }

}
act ion post { } post

first

second

select ion {
act ion choice 1 { }
act ion choice 2 { }

}

choice_1 choice_2

conjunction

selection branch {
act ion path 1 { }
act ion path 2 { }

}

path_1 path_2

join

fork

Figure 2. Graph representations of PML control constructs.

When transitioning to a detailed specification, the modeler
must keep track of dependencies between the properties of
resources as well as the resources themselves. The addition
of properties to the model can disrupt the dependencies that
were in place at higher levels of abstraction. For example,
if the requirements for a step in the model are altered to in-
clude the state of a property, but the model fails to specify
that the property was introduced by an earlier step, then the
dependency between the two steps is broken.

The primary objective of a tool designed to analyze a
process model is to examine the model for the types of er-
rors mentioned. In order to fulfill this objective, there are a
number of requirements that a tool must meet and failing to
meet these requirements is detrimental to the tool’s useful-
ness:

• meaningful feedback:The tool should attempt to con-
structively map the errors in the model to conceptual
errors in the real process.

• analysis refinement:The evolutionary nature of pro-
cess modeling languages requires that supporting tools
operate at each level of refinement in the development
of the process model. If the analysis tool is reporting
resource and dependency errors when the model is at a
higher level of abstraction, then the analyzer has failed
to meet the evolutionary requirements of the language.

• ease of use:If the analysis tool is cryptic, slow, or dif-
ficult to use, then it will deter users from utilizing it to
aid their model development.

4.2. Tool design and implementation

Our tool is designed to translate a process model into a
format that incorporates all aspects of the model and based
on the structure of processes, the most intuitive represen-
tation is a graph. The procedure for mapping from aPML

model to a graph is relatively simple; the nodes of a graph
represent actions constructs and the edges represent the flow
of control. The language constructs designed for describing
control flow are interpreted and constructed into a graph in
a syntax-directed, bottom-up manner as shown in Figure 2.
Each action node describes the resources that are used and
produced through theprovidesand requiresproperties. A
tree structure is used to describe resources and expressions.

One of the objectives of an automated analysis tool the
ability to check a process at many levels of abstraction. Our

tool, PMLCHECK, currently provides four conceptual lev-
els of checking: syntax checking only, resource specifica-
tion, resource dependencies, and expression satisfiability.

PMLCHECK is not strictly limited to providing informa-
tion at these levels of refinement and within each concep-
tual level there are a variety of checks that are performed
andPMLCHECK can focus analysis on a particular point of
interest. This flexibility was intentionally designed to reflect
the evolutionary nature of process specification and thePML

language while providing the modeler with control over in-
formation gathered by the tool.

We noted that inconsistencies may be introduced into a
model because of a failure to specify requirements for a
task. InPML, this translates to the failure to require or pro-
vide a resource in an action. These types of errors fall into
four categories: those requiring and providing no resources
(“empty”), those only requiring resources (“black holes”),
those only providing resources (“miracles”), and those that
provide resources other than those that they require (“trans-
formations”).

Each of these scenarios is an indicator that something
has been left out of the process model and is a projection of
problems discussed previously. Since all of these cases are
local to an action,PMLCHECK simply examines each ac-
tion in turn in order to find errors. However, there are legit-
imate cases where a new resource is created and we want to
explicitly state that it is not an error. Using qualifiers pro-
vides the ability to state that a transformation should in fact
occur. We provide a predefined qualifier,derived, that will
suppress a warning in the case of a transformation, but this
is only one of many uses for a qualifier.

In contrast, tracing dependencies through a model is
much more complicated than simple specification checks.
Control-flow constructs and the level of specification of a
resource play an important role in determining whether or
not resources are available.PMLCHECK implements two
types of resource-based dependency checks: assuring re-
sources required by an action are provided, and provided
resources are required by an action.

