
UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Design and Implementation of Practical and

Task-Oriented Whole-Program Analysis Tools

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Darren C. Atkinson

Committee in charge:

Professor William G. Griswold, Chairperson
Professor Jeanne Ferrante
Professor Larry Carter
Professor Philip Gill
Professor Debra Richardson

1999

Copyright

Darren C. Atkinson, 1999

All rights reserved.

The dissertation of Darren C. Atkinson is approved, and it is

acceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

1999

iii

To my friends and family

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita, Publications, and Fields of Study . x

Abstract . xi

1 Introduction . 1
1.1 Motivation . 1
1.2 Approach: Adaptability and Flexibility 6
1.3 Issues Due to Pointers . 9
1.4 Applying Our Approach to Pointer Analysis 10
1.5 Overview . 12

2 Adaptive Whole-Program Analysis Tools 15
2.1 Background: Compiler Architectures 15
2.2 Approach: Overview . 16
2.3 Approach: Software Architecture . 17
2.4 Conclusion . 24

3 Points-To Analysis with Demand-Driven Analyses 25
3.1 Background . 25
3.2 Motivation . 27
3.3 Approach . 28
3.4 Conclusion . 30

4 Flexible Whole-Program Analysis Tools 32
4.1 Motivation . 32
4.2 Approach: Controlling Precision . 32
4.3 Approach: Customizable Termination 37
4.4 Conclusion . 38

v

5 Pointer Usage in Large Systems . 40
5.1 Motivation . 40
5.2 Approach . 42
5.3 Conclusion . 49

6 Data-Flow Analysis in the Presence of Pointers to Locals 50
6.1 Background and Motivation . 50
6.2 Approach . 52
6.3 Conclusion . 56

7 Implementation . 57
7.1 Block Visitation Algorithms . 57
7.2 Reclamation of Data-Flow Sets . 60
7.3 Data-Flow Set Implementation . 62
7.4 Control-Flow Dependencies . 65
7.5 Conclusion . 66

8 Evaluation and Results . 67
8.1 Hypotheses . 68
8.2 Demand-Driven Computation and Discarding 69
8.3 Context-Depth Sensitivity . 70
8.4 Algorithmic Convergence . 73
8.5 Points-To Analysis Parameterization 74
8.6 Effect of Parameterization on Program Slicing 78
8.7 Conclusion . 80

9 Conclusion . 82
9.1 Open Issues . 84
9.2 Extending Our Approach . 85
9.3 Contributions . 86

A Experimental Data . 89

Bibliography . 94

vi

LIST OF FIGURES

1.1 An example program and slices . 3
1.2 Decision space showing how a representation should be handled 8

2.1 Typical front-end compiler architecture 16
2.2 Software architecture for a whole-program analysis tool 19
2.3 Implementation of the program slicer forCHCS 21
2.4 The index-table module . 23

3.1 An example C program with points-to analysis 26
3.2 An example C program consisting of three files 28
3.3 Example pseudocode showing how the call-graph is built and used . . . 30

4.1 A sample program with its call-graph and context graphs 33
4.2 Example scenario showing how context-depth can be used 35

5.1 Example of dispatch tables . 41
5.2 Prototype filtering rules . 42
5.3 A program fragment using function pointers 43
5.4 Example private memory allocators 45
5.5 Effect of declaring private memory allocators 46
5.6 A program fragment showing commutativity of the array operator . . . 47
5.7 Effect of the strict arrays option . 48

6.1 Traditional data-flow equations for slicing 51
6.2 ExampleCFG showing program points relevant to function calls 52
6.3 Example program showing pointers to local variables 53
6.4 Our data-flow equations for slicing . 54

7.1 Example pseudocode for the visitation algorithms 58
7.2 A program fragment and its annotatedCFG 59
7.3 Example of data-flow set reclamation 61
7.4 A comparison of block visitation algorithms 62
7.5 A simple implementation of the data-flow sets 63
7.6 A better implementation of the data-flow sets 64
7.7 Our final implementation of the data-flow sets 65

8.1 Statistics for different slices . 70
8.2 Algorithm convergence . 73
8.3 Effect of parameterization on points-to classes 75
8.4 Effect of parameterization on function pointers 78
8.5 Effect of parameterization on program slicing 79
8.6 A program fragment showing the negation of improvements 80

9.1 Family of tools developed for analyzing large programs 87

vii

LIST OF TABLES

1.1 Statistics for constructing various representations ofCHCS 5
1.2 Statistics for constructing representations of three programs 10

5.1 Effect of strong prototype filtering . 44

8.1 Statistics at different context-depths for the twoMUMPS programs . . . 71
8.2 Statistics at different context-depths for two C programs 72

A.1 Statistics for different slices ofCHCS 90
A.2 Statistics for different slices of the three C programs 90
A.3 Statistics at different context-depths for the twoMUMPS programs . . . 91
A.4 Statistics at different context-depths for two C programs 91
A.5 Effect of parameterization on points-to classes 92
A.6 Effect of parameterization on function pointers 92
A.7 Effect of parameterization on program slicing 93

viii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Bill Griswold, for his time and patience

over the past six years. His guidance, support, and practical knowledge were always

helpful and encouraging.

The list of fellow researchers I should thank is long. During my time at UCSD,

I’ve seen many students come and go. I’d like to thank Robert Bowdidge and David

Morgenthaler for being such good coworkers during the first several years of my tenure

as a graduate student. The many lunches we had together were always relaxing, even

when Bill tagged along. Collin McCurdy helped me immensely by retargeting my tools

to the C programming language, saving me a lot of time. Whenever I had to change or

enhance his implementation, I gained a better appreciation for just how much work he

saved me. Morison Chen, Andy Gray, Walter Korman, and Jim Hayes are just a few of

the other students with whom I’ve had the opportunity to share my ideas.

