
Lightweight Detection of Program Refactorings

Darren C. Atkinson and Todd King
Department of Computer Engineering

Santa Clara University
Santa Clara, CA 95053-0566 USA

{datkinson,tking}@scu.edu

Abstract

Poorly structured code is hard to maintain and read. Pro-
gram refactoring can improve code structure and thus make
it easier to preserve and to discern the underlying design.
However, refactoring is a difficult and time-consuming pro-
cess making it unattractive for many developers. An auto-
mated tool that could identify poorly structured code and
make suggestions would make the refactoring process eas-
ier. Although in general refactorings may be quite difficult
to locate automatically, we show that many can be detected
using low-cost, syntactic techniques. We have built a tool to
locate refactorings in C# programs. Our experiments indi-
cate that the tool has an excellent success rate in identifying
refactorings.

1. Introduction

A recent study estimated that 80% of all software devel-
opment cost is applied toward maintaining software [10].
Software maintenance can take a variety of forms. A pro-
grammer may need to incorporate an enhancement re-
quested by the customer. The software may need to be
adapted for a new architecture or platform. Defects in the
design or implementation may need to be corrected. Fi-
nally, the engineer may simply wish to restructure the
system, improving its design and organization, to ease in-
corporation of future changes.

The goal of such preventive maintenance is to reduce fu-
ture maintenance costs. No matter how good an original de-
sign may appear to be, inevitably unexpected problems arise
during development and workarounds must be found. Over
time, the program code is modified and rearranged, and the
code gradually deteriorates from the originally conceived
structure. The resulting code is hard to read and understand.
Program refactoring attempts to improve the code structure.
Specifically, program refactoring is “a change made to the
internal structure of software to make it easier to understand

and cheaper to modify without changing its observable be-
havior” [4].

Refactoring improves the readability of code and, by
forcing the developer to carefully examine the code, he
achieves a new understanding of the code, thus making
identifying errors much easier. Refactoring can decrease the
development and maintenance time of a project. Unfortu-
nately, refactoring is a difficult and time-consuming pro-
cess, which makes it an unattractive option for many de-
velopers.

Although several refactoring tools exist [8, 14, 16] they
tend to focus on applying refactorings rather than on detect-
ing them. The tool user selects a piece of code and a refac-
toring to perform and the tool will restructure the code au-
tomatically, making consistent changes throughout the pro-
gram. However, we believe that locating the refactorings
rather than affecting the changes is more difficult to do by
hand. Furthermore, detection is a necessary first step in the
refactoring process. Once the refactorings are found, an au-
tomated tool can then be used to perform the refactorings.
Thus, automated tools for detecting program refactorings
are highly desirable. Such tools would examine the source
code, looking for locations of possible refactorings.

To derive information from source code, static analysis
tools such as program slicing tools [17] are often employed.
Such tools analyze the program source, computing infor-
mation about the program such as data and control depen-
dences, and then present that information in a way that is
useful to the tool user. However, such tools are not without
their problems. First, they are difficult to build, requiring in-
terprocedural data-flow analyses that go beyond what a pro-
fessional optimizing compiler might require. Even building
parsers for languages such as C++, C#, and Java that have
a rich set of features can be difficult. Second, the analy-
ses themselves can be quite slow, often requiring quadratic
time in the size of the program. Finally, the results are of-
ten less than desirable because the tools are conservative in
the sense that their results are correct for any input and ex-
ecution path [9]. For example, if a function is encountered

Copyright 2005 IEEE. Published in the Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC-2005), December 15–17, 2005, Taipei, Taiwan. Personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

whose implementation cannot be found, the tool may need
to conservatively estimate that any object that could be di-
rectly or indirectly referenced by the called function is pos-
sibly modified.

We classified the approximately seventy refactorings dis-
cussed in [4]. About one third appear to be too high-level
for any automated tool to detect (or perform). For exam-
ple, substitute algorithmsuggests replacing an existing al-
gorithm with another that is easier to understand. How-
ever, we estimate that about half of the refactorings can be
discovered using mostly syntactic means. Therefore, rather
than develop a static analysis tool that uses data-flow anal-
ysis to detect refactorings, we decided to build a tool that
uses purely syntactic data such as symbol table information
and simple code metrics.