To implement both of these checks,PMLCHECK uses
standard graph propagation algorithms to propagate the
availability of resources through the control-flow graph. A
resource available along only one path of aselection con-
struct is marked as only possibly available. A similar check
is performed for resources that are produced or consumed
in concurrent actions in abranch .

Error Type Initial Revised Final

Empty 2 0 0
Miracle 2 0 0
Black hole 6 0 0
Transformation 32 1 0
Unprovided 24 7 0
Unconsumed 20 12 0

Table 1. Summary of errors reported by PMLCHECK .

Finally, to implement the checks for expression satisfi-
ability, PMLCHECK uses logical equalities to first rewrite
the expressions into a canonical form to eliminate nega-
tions and many of the relational operators, thereby reduc-
ing total number of cases that need to be examined. Since
expressions are limited only to logical and relational opera-
tions on resources and literals, satisfiability is simple to im-
plement using a straightforward exhaustive algorithm as a
unification-based approach is not required. (For full details,
see [21].)

5. Experimental results

NetBeans is an IDE for Java, whose requirements and re-
lease process is based on a distributed open source develop-
ment model, and is therefore different than a traditional soft-
ware process. In open source projects such as this, the actual
coding of the system is external to the requirements and re-
lease of the product and the software development process
is not concerned with how the code is written because the
authors develop in a variety of environments.

The development process for NetBeans has two compo-
nents: eliciting requirements and releasing the next version
of the software. The first stage entails detailing what fea-
tures should be included in the next version of the soft-
ware and the second is based on establishing that the code
is ready for release and generating a deliverable. The Net-
Beans development process is not self-contained because it
relies on the previous revision of the process to continue.
Though many software projects are terminated when the
product is finalized, a release for NetBeans signifies a spe-
cific level of achievement of the software, but development
continues to proceed.

Using the model from [7], analysis consisted of two lev-
els of refinement in order to capture inconsistencies at dif-
ferent levels of abstraction. On first inspection of the model
it is clear that the model is in a very basic state in that it
includes control and resources, but no attributes or expres-
sions. Through verification usingPMLCHECK, we improved
the quality and consistency of the model by removing errors
without adversely affecting the underlying process.

The first application ofPMLCHECK revealed a significant
number of errors in the process and are summarized in Ta-
ble 1. Empty actions generally indicate that resources are
missing from the specification. For example, the empty ac-
tion CompleteStabilization is the final action in the model,
but it does not require anything and does not produce any-
thing. However, this action is clearly included to finalize the
product and make it available, but any information about
what resources are required was omitted. The actionWait-
ForVolunteer also does not contain resources, but for a dif-
ferent reason. This action is an artificial action created to
represent what the process is doing in preparation for the
next action to take place. It is not essential for the process
because the next action must be ready before the process
can continue, so it can be removed without adversely af-
fecting the rest of the model.

“Black holes” pose a problem similar to empty actions.
Though actions such asReviewNetBeans and SendMes-
sageToCommunityForFeedback were initially specified
as not providing anything, they do contribute to the pro-
cess.ReviewNetBeans may not provide anything new, but
it does affect a property of the road-map and should reflect
those changes by providingNetBeansRoadmap.Reviewed.
In Figure 3, the actionSendMessageToCommunityFor-
Feedback would intuitively imply that feedback is gathered
from the community and thus should provideCommu-
nityFeedback as a resource, as Figure 4 shows.2 These
types of oversights are a misrepresentation of the pro-
cess, andPMLCHECK helped locate the cause of these
inconsistencies.