I would also like to thank Rick Ord and Cindy Paloma for giving me a way

to earn some real money, gain practical experience, have fun, and still do my research.

My time as a member of the Computer Systems Group has always been enjoyable, even

if it did get a bit hectic at times. Glenn Little, Steve Hopper, Dave Wargo, and David

Hutches have always been great coworkers. Everyone was always so understanding of

my need to finish my research. I thank them all for their patience.

My family has always been so supportive during my many years of school.

Even when it seemed like I would never finish, they encouraged and supported me. For

that, I will always be thankful.

Finally, I’d like to thank Van Nguyen for giving me the greatest gift of all. Her

patience, understanding, caring, and support have been the greatest things to come from

my years at UCSD. Without her, all of my accomplishments would mean nothing.

The text of this disseration, in part, is a reprint of the material as it appears

in [Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation

author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this dissertation.

ix

VITA

November 21, 1968 Born, San Diego, California

1991 B.S., University of California, San Diego

1994 M.S., University of California, San Diego

1999 Ph.D., University of California, San Diego

PUBLICATIONS

D. C. Atkinson and W. G. Griswold, “Effective Whole-Program Analysis in the Pres-
ence of Pointers”, 6th ACM Symposium on Foundations of Software Engineering, Lake
Buena Vista, FL, 1998.

D. C. Atkinson and W. G. Griswold, “The Design of Whole-Program Analysis Tools”,
18th International Conference on Software Engineering, Berlin, Germany, 1996.

W. G. Griswold, D. C. Atkinson, and C. McCurdy, “Fast, Flexible Syntactic Pattern
Matching and Processing”, 4th Workshop on Program Comprehension, Berlin, Ger-
many, March 1996.

W. G. Griswold and D. C. Atkinson, “Managing the Design Trade-Offs for a Program
Understanding and Transformation Tool”, Journal of Systems and Software, Vol. 30,
1995.

W. G. Griswold and D. C. Atkinson, “A Syntax-Directed Tool for Program Understand-
ing and Transformation”, 4th Systems Reengineering Technology Workshop, Monterey,
CA, 1994.

J. I. Gobat and D. C. Atkinson, “The FElt System: User’s Guide and Reference Manual”,
Computer Science Technical Report CS94-376, University of California, San Diego,
1994.

FIELDS OF STUDY

Major Field: Computer Science
Studies in Software Engineering.
Professor William G. Griswold

x

ABSTRACT OF THE DISSERTATION

The Design and Implementation of Practical and

Task-Oriented Whole-Program Analysis Tools

by

Darren C. Atkinson

Doctor of Philosophy in Computer Science

University of California, San Diego, 1999

Professor William G. Griswold, Chair

Building efficient tools for understanding large software systems is difficult.

Many existing program understanding tools build control-flow and data-flow represen-

tations of the programa priori, and therefore require prohibitive space and time when

analyzing large systems.

By customizing the tool to the task and analysis being performed, significant

time and space can be saved. Since much of these representations may be unused dur-

ing an analysis, we construct them on demand, not in advance. Furthermore, some

representations may be used infrequently during an analysis. We discard these and re-

compute them as needed, reducing the overall space required. Finally, we permit the

user to selectively trade-off time for precision and to customize the termination of these

costly analyses to provide finer user control, thereby improving the flexibility of the tool.

We revised the traditional software architecture for compilers to provide these features

without unnecessarily complicating the analyses themselves.

These solutions improve the effectiveness of whole-program analysis tools by

making the analysis more practical (i.e., faster and scalable) and task-oriented. However,

the use of pointers in most modern programming languages introduces additional prob-

lems. The lessons of adaptability and flexibility must be applied to points-to analysis if

our approach is to remain effective on large systems.

xi

First, we use a fast, flow-insensitive, points-to analysis before traditional data-

flow analysis. Second, we allow the user to parameterize the points-to analysis so that

the resulting data-flow information more closely matches the actual program behavior.

Such information cannot easily be obtained by the tool or might otherwise be deemed

unsafe. Finally, we present data-flow equations for dealing with pointers to local vari-

ables in recursive programs. These equations allow the user to select an arbitrary amount

of calling context in order to better trade performance for precision.

To validate our techniques, we constructed program slicers for theMUMPS and

C programming languages. We present empirical results using our slicing tools on the

Comprehensive Health Care System (CHCS), a million-line hospital management system

written inMUMPS, and on several C programs with aggressive pointer usage. The results

indicate that cost-effective analysis of large programs with pointers is feasible using our

techniques.

xii

Chapter 1

Introduction

1.1 Motivation

Today, software development is market-driven. Developers rush their products

to market in order to meet customer demands, to gain a greater share of the market, and

to provide new features that they hope will becomede factostandards. Perhaps the most

apparent example of this strategy is the ongoing “Internet browser war” between the

Microsoft and Netscape corporations. Unfortunately, this philosophy places pressure

on programmers and managers to develop software fast and to reach the market before

their competitors, rather than to develop software that is extensible, well-designed, and

thoroughly tested.

Although the results of such a design philosophy can be beneficial in the short

term, they are often detrimental in the long term, when maintenance costs become the

dominant cost of the software life-cycle. Therefore, significantly reducing the cost of

these software systems entails reducing the cost of maintenance.

In the course of maintenance, software systems may be debugged, restruc-

tured, extended, or perhaps completely rewritten from scratch with a better design in

mind. Software designers and maintainers need to understand their systems in order to

perform any of these tasks correctly and if the successful development and maintenance

of their systems is to continue.