In our experiments, we analyzed a number of public do-
main C# programs in an attempt to detect a variety of re-
factorings. Our results indicate that low-cost syntactic tech-
niques have an excellent success rate in detecting many
program refactorings. To validate our results, we examined
each suggested refactoring by hand to determine if it was
valid. We define success rate as the number of correctly
identified refactorings. There may be additional refactor-
ings that the tool could not find, but for the purposes of this
study we are only concerned with identifying correct refac-
torings. A tool that simply produces a long list of refac-
torings, only a small number of which are valid, will most
likely not be used. In detail, this paper makes the follow-
ing contributions:

• We show how many refactorings can be codified using
syntactic information and simple code metrics such as
line count.

• We report results of analyzing a number of C# pro-
grams looking for possible refactorings, thereby as-
sessing their quality.

• We show that for most refactorings, we obtain an ex-
cellent success rate for the programs in our test suite.

Finally, although our experiments use C# programs, the
detection mechanisms apply almost without modification to
other object-oriented languages such as Java.

2. Refactoring

Refactoring [4, 8, 11] (also known as restructuring [2, 3,
6] when applied to non-object-oriented systems) is chang-
ing the structure of a system so that future maintenance is
easier. Typically, refactoring transformations do not change
the semantics of the program, but only improve its structure.
The key motivation for refactoring is that the original de-
sign of the system was either inappropriate or has degraded

over time due to accommodating unexpected features or re-
quirements. Since today’s software development is market-
driven, little time is typically given to reworking an earlier
design even though doing so might reduce future develop-
ment costs.

A wide range of refactoring algorithms or transforma-
tions exist, from the simple to the complex. We present a
brief list of refactorings, many of which we considered in
our study:

• encapsulate field: a public field should be declared
either private or protected and a property or method
should be used to access the field

• extract class/method: a large, complex class/method
should be split into smaller, dedicated classes/methods

• decompose conditional: a complex conditional expres-
sion should be replaced with a self-explanatory (i.e.,
well-named) method call as shown in Figure 1

• replace magic number: a literal with a particular mean-
ing should be replaced with a symbolic constant

• hide method: a public method that is not used outside
of its class should be declared private or protected

• move method/field: a method/field is using/used by
more features of another class than the class in which
it is declared and therefore should be moved

• remove unused method/field: a method/field is not used
and should therefore be removed

• replace parameter with explicit methods: a method that
performs different tasks based on a parameter should
be replaced with separate methods for each task

• split temporary variable: if a temporary variable is de-
fined more than once, but is not aggregating informa-
tion, a separate temporary variable for each definition
should be used

• rename method: the name of a method does not reveal
its purpose, so the method should be renamed

• substitute algorithm: a complex algorithm should be
replaced with one that is clearer

Clearly, some of the refactorings listed such assubstitute
algorithmandrename methodare sufficiently high-level as
to be beyond the scope of any tool to detect, while others
such asencapsulate fieldare trivial to detect.

3. Detecting Refactorings

We wanted to determine how well refactorings could be
detected using low-cost syntactic techniques. Our belief is
that many refactorings can be detected with a high rate of
success (i.e., few false positives). We have built a tool called

if ((water.getPressure() > THRESHOLDPSI && water.getTemp() >= BOILING)
|| (water.flowRate() > MAXFLOWRATE && this.state == State.OPEN)) ... if (pressureValveFailed(water)) ...

(a) (b)

Figure 1. Example of the decompose conditional refactoring: (a) before refactoring and (b) after refactoring.

Look# for automatically detecting refactorings in C# pro-
grams. We briefly describe our tool architecture to illustrate
the kind of information that we have available for the refac-
toring detection algorithms, which are then described.

3.1. Tool architecture

We used the ANTLR system [12] for constructing a lexi-
cal analyzer and parser for C#. The parser constructs an ab-
stract syntax tree (AST) [1] for each file in the program.
The ASTs for all files are retained in memory and linked to-
gether to form a single AST for the entire program. Several
passes are then made over the tree, with each pass requir-
ing linear time in the size of the program:

1. Scope construction: Traverse the AST. If a scope de-
limiter is found, create a new hash table for symbols in
the scope. If a symbol is found, insert the symbol into
the hash table for the current scope.

2. Type resolution: Traverse the AST. If a symbol is
found, then lookup the symbol’s type in the symbol ta-
ble and link this node to its declaration node.