PMLCHECK reports that there are a significant number of
transformations being performed in the process, but this re-
port has two possibilities: the transformation is correct and
the tool should not consider the created resource as an er-
ror, or the transformation is indicative of a change to a re-
source that was not specified as a requirement to the action.
The only possible way to determine the actual meaning is
to carefully inspect the process model. ActionSetRelease-
Date is an obvious situation where the tool is improperly re-
porting an inconsistency because the release date is derived
from the road-map. By qualifying the created resource as
(derived) ReleaseDate, PMLCHECK will understand that the
resource is intended to be available at this point in the pro-
cess. ActionReviseProposalBasedOnFeedback is an exam-
ple of where a transformation is improper, as shown in
Figure 3. This action is modifying two resourcesPoten-
tialRevisionsToDevelopmentProposal and RevisedDevelop-
mentProposal, but these relate to a single resource:Develop-
mentProposal. As shown in Figure 4, by consolidating these
resources to a single resource and using attributes, we can

2 Due to space considerations, only extracts from the models are shown
here. The complete models are approximately two hundred lines each
and can be found in [21].

i t e r a t i o n Estab l i shFeatureSet {
act ion Compi leL is tOfPoss ib leFeaturesToInc lude {
requires { Prospect iveFeaturesGatheredFromIssuez i l la &&

Prospect iveFeaturesFromPreviousReleases }
provides { FeatureSetForUpcomingRelease }
}
act ion CategorizeFeaturesProposedFeatureSet {

requires { FeatureSetForUpcomingRelease }
provides { WeightedListOfFeaturesToImplement }

}
act ion SendMessageToCommunityForFeedback {

requires { WeightedListOfFeaturesToImplement }
/∗ prov ides { } ∗ /

}
act ion ReviewFeedbackFromCommunity {

requires { FeebackMessagesOnMail }
provides { Potent ia lRevis ionsToDevelopmentProposal }

}
act ion ReviseProposalBasedOnFeedback {

requires { Potent ia lRevis ionsToDevelopmentProposal }
provides { RevisedDevelopmentProposal }

}
}

Figure 3. Extract from original NetBeans model.

reduce the total number of resources. In addition to clarify-
ing the model, this change brings forth a more critical prob-
lem: nowhere in the specification of the process is the devel-
opment proposal created. The first indication of a develop-
ment proposal is in actionReviewFeedbackFromCommunity
which providesPotentialRevisionsToDevelopmentProposal,
but prior to this action there is no development proposal,
so it is difficult to discuss potential revisions to a nonexis-
tent proposal.

Though a report of an unprovided resource can mean
a misrepresentation of process, it can also be indicative
of a resource that should preexist the process. ActionRe-
viewNetBeans requires theNetBeansRoadmap, but this is
the first action in the process which means the resource can-
not be specified prior to its use.PMLCHECK also reports
resources that are provided by an action but are not used
later in the process. One possible cause for this error is that
a task later in the process has been misspecified and does
not note that it requires a certain resource. For example, ac-
tion ReportIssuesToIssuezilla providesIssuezillaEntry, but
this resource is never used in the process. The following ac-
tion looks at standing issues, but does not explicitly require
this resource.PMLCHECK provides a simple mechanism for
specifying the inputs and outputs of a process to suppress
these types of errors.

After applying the types of changes described along with
some cosmetic changes of names throughout the process,
we arrive at a revised model with the number of errors
shown in Table 1. Examining these remaining errors re-
vealed that many were the result of changes made to the pro-
cess including trivial errors resulting from case-sensitivity
and misspellings. Applying the same techniques to our re-
vised model resulted in a final model with no errors.

i t e r a t i o n Estab l i shFeatureSet {
act ion Compi leL is tOfPoss ib leFeaturesToInc lude {

requires { Prospect iveFeatures . I s s u e z i l l a &&
Prospect iveFeatures . PreviousVers ions }

provides { (der ived) ReleaseFeatureSet }
}
act ion CategorizeFeaturesProposedFeatureSet {

requires { ReleaseFeatureSet }
provides { ReleaseFeatureSet . Weighted }

}
act ion CreateDevelopmentProposal {

requires { ReleaseFeatureSet . Weighted }
provides { (der ived) DevelopmentProposal }

}
act ion SendMessageToCommunityForFeedback {

requires { ReleaseFeatureSet . Weighted &&
DevelopmentProposal && Communi tyMai l ingList }

provides { (der ived) CommunityFeedback }
}
act ion ReviewFeedbackFromCommunity {

requires { CommunityFeedback && DevelopmentProposal }
provides { DevelopmentProposal . Po ten t i a lRev i s i ons }

}
act ion ReviseProposalBasedOnFeedback {

requires { DevelopmentProposal . Po ten t i a lRev i s i ons }
provides { DevelopmentProposal . Revised }

}
}

Figure 4. Extract from revised NetBeans model.