1

2

Unfortunately, large software systems are difficult to understand, in part be-

cause of their age. Some of these systems were not implemented using modern pro-

gramming techniques that can help reduce the complexity of a system, such as infor-

mation hiding [Parnas, 1972]. Additionally, many modifications to these systems were

not anticipated in the original design, resulting in global modifications being made to

incorporate the change. A global change distributes design information that is prefer-

ably hidden within a single module in order to ease future changes dependent on that

information. As a result, the structure of the system is degraded, and maintenance costs

are increased, since the programmer needs global, rather than local, knowledge to suc-

cessfully implement a desired change. Finally, these large systems have been evolved

in this fashion over several years, with modification after modification being layered

upon the original implementation by several generations of programmers. The resulting

complexity may be exponential in the number of changes made to the system [Lehman

and Belady, 1985].

Large systems are also often written in an aggressive programming style and

use sophisticated language constructs such as function pointers. The use of these con-

structs is typically necessary to achieve good performance or to ease implementation.

However, their use hinders program understanding. For example, function pointers are

commonly used to implement dispatch tables. However, if function pointers are used,

then a call-graph of a program cannot be inferred without first determining the side-

effects due to pointers.

Many of these large systems are still in use today, such as the Comprehen-

sive Health Care System (CHCS), a 1,000,000 line hospital management system, written

in the MUMPS programming language [Lewkowicz, 1989] and currently maintained by

Science Applications International Corporation (SAIC). Other large, well-known sys-

tems such as theGNU C compiler (GCC) and Emacs editor, although an order of magni-

tude smaller, exhibit many of the same problems.

Because of their complexity, large systems can benefit from automated sup-

port for program understanding. Several automated semantic techniques have been de-

3

function f (a,b)
min := b
swap := false
if a < b then

min := a
swap := true

end

if swap then
c := b - a

else
c := a - b

end

write (c)
return min
end

function f (a,b)
min := b

if a < b then
min := a

end

return min
end

swap := true

if swap then
c := b - a

else
c := a - b

end

write (c)

(a) (b) (c)

Figure 1.1: An example program and slices: (a) an example function, (b) a backward
slice frommin at the return statement, (c) a forward slice from the assignment toswap.

veloped for understanding software. For instance, a program slicer computes the set

of statements in a program thatmay affectthe value of a programmer-specified vari-

able [Weiser, 1984]. This type of program slicing is known asbackward slicing, since

the slicing tool traces the flow of values backward through the control-flow of the pro-

gram, and is useful during debugging. In contrast,forward slicing traces the flow of

values forward through the program, computing the set of statements thatmay be af-

fected bythe value of a programmer-specified variable. Forward slicing can be used

by a programmer to predict the effects of a proposed change. Figure 1.1 shows an ex-

ample program written in a high-level language, along with an example backward and

forward program slice. A programmer or designer can better understand the system by

using these tools to answer their queries about the system, but only if they run in an

economical amount of time and space.

4

Other examples of semantic tools include assertion and invariant checkers. A

static assertion checker such asASPECTchecks the consistency of a program’s data-flow

and control-flow characteristics against declared computational dependencies [Jackson,

1991]. An invariant checker such asFLAVERS infers facts about the state of the pro-

gram and checks those facts against assertions provided by the programmer [Dwyer and

Clarke, 1994].

In order to analyze a program, such tools construct control-flow and data-

flow representations of the program, similar to those used by an optimizing compiler.

One such representation is the program dependence graph (PDG) [Ferrante et al., 1987],

in which nodes denote operations and edges denote dependencies between operations.

Program slicing using thePDG is simple and algorithmically efficient, once thePDG

has been constructed [Ottenstein and Ottenstein, 1984]. A similar representation is the

value dependence graph (VDG) [Weise et al., 1994], in which nodes denote operations

and edges denote demands for stores (mappings from variables to values) by opera-

tions. More traditional representations include the abstract syntax tree (AST), control-

flow graph (CFG), dominator trees, and def-use chains [Aho et al., 1986].

However, unlike compilation, program understanding tasks are interactive and

an analysis such as slicing is often applied iteratively to answer a programmer’s question

about the program. For example, a programmer may need to perform several slices

with different slicing criteria, incorporating the knowledge gained from previous slices

(e.g., which functions were included in the slice), in order to successfully answer a

query. Thus, a whole-program analysis tool must perform analyses quickly in order to

answer effectively many of the questions posed by programmers and designers. Two

problems arise when applying traditional compiler techniques to the construction of

whole-program analysis tools.

First, unlike an optimizing compiler, which typically analyzes a few proce-

dures at a time, these tools analyze the entire program in order to provide the program-

mer or designer with a global view of the system [Barth, 1978]. Consequently, both

the running time and space required for many traditional interprocedural compiler algo-

5

representation comments on construction time space
(1) source 1 million lines N/A 40
(2) AST construction for entire program; 13.1 414

18 million nodes
(3) AST construction on a per-routine basis; 6.9 30

25% greaterCPU utilization than above
(4) CFG - symbolic preserving routine’sAST after use; unknown ≈ 800

exhausts virtual memory capacity
(5) CFG - symbolic discarding routine’sAST after use; 17.9 397

6.5 million three-address statements
(6) CFG - complete symbolic labels replaced by graph edges; 27.5 397

39%CPU utilization

Table 1.1: Statistics for constructing various representations ofCHCS. Time is given in
minutes and space in megabytes.

rithms may be prohibitive for a large program, especially in an interactive context such

as software maintenance. For example, the size of aPDG can be quadratic or greater in

the size of the program (depending on the handling of pointers), and therefore aPDG for

a large system may exceed the virtual memory capacity of a typical desktop machine.