3. Class hierarchy resolution: Traverse the scope hierar-
chy. For each node that may be inherited, lookup its
base types in the symbol table and add them to this
node’s base type list, and add this node to the base
type’s derived type list.

4. Forward reference construction: Traverse the AST. If
an identifier is found, then lookup its declaration in the
symbol table and add this identifier as a reference. Ad-
ditionally, if the symbol is for a method, then conser-
vatively add a reference in each derived class.

Some passes could probably be combined, but in gen-
eral multiple passes are necessary for languages such as C#
and Java that do not require types to be declared before use.
After these passes are complete, we can lookup a declara-
tion of a symbol given a reference (i.e., use or definition)
and find all references given a declaration. Similarly, we
can find all parent classes of a child class and find all child
classes of a parent.

3.2. Detecting refactorings

We describe several refactoring detection algorithms that
we have implemented as part ofLook#. All algorithms that

use counts or other metrics have thresholds that can be cus-
tomized by the tool user. The algorithms are listed in order
of complexity.

Encapsulate field:Construct a list of all field members.
Any field member that is declared public is flagged. This
is easily the simplest refactoring to detect.

for c∈ classes[program] do
for f ∈ fields[c] do

if PUBLIC ∈ modifiers[f]∧ CONST 6∈ modifiers[f] then
report(“encapsulate field” , f)

Decompose conditional:Traverse the AST searching for
conditional (i.e., logical) expressions. Count the number of
boolean OR and AND operators and the number of state-
ments in the method body containing the expression. If both
counts exceed their respective thresholds, then suggest de-
composing the conditional.

The motivation for the threshold on the minimum num-
ber of statements is to avoid suggesting decomposing con-
ditionals that have already been moved into their own meth-
ods. Before adding this simple threshold, the tool was sug-
gesting decomposing conditionals in methods where clearly
refactorings had already been performed.

for c∈ classes[program] do
for m∈ methods[c] do

DFS(m)

function DFS(n) do
if type[n] = AND∨ type[n] = OR then

count := 1
for d ∈ descendents[n] do

if type[d] = AND∨ type[d] = OR then
count := count +1

if count > α∧|statements[method-containing(n)]| > β then
report(“decompose conditional” ,n)

else
for c∈ children[n] do

DFS(c)

Replace magic number:This algorithm is complicated by
the fact that three different levels need to be maintained:
global level, type (i.e., class or struct) level, and method
level. The rationale for the different levels is that a literal
may be used many times, but if it used in different classes
or methods, then it may not in fact represent the same thing
and cannot be replaced with a single symbolic constant.

The tool traverses the AST and updates the level when
encountering a class or method declaration. Each literal
found is added to the current scope. When the end of a con-
struct such as a method is reached, the scope is closed and
a literal whose occurrence count exceeds a threshold is re-
ported. (Each scope level has its own adjustable threshold.)

Program Version Lines Methods Classes Time Description
FCKeditor 2.0 809 34 6 0.55 online text editor
MyACDSee 1.3 4118 137 14 1.48 image viewer
AscGen 2.0.2.4 4762 168 17 1.72 image conversion
TVGuide 0.4.3.1.3 6231 296 55 1.78 download and display TV listings
MFXStream 1.0.0 7077 323 24 1.96 streaming media file server
GmailerXP 0.7 9347 288 29 2.86 mail client
3DProS 1.0 13629 381 22 3.81 3D animation
HeroStats 2.2.1 28840 1317 115 6.29 gaming statistics
ZedGraph 1.0 33539 1193 107 4.51 graphing package
NAnt 0.85 80986 3416 408 32.31 Ant-like build tool

Table 1. Description of programs used in the experiments.

The occurrence counts of the current scope are merged with
those of the parent scope. This step is done so if a num-
ber appears frequently throughout a class but only once or
twice per method, we will still detect it as a magic num-
ber for the entire class.