6. Related work

APPL/A [17] is a process enactment language designed
as a superset of Ada to maximize automation. Features spe-
cific to modeling that are not implemented in Ada are con-
structed as extensions to the language. The modeling lan-
guage JIL [20] aims to recreate many of the functionali-
ties of languages such as APPL/A, but without the under-
lying programming language. JIL is designed with a com-
bination of proactive and reactive control constructs allow-
ing the modeler to define the control flow, or have it deter-
mined by the interpreter. While JIL is designed toward com-
plete automation,PML supports user interaction to allow
more dynamic models. Also, whereas JIL provides high-
level constructs for modeling software processes,PML is not
restricted to just the software process domain.

Cook and Wolf [5] discuss a method for validating soft-
ware process models by comparing specifications to actual
enactment histories. This technique is applicable to down-
stream phases of the software life-cycle, as it depends on
the capture of actual enactment traces for validation. As
such, it complements our technique, which is an upstream
approach. Similarly, Johnson and Brockman [9] use execu-
tion histories to validate models for predicting process cycle
times. The focus of their work is on estimation rather than
validation, and is thus concerned with control flow rather
than resource flow.

Scacchi’s research uses a knowledge-based approach to
analyzing process models. Starting with a set of rules that
describe a process setting and models, processes are diag-

nosed for problems related to consistency, completeness,
and traceability. Conceptually, this work is closely related to
ours; many of the inconsistencies uncovered byPMLCHECK

are also revealed by Scacchi and Mi’sArticulator [16].

7. Conclusion

We have presented a philosophy of modeling based on
the fundamental elements of processes with the intention
of highlighting the essential components of processes in or-
der to create informative models for analysis and enactment.
We utilized this philosophy as a framework for designing
a high-level language,PML, that has the expressive capa-
bility to model processes at abstract and concrete levels of
specification. This language has a number of features such
as qualifiers that allows flexible development and specifi-
cation. However, the consequence of constructing this new
language is lack of tool support and modeling for the pur-
pose of improvement requires verification of the model.

To provide support forPML, we implemented a new
method of process checking based on our research into pro-
cess structure. The resulting tool,PMLCHECK, examines
process models looking for common errors that result from
process development and design. The flexibility of the lan-
guage and the tool allow for specification and verification
at many levels of abstraction. Using a general approach
to process modeling and analysis allows for the concepts
presented in this paper to be applied to a variety of mod-
eling languages and analysis tools. Finally, the model of
the NetBeans process that we examined and refined illus-
trates many benefits of tool-guided analysis. Understanding
the resource flow of a process provides useful information
to improve the specification of a process and to note areas
of ambiguity. Examining the interaction of resources in the
process can also improve the enactability of a model by en-
suring that resource flow is consistent throughout.

References

[1] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti. A
survey and assessment of software process representation
formalisms. Int. J. Softw. Eng. Knowl. Eng., 3(3):401–426,
Sept. 1993.

[2] D. C. Atkinson and J. Noll. Automated validation and veri-
fication of process models. InProc. 7th IASTED Int. Conf.
on Softw. Eng. Appl., pages 587–592, Cambridge, MA, Nov.
2003.

[3] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, S. M.
Sutton, Jr., and A. Wise. Little-JIL/Juliette: A process defi-
nition language and interpreter. InProc. 22nd Int. Conf. on
Softw. Eng., pages 754–757, Limerick, Ireland, June 2000.