Even the cost of constructing simple, linear-space representations such as anAST can be

prohibitive. As the second item in Table 1.1 illustrates, although the size of anAST is

linear in the size of the program, the space consumed by anAST constructed forCHCS,

414 MB, exceeds the capacity of the main memory of the machine, even though care

was exercised in its design [Griswold and Atkinson, 1995].1 In such cases, the time re-

quired to first construct the representation and then later retrieve it for actual use after it

has been paged out of main memory may be unacceptable. The space required for both

an AST and aCFG can exceed the virtual memory capacity of the machine (Table 1.1,

item 4). Furthermore, the additional iteration over the three-address statements of the

CFG that resolves symbolic references to labels into graph edges (Table 1.1, item 6) re-

1All statistics forCHCSwere gathered on a SparcStation 10 Model 61 with 160MB of physical memory
and 450MB of swap space. All statistics for other programs were gathered on a 200 MHz Sun UltraSparc
2 with 192 MB of physical memory and 1GB of swap space. Experiments were performed with the
machine otherwise idle.

6

quires an additional 9.6 minutes, illustrating poor performance due to heavy use of the

slower parts of the memory hierarchy. Based on the per-routine cost of constructing the

AST (Table 1.1, item 3), we estimate that the actual cost of constructing theCFG is 11

minutes, only 1.4 minutes longer than this additional iteration.

The second problem is that a program understanding tool must be able to an-

swer a wide variety of questions about a program. Since program understanding tools

are difficult to construct, general tools are typically built to amortize the high cost of

construction. However, because program analysis algorithms are complex, it is not al-

ways feasible for the tool user to program a new algorithm to answer a specific question.

Consequently, program understanding tools tend to provide a small set of general anal-

ysis algorithms that together can answer a wide variety of questions. Unfortunately,

although these algorithms can be used to answer most questions, their generality can

result in an unacceptably long running time and the gathering and reporting of extra-

neous information. For example, if a tool user desires to know only if a procedureP is

included in a forward slice (e.g., if the procedure may be affected by a proposed change)

then the entire slice may not need to be computed. In particular, a statement inP may

appear in the slice during the first few iterations of the analysis. If so, then computing

the entire slice is unnecessary, saving not only computation time but also time spent by

the tool user interpreting the results.

1.2 Approach: Adaptability and Flexibility

One might argue that simply buying more memory, disk, and a faster proces-

sor could solve these problems, but this solution is not cost effective. The size of many

modern systems is several times greater than the million lines ofCHCS and is always

growing. A project may also have many programmers requiring such resources to per-

form analyses. The real problem is waste of computational resources, not lack of them.

For simplicity, program representations are often constructed in their entirety

in batch, or once before an analysis is begun. The representations are typically never

7

discarded once constructed. Should changes to the representations be necessary (e.g.,

the program has been transformed by the analysis), the representations are either recon-

structed in batch or are incrementally updated, if the changes are small and structured.

However, the per-routine construction of the representations shown in Ta-

ble 1.1, which requires much less space and time, and exhibits much betterCPU uti-

lization, suggests that the prohibitive computational costs are largely due to the compu-

tation and movement of program representations within the virtual memory hierarchy,

regardless of the analysis algorithm to be subsequently applied to the representations.

The underlying tool infrastructurefails to adaptto the nature of the analysis being per-

formed and the program being analyzed.

Our first goal, then, is that the cost of an analysis be a function of the size of

the relevant portions of the program, rather than of the size of the entire program. For

example, the cost of computing a program slice should be a function of the number of

statements in the slice. To meet this goal, the execution of the analysis algorithm needs

to drive the construction of the representations that it accesses. In particular, we propose

that a whole-program analysis tool:

• Constructall program representations on demand, rather thana priori: Demand-

driven construction reduces the space and time required since portions of the pro-

gram that are irrelevant to the analysis are ignored. Current approaches [Choi

et al., 1991; Horwitz et al., 1995] only demand-derive portions of the analysis.

• Discard and recompute infrequently used representations that are large but rela-

tively inexpensive to compute: Many representations such as theAST are infre-

quently used but can exhaust virtual memory if retained. The recomputation cost

for these representations may be no worse than the cost of moving them to the

slower portions of the memory hierarchy and later retrieving them.

• Persistently cache frequently used representations that are small but relatively ex-

pensive to compute: Resolving interprocedural labels in theCFG is expensive and

impractical to demand incrementally, but requires little space. Time can be saved

8

sm
al

l
la

rg
e

sp
ac

e
re

qu
ir

ed

(call-graph, function pointers)

persistently retain

(PDG, VDG)

rework approach to improve time / space

(points-to and data-flow sets)

build and retain

discard if infrequently used

(AST, CFG)

slowfast
time to construct

Figure 1.2: Decision space showing how a program representation should be handled.

by saving this information on disk and only recomputing it when the analyzed

software is changed.

In general, the properties of a representation such as the space occupied, cost to construct

in its entirety, cost to demand in parts, and frequency of access determine whether it

should be discarded, retained during execution, or retained persistently across uses of

the tool, as shown in Figure 1.2.

The second source of waste is performing an analysis that is more general

than the tool user requires because oflack of flexibilityin these tools. Our second goal,

then, is that the tool user should be able to customize the parameters of the analysis—

possibly saving computation time—to better match the tool user’s needs. Since our tool

is designed for interactive program understanding rather than for batch compilation, we

can take advantage of information provided by the tool user. For example, if the tool

user only wishes to know whether a certain procedure is in a slice, then the analysis

should terminate when this fact becomes known. In particular, we propose that a whole-

program analysis tool:

• Allow the user to control the precision of the analysis algorithm: The user can

provide additional information based on external factors such as the desired pre-

cision of the result, urgency, and system load. For example, by reducing precision

the tool user can reduce the time of an iteration of an iterative analysis and thus

receive an answer more quickly.

9

• Allow the user to customize the termination criterion for a particular analysis:

For example, the number of iterations required can be substantially reduced be-

cause iterative algorithms tend to have an initial rapid convergence and so might

discover the needed information quickly.

These new features risk complicating analysis algorithms that are already

complicated. Consequently, we have a designed a software architecture [Garlan and

Shaw, 1993; Perry and Wolf, 1992] that is event-based and exploits the structure of

interprocedural analysis to support demand-deriving and discarding data without com-

plicating these algorithms [Atkinson and Griswold, 1996].