Certain uses of literals must be ignored such as those in
expressions when initializing a constant (i.e., when the sym-
bolic constant itself is declared) and in functions not writ-
ten by hand but rather generated by the development envi-
ronment. For example, Microsoft Visual Studio generates a
method calledInitializeComponent that is blacklisted by de-
fault in Look#.1 Furthermore, certain literals such as zero
and one must be ignored in most, but not all, circumstances.
For example, if such a literal is used an array index, then the
use should probably be flagged.

for c∈ classes[program] do
for m∈ methods[c] do

for n∈ body [m] do
if type[n] = LITERAL∧ type[parent[n]] 6= INITIALIZER then

method-count[value[n]] := method-count[value[n]]+1
for v∈ method-count do

if method-count[v] > α then
report(“magic number” ,v,m)

else
class-count[v] := class-count[v]+method-count[v]

delete method-count
for v∈ class-count do

if class-count[v] > β then
report(“magic number” ,v,c)

delete class-count

Move method:This detection algorithm is based on the
data class “smell” [4]. A data class is a class that holds data
but does not make use of the data itself; it merely holds
the data for other classes to use. In our experiments, we
found that restricting our detection algorithm to this “smell”
helped increase the accuracy of themove methoddetection
algorithm, at the cost of ignoring other possible instances
where the refactoring should be applied between two non-
data classes.

1 The tool user can add functions to the blacklist as necessary. Each re-
factoring has its own blacklist.

The tool traverses the AST to create a list of all classes
and structs in the program. For each class or struct in the
list, we count the number of fields and methods declared. If
there is a low ratio of methods to fields, then we assume that
the class is a data class and target it as a candidate class for
move method.

Once a candidate class has been found, for each field in
the class we determine the set of methods referencing the
field by using the forward reference chains previously built.
If a foreign method makes too many references to a num-
ber of distinct fields, then we suggest moving the method
or some of its functionality into the data class. The addi-
tional check on the number of distinct fields is needed since
some methods may reference a single field many times, but
in fact a temporary variable could have been used to refer-
ence the field only once.

for c∈ classes[program] do
if |fields[c]| > α · |methods[c]| then

for f ∈ fields[c] do
for r ∈ references[f] do

m := method-containing(r)
fields-referenced [m] := fields-referenced [m]∪{ f}
total-references[m] := total-references[m]+1

for m∈ fields-referenced do
if total-references[m] > β∧|fields-referenced [m]| > γ then

report(“move method” ,m,c)
delete total, refs

4. Experimental Results

In order to validate our hypothesis that lightweight tech-
niques can be used to accurately detect program refactor-
ings, we analyzed ten public domain C# programs using
Look#. General information for each program is given in Ta-
ble 1. The programs are listed in this and other tables in or-
der of increasing size. All programs are publicly available
from SourceForge. The time in seconds required byLook#
to construct the syntax tree and execute all of the refactor-
ing detection algorithms is also given.

For each program in our test suite, Table 2 gives the
number of refactorings detected. Not surprisingly, more re-

factorings were generally detected for the larger programs.
We were surprised by the high detection count forunused
method, since this refactoring indicates dead code that could
be removed. Most of the programs analyzed are immature
and thus would not have evolved as to have so much dead
code. Rather, we attribute the high count to the fact that
these programsare immature, and therefore have features
that are only partially implemented. Additionally, we found
that some programs were providing a more complete inter-
face for a class than was necessary for their own use. For ex-
ample,ZedGraphprovides an implementation of a collec-
tion with methods for adding and removing elements, but
itself only adds elements to the collection.

Of course, all refactorings detected byLook#are not nec-
essarily correct. We verified each reported refactoring by
hand to determine its correctness. Table 3 lists the percent-
age of refactorings that were correct for each program. Ta-
ble 4 provides a summary across all programs.

Encapsulate field:Not surprisingly,encapsulate fieldhas a
perfect score. However, the high count was slightly surpris-
ing. We expected many developers to understand that public
fields are a violation of encapsulation. Furthermore, C# pro-
videspropertiesthat can be used to transparently and safely
encapsulate a public field. Our results would seem to indi-
cate that this mechanism is not being used as much as it
should be.

Remove empty method:Interestingly, this algorithm does
not have a perfect score because althoughLook#correctly
detects that the method is empty, the method cannot always
be removed because it is required to implement an external
interface. This was only a problem forNAnt, which uses a
large number of external libraries.

Remove unused field/method:Remove unused fieldworks
well in most cases. ForTVGuide, the erroneous refactor-
ings were due to complex array indexers thatLook# does
not yet handle. The high success rate forunused methodin-
dicates that most of the methods that we thought were un-
used, are in fact unused. Some incorrectly reported refactor-
ings are due to the necessity of implementing the method in
order to implement an interface. Other errors stem from the
use of a complex expression (e.g., nested array references)
to compute the object being referenced or from variable ar-
gument lists, whichLook#cannot yet handle.