[4] R. Conradi and C. Liu. Process modelling languages: One or
many? InProc. 4th Eur. Work. on Softw. Process Tech., pages
98–118, Noordwijkerhout, The Netherlands, Apr. 1995.

[5] J. E. Cook and A. L. Wolf. Software process validation:
Quantitatively measuring the correspondence of a process to
a model.ACM Trans. Softw. Eng. Methodol., 8(2):147–176,
Apr. 1999.

[6] G. Cugola and C. Ghezzi. Software processes: A retrospec-
tive and a path to the future.Softw. Process Improv. Pract.,
4(3):101–123, Sept. 1998.

[7] C. Jensen, W. Scacchi, M. Oza, E. Nistor, and S. Hu. A first
look at the NetBeans requirements and release process. Tech-
nical report, Institute for Software Research, Feb. 2004.

[8] G. Joeris and O. Herzog. Towards flexible and high-level
modeling and enacting of processes. InProc. 11th Int. Conf.
on Adv. Inf. Syst. Eng., pages 88–102, Heidelberg, Germany,
June 1999.

[9] E. W. Johnson and J. B. Brockman. Measurement and analy-
sis of sequential design processes.ACM Trans. Des. Autom.
Electron. Syst., 3(1):1–20, Jan. 1998.

[10] G. Junkermann, B. Peuschel, W. Schäfer, and S. Wolf. Mer-
lin: Supporting cooperation in software development through
a knowledge-based environment. InSoftware Process Mod-
elling and Technology, pages 103–129. Research Studies
Press Ltd., 1994.

[11] G. E. Kaiser, S. Popovich, and I. Z. Ben-Shaul. A bi-level
language for software process modeling. InProc. 15th Int.
Conf. on Softw. Eng., pages 132–143, Baltimore, MD, May
1993.

[12] C. D. Klingler. A STARS case study in process definition.
Technical Report F19628-88-D-0031, DARPA, 1994.

[13] C. D. Klingler, M. Neviaser, A. Marmor-Squires, C. M. Lott,
and H. D. Rombach. A case study in process representation
using MVP-L. InProc. 7th Annual Conf. on Comp. Assur.,
pages 137–146, Gaithersburg, MD, June 1992.

[14] J. Noll and W. Scacchi. Specifying process-oriented hyper-
text for organizational computing.J. Netw. Comput. Appl.,
24(1):39–61, Jan. 2001.

[15] R. F. Paige, J. S. Ostroff, and P. J. Brooke. Principles for
modeling language design.Inf. Softw. Technol., 42(10):665–
675, July 2000.

[16] W. Scacchi and P. Mi. Process life cycle engineering: A
knowlege-based approach and environment.Int. J. Intell.
Syst. Account. Financ. Manage., 6(2):83–107, June 1997.

[17] S. M. Sutton, Jr. APPL/A: A Prototype Language for
Software-Process Programming. PhD thesis, University of
Colorado, Department of Computer Science, Aug. 1990.

[18] S. M. Sutton, Jr., D. Heimbinger, and L. J. Osterweil. AP-
PL/A: A language for software-process programming.ACM
Trans. Softw. Eng. Methodol., 4(3):221–286, July 1995.

[19] S. M. Sutton, Jr., B. S. Lerner, and L. J. Osterweil. Experi-
ence using the JIL process programming language to specify
design processes. Technical Report UM-CS-1997-068, Uni-
versity of Massachusetts, 1997.

[20] S. M. Sutton, Jr. and L. J. Osterweil. The design of a next-
generation process language. InProc. 6th Euro. Softw. Eng.
Conf. and 5th ACM Symp. on Found. Softw. Eng., pages 142–
158, Zurich, Switzerland, Sept. 1997.

[21] D. C. Weeks. Process modeling language design and model
verification. Master’s thesis, Santa Clara University, Depart-
ment of Computer Engineering, June 2004.