1.3 Issues Due to Pointers

The use of pointers in most modern programming languages complicates our

approach. The lessons of adaptability and flexibility must be applied to points-to and

alias analyses if our approach is to remain effective on large systems. If an analysis is

implemented naively, many of the benefits that we have discussed will be reduced or

negated. In particular, three problems arise in dealing with pointers in large systems.

First, the use of pointers negates the performance benefits of demand-driven

techniques [Atkinson and Griswold, 1996; Duesterwald et al., 1995; Horwitz et al.,

1995] since determining the memory locations possibly referenced through a pointer

typically requires a global analysis over the program. For example in the C programming

language [Kernighan and Ritchie, 1988], all files must be analyzed to account for the

use of pointers in initializers for static variables, regardless of whether a file contains a

function that might be reachable during subsequent data-flow analysis. All three of our

example programs in Table 1.2 use function pointers in static variables to implement

late binding or dispatch tables.

Second, in a flexible and performance-oriented language such as C, the way

in which pointers are used complicates performing a points-to analysis that is suffi-

2After processing withCPP, all blank lines were removed.

10

lines of code AST CFG

beforeCPP afterCPP2 time space time space
GCC 217,675 224,776 24.0 55.3 42.4 51.6
EMACS 99,439 113,596 16.9 39.3 22.1 29.3
BURLAP 49,601 88,057 10.0 23.3 14.8 16.3

Table 1.2: Statistics for constructing representations of three programs written in the C
programming language. Time is given in seconds and space in megabytes.

ciently precise for the subsequent data-flow analysis. For instance, the use of specialized

memory allocators can reduce precision by hindering the analysis’s ability to accurately

model heap storage. Furthermore, pointer arithmetic on arrays and structures limits the

points-to analysis’s ability to accurately discern distinct memory locations. Because

these aggregates often store pointers to functions, the imprecise analysis can result in an

overly conservative call-graph, degrading both the performance and precision of inter-

procedural data-flow analysis.

Finally, pointer usage can complicate performing the subsequent data-flow

analysis. Pointers to local variables are commonly used in C programs to emulate pass-

ing parameters by reference, which the language itself does not support. Pointers to

local variables in the presence of recursion require changes to the traditional bit-vector

equations for data-flow analysis [Aho et al., 1986], since different activations of a local

variable may be referenced in functions other than the function in which it is declared. If

the equations are not changed, the data-flow analysis will be in error. Naive solutions to

this problem can be prohibitively expensive unless local variables are handled specially

in the implementation of the data-flow equations.

1.4 Applying Our Approach to Pointer Analysis

We need to apply our lessons of adaptability and flexibility to the implemen-

tation of points-to analyses in order to construct practical whole-program analysis tools

for programs written in languages such as C.

11

First, because points-to information cannot be demand-derived, we use Steens-

gaard’s near-linear time, context-insensitive, flow-insensitive, points-to analysis algo-

rithm [Steensgaard, 1996b]. To avoid the cost of an extra pass over the program, the

points-to analysis is “piggybacked” with the demand construction of the control-flow

graph (CFG). During points-to analysis, the representations (e.g.,CFG) for functions

needed for the data-flow analysis are retained, while other representations are discarded,

saving space and improving reference locality. Since our approach previously saved the

call-graph to disk to speed-up subsequent executions of the tool (Page 8), the saved call-

graph now includes calls to functions through function pointers (as computed by the

points-to analysis).

Second, to increase the precision of pointer analysis without unnecessarily in-

creasing algorithmic complexity, we allow the user to parameterize the analysis. Since

our tool is designed for interactive program understanding rather than for batch compi-

lation, we can take advantage of information provided by the tool user. For example, the

user might specify that the program being analyzed has only strictANSI-compliant func-

tion prototypes, helping to more accurately determine which functions may be called

through a function pointer. Such information cannot be obtained automatically by the

tool without substantial additional cost, if at all. This information may be optimistic

(i.e., “unsafe”) or conservative. Although the information may be unsafe for any general

program and therefore cannot typically be used, it may be safe for the specific program

being analyzed. As long as the tool user can readily discern the unsafe results, or ensure

that such information is in fact safe, not only can accuracy be substantially increased,

but also time and space can be saved.

Finally, we derive new data-flow equations for dealing with pointers in the

presence of recursion and pointers to local variables. Our new data-flow equations ex-

tend our work with user-controlled precision for C programs with pointers. By examin-

ing the characteristics of the data-flow analysis and adapting the implementation of the

equations to the analysis, significant space can be saved.

12

1.5 Overview

In the following chapters, we discuss our approach to designing an adaptive,

flexible, whole-program analysis tool. We feel that the problems introduced by pointers

are sufficiently complicated that they warrant special discussion. Consequently, pointers

are discussed in separate chapters. To evaluate our design, we discuss the application of

our design choices to the construction of program slicers forCHCSand for C programs.

We use program slicing as our example data-flow analysis because it is a non-

trivial, interprocedural analysis that is useful to programmers and designers and has a

variety of potential applications [Weiser, 1984; Gallagher and Lyle, 1991]. We do not

address the value of slicing and whether or not the computed program slices are useful

to programmers or designers. However, the infrastructure that we have developed could

be used to assess this.

Our results indicate that effective whole-program analysis is feasible using our

approach. The time and space required to perform a program slice are a function of the

size of the slice, not of the size of the entire program. For example, our tool can compute

program slices ofCHCSandGCC in less than one hour. We show that an iterative analysis

such as program slicing converges quite rapidly, with substantially fewer and fewer

statements being added during later iterations. For our example programs, 90% of the

total statements in the slice are obtained within the first 20% of the iterations. This

suggests that our decision to allow the user to suspend the program slicer and view the

partially computed slice is warranted.