Extract class/method:The extract classrefactoring was
detected infrequently, which may indicate that our thresh-
olds are too high. However, since it had one of the lower av-
erage success rates, increasing the thresholds would proba-
bly result in more erroneous refactorings. More likely, a new
detection algorithm is needed. In contrast,extract method
works well and has a much higher number of occurrences.
The difference in results between the two refactorings is
surprising since they use similar algorithms:extract class

counts the number of lines, methods, and fields whileex-
tract methodcounts the number of statements and lines.
Although extract methodexperiences more failures on the
larger programs, we determined that size was not the cause.
Most failures are due to methods that have largeswitch
statements that are difficult to extract. The few other failures
were true failures in the sense that the methods themselves
were large, highly cohesive methods that would be very dif-
ficult to extract. Rather, extracting part of the method could
instead reduce understandability.

Decompose conditional:This detection algorithm has al-
most a perfect success rate, with the only errors occurring
in ZedGraph. One of these had an object creation as part
of the conditional expression and therefore the expression
could not be moved. This is certainly a case where using
data-flow analysis would have eliminated the error. How-
ever, this particular case accounts for less than 2% of its re-
ported refactorings, further confirming our hypothesis that
refactorings can be correctly detected using purely syntac-
tic techniques.

Replace magic number:Like extract method, the replace
magic numberrefactoring experiences more failures on the
larger programs. However, we again determined that size
was not the inherent reason for the failures. The larger pro-
grams such asNAnt andZedGraphprovide scaffolding to
facilitate testing, and this code contains many instances of
literals that are themselves unrelated. For example,NAnt
provides unit tests and the expected results of several tests
happen to be the same integer; however, the values them-
selves are not related, so replacing them with a symbolic
constant would be inappropriate, as shown below:

AssertExpression("1 + 2", 3);
AssertExpression("1 + 2 + 3", 6);
AssertExpression("1 + 2 * 3", 7);
AssertExpression("2 * 1 * 3", 6);
AssertExpression("1 / 2 + 3", 3);

Move field: While we are pleased with the success rate for
most of the refactorings, the success rate formove field
is definitely disappointing. We found that in most cases,
Look#suggested moving a field from a data class that had
multiple instances to a data processing class that had only a
single instance. For example, astudent data class may have
a fieldname that is seldom referenced within the class, but
is referenced frequently by other classes that perform data
processing tasks such as printing rosters or calculating pay-
ments. It is impossible to move such fields to another class
even if that class is the only one referencing the fields be-
cause of the number of instances. To overcome this prob-
lem, we are considering restricting the set of target fields to
static fields. Of course, this change will result in far fewer
refactorings being detected. The much higher success rate
for 3DProSis interesting. This program uses a single struc-

FCKed
ito

r

M
yA

CDSee

Asc
Gen

TVGuid
e

M
FXStre

am

Gm
ail

er
XP

3D
Pro

S

Her
oS

ta
ts

Zed
Gra

ph

NAnt
To

ta
l

encapsulate field 0 13 6 102 13 39 128 177 226 29 733
remove empty method 1 6 1 2 3 2 0 6 0 22 43
remove unused field 0 4 2 51 1 3 2 77 5 16 161
remove unused method 2 6 7 40 11 19 14 142 98 864 1203
hide method 3 4 4 12 10 13 16 59 60 74 255
extract class 0 0 0 0 1 0 2 3 1 0 7
extract method 0 1 1 1 0 5 10 5 9 28 60
decompose conditional 0 1 3 0 0 1 3 7 32 10 57
replace magic number 1 13 15 5 21 34 40 18 78 28 253
move field 0 0 1 4 7 9 34 24 11 39 129
move method 0 0 1 11 8 13 33 15 32 48 161
total 7 48 41 228 75 138 282 533 552 1158 3062

Table 2. Number of refactorings detected for each program.