Our results also indicate that parameterization of the points-to analysis can

dramatically increase the number of points-to classes. For programs that use function

pointers heavily, the precision of the constructed call-graph can be substantially im-

proved. As a result, program slices can be computed an order of magnitude faster and

contain fewer unnecessary statements. Otherwise, we have found that the subsequent

data-flow analysis is mostly insensitive to the improvement in precision [Shapiro and

Horwitz, 1997a].

13

We have found that each aspect of our approach is essential to effective whole-

program analysis. Should one aspect be omitted for our approach, the performance and

effectiveness of the resulting whole-program analysis tool will suffer. In particular:

• Without demand-driven computation, the space and time required to perform anal-

yses is necessarily a function of the size of the overall system, and is likely to

exhaust the memory resources of most computers. Precomputing this data and

storing it persistently does not solve the problem because using secondary storage

may be no faster than computing the data on demand (Chapter 2).

• Without discarding, virtual memory can be exhausted by sizable representations

that are not currently involved in the computation. Additional time is also ex-

pended in moving these representations out to disk (Chapter 2).

• Without persistent storage of key representations, deriving data that is costly to

construct, albeit compact, can increase the start-up time of an analysis substan-

tially (Chapter 2).

• Without providing control of precision, an analysis can take unnecessarily long if

a high degree of precision is not required. On the other hand, providing only a low

degree of precision may be ineffective in answering sensitive queries (Chapter 4).

• Finally, without the ability to control the termination of an analysis, it may run

unnecessarily long to answer the question at hand (Chapter 4).

To overcome the problems associated with the use of pointers in modern pro-

gramming languages, we present an approach for integrating points-to analysis with our

demand-driven analysis, thus making the analysis more adaptive to the task at hand. We

also present techniques for improving the flexibility of the points-to analysis by param-

eterizing the analysis to achieve better points-to results. Finally, we present data-flow

equations for computing an interprocedural slice in the presence of pointers to local

variables in recursive programs. Each aspect of our approach to handling pointers con-

tributes to its effectiveness. In particular:

14

• Piggybacking the construction of theCFG with the computation of the points-to

sets eliminates an extra pass over the program, saving time (Chapter 3).

• Persistently retaining the call-graph on disk allows only the reachable portions of

the CFG to be retained, saving space and also time by avoiding the use of virtual

memory (Chapter 3).

• Parameterization of the points-to analysis increases the effectiveness of the sub-

sequent data-flow analysis. In the absence of function pointers, the increase in

the number of points-to sets does not result in a substantial increase in precision,

due to the transitive effects of the data-flow analysis. However, in the presence

of function pointers, the computed call-graph is substantially more precise, which

greatly increases the precision of the data-flow analysis with respect to function

calls and realizable paths (Chapter 5).

• Through an aggressive implementation of the data-flow sets, significant space can

be saved, making whole-program analysis practical in the presence of pointers to

local variables in recursive programs (Chapter 6 and Chapter 7).

To conclude the dissertation, we summarize our work, discuss some of the

open issues and how our work can be extended in different ways and to other languages,

and briefly discuss our infrastructure for constructing whole-program analysis tools.

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation

author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this chapter.

Chapter 2

Adaptive Whole-Program

Analysis Tools

Since program understanding tools extract detailed information from the pro-

gram source, their designs have tended to borrow heavily from optimizing compilers.

However, the added requirements of full interprocedural analysis and the wide range of

user queries stress traditional compiler designs. Demand-driven computation, discard-

ing, and persistence of data on disk can improve performance substantially, but these are

not accommodated by standard compiler practice. Because the algorithms used in com-

pilers are quite complicated, our goal is to introduce techniques that minimally perturb

these algorithms, while also giving us the performance we desire.

2.1 Background: Compiler Architectures

Figure 2.1 presents a typical software architecture for the front-end of a com-

piler, which iterates over each file in the program. The general flow of control is from

top-to-bottom and left-to-right. The flow of data is left-to-right. The space required in a

typical optimizing compiler is not prohibitive, since the program representations for one

file are discarded before processing the next file, as they are no longer needed. However,

if the representations were to be retained for later use, as required by a whole-program

15

16

program
text

code gen.
3-addr.lexer /

parser

AST CFG

construction

representations

flow of data

compiler

for each file filefile

Figure 2.1: Typical front-end compiler architecture, showing iteration over each file
of the program. Boxes indicate modules and arrows indicate calls. Italicized items
designate program components being accessed.

analysis tool, then the resulting space could be prohibitive. Deriving required repre-

sentations on demand, discarding representations that are infrequently used (but not too

expensive to reconstruct if needed), and retaining representations that are expensive to

compute (but require little space) are obvious solutions to this problem.

2.2 Approach: Overview

A demand-driven algorithm [Choi et al., 1991; Choi et al., 1994; Horwitz

et al., 1995] can reduce the space (and time) requirements of an analysis by ignoring

portions of the program that are irrelevant to the analysis. However, we have found that

demand-driven construction of a single program representation does not sufficiently re-

duce the space requirements, since many program representations are derived from other

representations. For example, a representation such as thePDG is often derived from

other representations such as theCFG and the control dependence graph (CDG). The

CDG may itself be computed from theCFG and the reverse dominator tree of the pro-

gram [Cytron et al., 1991]. Although in some analyses the intermediate representations

17

may bea priori discarded, in others many must be retained [Griswold and Notkin, 1993].

For example, our program slicer depends upon aCFG, dominance frontiers [Cytron et al.,

1991], and anAST for display. Thus, there are many representations for each procedure

in the program, but large portions of some of these representations are used infrequently

or not at all. In computing a backward slice, for example, the only needed portions of the

program representations are those that are on the control-flow path from the beginning

of the program to the slicing criterion.

Basic demand-driven computation does not provide all the savings possible.

In particular, our analysis in Table 1.1 shows that retaining an infrequently used rep-

resentation can exhaust the main memory or even the virtual memory resources of the

computer. Thus, we choose to discard such representations—in our case theAST—and

recompute them when they are required. Although this adds time to recompute any dis-

carded data that is later needed, we can still achieve savings by avoiding the cost of (1)

moving out retained data to the slower parts of the memory hierarchy, and (2) retrieving

it later when needed.

Other representations are expensive to compute and are used frequently, but

require little space. For instance, our slicer needs to compute the callers of a procedure,

which would normally be resolved by the second pass over theCFG, as discussed in

Chapter 1. Although this information is demanded like other representations, it is stored

on disk rather than discarded. Subsequent runs of the slicer on the same program can

reuse this information as long as the program has not changed.

2.3 Approach: Software Architecture

Many control-flow and data-flow analyses such as interval analysis [Aho et al.,

1986] or alias analysis [Landi and Ryder, 1992; Choi et al., 1993] are sufficiently com-

plicated without the additional burden of requiring the algorithm to demand-derive ad-

ditional data structures. It is desirable to make minimal changes to these algorithms

when addressing the problems encountered when analyzing large systems. We have re-

18

vised the standard software architecture for compilers to allow us to make only small

changes to existing analysis algorithms and yet support the demand-driven construction

and subsequent discarding of the program representations.

The primary problem with the standard architecture is that the flow of control

largely follows the flow of data from source to sink. This flow is controlled from the

top-level analysis algorithm. However, demand-driven computation requires that the

sink must be able to “demand” data from the source, reversing the control-flow relation

to be not only right-to-left, but also coming from the bottom of the hierarchy, not the

top. One solution to this problem is to have theCFG module directly call theAST mod-

ule, and so forth. However, this solution significantly reduces the independence of the

CFGmodule. For instance, it no longer could be constructed easily from representations

other than theAST. A solution that instead modifies the analysis algorithm would further

complicate an already complicated algorithm. Additionally, each new algorithm would

require essentially the same (complex) modifications. The redundancy distributes the

design decisions regarding demand-driven computation across several system compo-

nents, potentially complicating future changes related to those decisions.

To accommodate the needed changes in control-flow without compromising

independence, our solution is to modify the existing architecture to use events and map-

pings. This architecture borrows from our previous experience with layered and event-

based architectures [Griswold and Notkin, 1995; Griswold and Atkinson, 1995], but

these architectures do not accommodate demand-driven computation or discarding. Fig-

ure 2.2 presents an example of our architecture containing three program representations

(the program text, theAST, and theCFG) with each representation fully encapsulated in-

side a module. Accessed data structures, shown italicized, are program components,

rather than the entire program or whole files as in Figure 2.1. Unlike in the compiler

architecture of Figure 2.1, the analysis algorithm does not call the construction modules

directly, since the program representations are demand-derived as they are accessed

through their module abstractions. The architecture’s underpinnings, described below,

take care of computing the required structures.

19

program
text

lexer /
parser

AST CFG

3-addr.
code gen.

text-AST
mediator

semantic
analysis

mapping

construction

representations

node statement

flow of data

character

mediator
AST-CFG

Figure 2.2: Software architecture for a whole-program analysis tool. Boxes indicate
modules, solid arrows indicate calls, and dashed arrows indicate events. Italicized items
designate program components being accessed.

2.3.1 Mediator modules

Many semantic tools must maintain mappings between the various program

representations. For example, in a program slicer, when the user selects a variable in

the program text represented by theAST, the correspondingAST node must be mapped

to a three-address statement in theCFG to begin slicing. When the resulting slice is

displayed, theCFG statements in the slice must be mapped back to their corresponding

AST nodes. These mappings could be maintained explicitly within each module (e.g.,

by having eachAST node contain a pointer to its correspondingCFG statement), but this

would reduce the independence of the individual modules [Sullivan and Notkin, 1992].

Instead, we use separatemediatorsto maintain mappings between the modules [Sulli-

van, 1994; Sullivan and Notkin, 1992]. However, since the representations need to be

constructed on demand, each mediator may call the required construction module for

20

the representation, as shown in Figure 2.2. For example, theAST-CFGmediator module,

which maintains a mapping betweenAST nodes and three-address statements in theCFG,

calls the code generator if there is a need to map anAST node to its correspondingCFG

statement, but that statement has either never been constructed or has been discarded.

2.3.2 Events, callbacks, and protocols

Giving mediators the ability to construct representations on demand does not

allow the program representations to demand-deriveeach other. Thecalled routine

operation on aCFG call statement, for example, may need to access a three-address

statement that has not been constructed yet, which may in turn require construction

of the AST nodes from which it is to be derived. Rather than have theCFG module

call the AST-CFG mediator, which would require a modification to theCFG module

and consequently reduce its independence, our solution is to use events [Sullivan and

Notkin, 1992], shown in Figure 2.2 as dashes. TheCFG module can send an event

“announcing” that it is about to execute thecalled routine operation. The mediator

module “hears” this announcement, and thus responds to the event by calling the code

generator, if necessary. For the mediator to hear the announcement, the event handler of

the mediator module must be registered with theCFGmodule by an initialization module

(not shown in Figure 2.2).

If an event were announced for every exportedCFG operation, the resulting

overhead could be prohibitive. This cost can be reduced by having a high granularity for

event announcements: theCFG module announces an event for accesses to major pro-

gram components such as a procedure, and as a result theCFG for an entire procedure

may be constructed. This concept of processing granularity for events and the construc-

tion of program representations unifies the entire architecture, since it naturally exploits

the structure of the problem [Johnson, 1978], namely interprocedural analysis. The in-

traprocedural algorithms are unaffected. If theCFG was constructed incrementally for

each statement and theAST constructed incrementally for each file, the resulting archi-

tecture would be more complicated.