FCKed
ito

r

M
yA

CDSee

Asc
Gen

TVGuid
e

M
FXStre

am

Gm
ail

er
XP

3D
Pro

S

Her
oS

ta
ts

Zed
Gra

ph

NAnt

encapsulate field — 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
remove empty method 100.0 100.0 100.0 100.0 100.0 100.0 — 100.0 — 54.5
remove unused field — 100.0 100.0 100.0 100.0 100.0 100.0 94.8 100.0 87.5
remove unused method 0.0 83.3 42.9 67.5 90.9 94.7 78.6 97.2 58.2 94.9
hide method 100.0 100.0 100.0 100.0 80.0 100.0 75.0 100.0 95.0 82.4
extract class — — — — 0.0 — 100.0 33.3 100.0 —
extract method — 100.0 100.0 100.0 — 100.0 70.0 80.0 88.9 92.9
decompose conditional — 100.0 100.0 — — 100.0 100.0 100.0 93.8 100.0
replace magic number 100.0 100.0 100.0 100.0 85.7 100.0 100.0 66.7 75.6 75.0
move field — — 0.0 0.0 0.0 0.0 61.8 0.0 9.1 0.0
move method — — 100.0 72.7 100.0 100.0 45.5 46.7 46.9 35.4

Table 3. Success rates of refactorings detected for each program.

ture with static fields that are defaults for the entire program
or serve as global variables. However, these fields are of-
ten only used in a single class, and thus perhaps should be
moved to that class.

In summary,Look#detected over three thousand refac-
torings of which approximately 88% were identified as cor-
rect. We are pleased with the success rates of all the indi-
vidual refactorings with the exceptions ofextract classand
move field. We could improve the success rates of many of
the other refactorings both by improving the tool’s ability
to correctly determine types in complex expressions (e.g.,
nested array references) and also by analyzing precompiled
libraries to determine the properties of external types such
as interfaces and delegates.

5. Related Work

Mens and Tourẃe [8] provide an excellent survey of
software refactoring, including refactoring at both the de-
sign and source code level. In work closest to ours, Simon
et al. [13] use metrics to detect refactorings. They employ
a distance metric to measure the cohesion of a class, which
works better for some refactorings than our approach of us-
ing reference counts. Their work is aimed at software vi-
sualization. They use the distance metric to determine the
positions of objects in a three-dimensional view of the pro-
gram. The tool user can then look for fields and methods
that are isolated or do not belong with other objects in a
cluster. Because of the visualization aspect, their approach

Correct Reported Rate(%)
encapsulate field 733 733 100.0
remove empty method 33 43 76.7
remove unused field 155 161 96.3
remove unused method 1089 1203 90.5
hide method 233 255 91.4
extract class 4 7 57.1
extract method 53 60 88.3
decompose conditional 55 57 96.5
replace magic number 218 253 86.2
move field 22 129 17.1
move method 84 161 52.2
total 2679 3062 87.5

Table 4. Summary of refactoring detections.

works well only when used on a few classes. Finding refac-
torings in a large visualization space can be difficult, and the
time required by their tool to layout the space can be pro-
hibitive. In contrast, our approach is inexpensive and scales
well. Interesting, their approach to detectingmove fieldsuf-
fers from the same problem as ours: moving a field from a
class with multiple instances to a class that has only a sin-
gle instance.

Tourwé and Mens [15] use a logic programming ap-
proach to identify refactorings. Program facts are computed
and stored in a database that can then be queried using Pro-
log. The detection algorithms are themselves coded in Pro-
log. One advantage of this separation is that should the pro-
gram facts change (e.g., become more accurate if a differ-
ent code analysis is used), the queries themselves do not
change. However, the authors admit that program facts are
not enough to detect some refactorings and that metrics will
probably need to be added. Although they report a perfect
success rate, they only analyzed the tool itself and tried
to identify only two refactorings. Our experiments cover a
much larger set of programs and refactorings.

Kataoka et al. [7] detect refactorings using program in-
variants. Likely program invariants are computed from test
runs and then used to locate refactorings. For example, the
remove parameterrefactoring can be applied when the pa-
rameter is not used by the method body or when its value
is always a constant. The latter is a program invariant that
their tool can detect. The authors present a small case study
of a single Java application and report a 35% success rate
among detected refactorings that are definitely correct and
a 65% success rate among those that are possibly correct.

Finally, refactorings can be detected in other software ar-
tifacts such as design documents. For example, a widely
recommended way to detect refactorings is to observe de-
sign shortcomings manifested during development and
maintenance [5].

6. Conclusion

Program refactoring is the process of applying meaning-
preserving changes to a program to improve its structure
in order to aid understanding and maintenance. Although
some earlier work has focused on detecting refactorings in
code, much of the work on refactorings has focused on au-
tomating the changes to the source code. We have presented
a low-cost, syntactic approach for automatically discover-
ing refactorings in source code. Our approach uses symbol
table and reference information together with simple code
metrics such as line and statement counts.

To validate our approach, we implement a tool called
Look# to analyze C# programs. We examined ten C# pro-
grams, attempting to find a variety of refactorings. Over
three thousand refactorings were discovered across ten pro-
grams. We then inspected each suggested refactoring by
hand to determine its correctness. We found that over 87%
of the refactorings suggested were correct. Most notably,
we found that some refactorings have a near-perfect success
rate and overall most individual success rates were high. In
the validation process, we discovered some interesting facts
about the programs itself, in particular that programs often
provide a rich set of interface methods for classes, many of
which are not used. Additionally, the property mechanism
of C# that was designed to transparently encapsulate pub-
lic fields was not used extensively, and that many program-
mers do not consider public fields as a violation of encap-
sulation.

As future work, we plan to analyze more programs and
provide a statistical analysis of the refactorings detected.
In particular, we have been keeping historical data as ad-
ditional programs have been added to the test suite to deter-
mine the likelihood of success on a new program.

Also, we define success rate as the number of detected
refactorings that are correct. Our motivation for focusing on
eliminating false positives is that a tool that reports many re-
factorings only a few of which are correct will simply not
be used. However, we should also consider the number of
refactorings that the tool may have missed (i.e., false nega-
tives). Obtaining such a result would require a detailed in-
spection by hand of a number of programs to locate refac-
torings that the tool missed. We expect that examining the
history of a program’s changes through source code reposi-
tories or change logs will be beneficial in this undertaking.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, Reading, MA,
1986.

[2] R. S. Arnold, editor. Tutorial on Software Restructuring.
Washington, D.C., 1986.

[3] E. J. Chikofsky and J. H. Cross. Reverse engineering and de-
sign recovery: A taxonomy.IEEE Softw., 7(1):13–17, Jan.
1990.

[4] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Boston, MA, 1999.

[5] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides.Design
Patterns. Addison-Wesley, Reading, MA, 1995.

[6] W. G. Griswold and D. Notkin. Automated assistance for
program restructuring.ACM Trans. Softw. Eng. Methodol., 2
(3):228–269, July 1993.

[7] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. Au-
tomated support for program refactoring using invariants. In
Proc. 2001 Int. Conf. on Softw. Maint., pages 736–743, Flo-
rence, Italy, Nov. 2001.

[8] T. Mens and T. Tourẃe. A survey of software refactoring.
IEEE Trans. Softw. Eng., 30(2):126–139, Feb. 2004.

[9] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers.
Improving program slicing using dynamic points-to data. In
Proc. 10th ACM Symp. on Found. Softw. Eng., pages 71–80,
Charleston, SC, Nov. 2002.

[10] National Institute of Standards and Technology. The eco-
nomic impacts of inadequate infrastructure for software test-
ing. Planning Report 02-3, Strategic Planning and Economic
Analysis Group, Gaithersburg, MD, May 2002.

[11] W. F. Opdyke.Refactoring: A Program Restructuring Aid in
Designing Object-Oriented Application Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, Depart-
ment of Computer Science, 1992.

[12] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k)
parser generator.Softw. – Pract. Exp., 25(7):789–810, July
1995.

[13] F. Simon, F. Steinbr̈ucker, and C. Lewerentz. Metrics based
refactoring. InProc. 5th Eur. Conf. on Softw. Maint. Reeng.,
pages 30–38, Lisbon, Portugal, Mar. 2001.

[14] L. Tokuda and D. Batory. Evolving object-oriented designs
with refactorings.Autom. Softw. Eng., 8(1):89–120, 2001.

[15] T. Tourwé and T. Mens. Identifying refactoring opportunities
using logic metc programming. InProc. 7th Eur. Conf. on
Softw. Maint. Reeng., pages 91–100, Benevento, Italy, Mar.
2003.

[16] M. Vittek. Refactoring browser with preprocessor. InProc.
7th Eur. Conf. on Softw. Maint. Reeng., pages 101–110, Ben-
evento, Italy, Mar. 2003.

[17] M. Weiser. Program slicing.IEEE Trans. Softw. Eng., SE-10
(4):352–357, July 1984.