21

program
text

AST CFG

code gen.
3-addr.lexer /

parser

tags
site

table
index

protocol
AST

protocol
text

algorithm
slicing

protocol
CFG

representations

construction

mapping

protocols

nodecharacter statement

Figure 2.3: Implementation of the program slicer forCHCS, adapted from Figure 2.2
with the addition of a protocol layer. Boxes indicate modules, solid arrows indicate calls,
and dashed arrows indicate protocols. Italicized items designate program components
being accessed.

Our architecture can also be described and implemented in terms ofcallbacks

or protocols. Callbacks are similar to events with the distinction that events are usually

asynchronous but callbacks are usually synchronous [Nye, 1990]. In some event models,

events also cannot return data to the module that announced the event. However, both

events and callbacks provide “late binding” between modules. In our architecture, we

do not wish the program representation modules do not contain explicit references to

the mediator modules.

To use either events or callbacks, the representation modules must be instru-

mented with the appropriate operations. However, this task may not always be possible

or practical. For example, the representation modules might be provided externally by a

22

software library and cannot be modified. To avoid these problems and minimally perturb

the underlying tool infrastructure, we can instead add aprotocol layer. As an example,

the architecture for our program slicer forCHCS is shown in Figure 2.3. In our slicer,

thesite-tagsmodule maintains mappings between the program text and theAST, and the

index-tablemodule maintains mappings between theAST and theCFG.

The modules of the protocol layer are virtual in that they do not manifest

themselves as functions, but rather as requirements. If the slicer wishes to call the

called routine function of theCFG module, it must first obey the protocol that re-

quires it to first “announce” an event to the index module. Rather than events flowing

from a lower layer to a higher layer, the protocol requests flow from a higher layer to a

lower layer. The protocol layer requires no modifications in the lower layers, but instead

places a burden on the client (i.e., the slicer) of these layers. However, to both minimize

additions to the client and increase performance, the protocol uses the same high level

of granularity between requests as proposed for events (i.e., procedure granularity).

2.3.3 Address-independent mappings

If a representation may be discarded, then the mapping module must support

address-independentmappings. These are in essence a pointer abstraction similar to

that provided by virtual memory, but resulting in the rederivation of data, rather than

the movement of data. Since theAST may be discarded, theAST-CFG mediator must

support this type of mapping. Address-independent mappings can be implemented, for

example, by assigning eachAST node a unique index number that can be reassigned to

a reconstructed node, or by using the file name and character position as a key for each

AST node.

For example, in our program slicing tool forCHCS, the index-table module

functions as a mediator, maintaining mappings betweenAST nodes and three-address

statements in theCFG, as shown in Figure 2.4. The address-independent mappings are

maintained usingindex numbers. When theAST for a routine is constructed, each node

is assigned an increasing index number during a preorder traversal of theAST. The index

23

zy

*x

+

a b c

/-

+

1

2

3

4

5

6

7

8

9

10

11

:

:

:

:

:

:

:

t1 := x + t0 1

3t0 := y * z

t14 := b / c 9

t15 := t13 + t14 6

7t13 := - a

index
table

6"bar"

1"foo"

"bar"

ASTs three-address statements

code index

"foo"

function start

Figure 2.4: The index-table module maintaining mappings between theASTs for two
functions and the associated three-address statements.

numbers of each root node are also stored in a small auxiliary table for later use. The

index-table itself contains bidirectional mappings fromAST nodes to three-address state-

ments using hash-tables. Each three-address statement also contains an index number

representing its associatedAST node.1 If the AST for a routine is destroyed, its corre-

sponding entries in the index-table are removed. If theAST needs to be reconstructed for

a given three-address statement (i.e., a miss occurs in accessing the hash-table), theAST

for the entire routine containing the statement is reconstructed. The routine name and

its starting index number are determined by searching the auxiliary table using the index

number of the three-address statement, and a preorder traversal of theAST is performed

to update the index-table.

1An index number is explicitly stored within a three-address statement for simplicity. A design with
more separation would be to use another hash-table for mapping statements to index numbers.

24

2.4 Conclusion

Demand-driven construction of program representations can greatly improve

the performance of whole-program understanding tools. However, some program rep-

resentations are large but accessed infrequently and require little time to compute. We

advocate discarding such representations and recomputing them when needed in order

to reduce to overall space required and also save time by avoiding use of the slower

parts of the virtual memory hierarchy. Finally, some representations require a long time

to compute, but require little space. We argue that these representations should be con-

structed once and then persistently retained on disk across invocations of the tool. This

technique reduces the start-up time of the tool since it is faster to read the information

from disk than it is to compute it.

To implement our approach, we designed a new software architecture, since

the standard compiler architecture does not accommodate many of our new features.

However, to minimize the impact on the top-level analysis algorithm, our architecture

uses mediators, events, and address-independent mappings to transparently demand-

derive the program representations.

Using our approach, we successively implemented program slicing tools for

theMUMPS and C programming languages [Atkinson and Griswold, 1998]. Our slicing

tool for MUMPS can compute slices ofCHCS, a 1,000,000 line hospital management sys-

tem, in under 10 minutes (Chapter 8). Although some slices can take longer to compute,

the space and time consumed by the analysis are proportional to the size of the slice, not

to the size of the entire program. However, before we could successfully compute slices

of C programs, we needed to solve the problems introduced by pointers (Chapter 3,

Chapter 5, and Chapter 6).

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1996]. The dissertation author was the primary researcher and

author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.

Chapter 3

Points-To Analysis with

Demand-Driven Analyses

By using our adaptive, demand-driven framework described in Chapter 2, we

are able to construct an efficient, task-oriented program slicing tool for large programs

written in MUMPS, a language without pointers (Chapter 8). However, we need to inte-

grate pointers, and in particular performing a points-to analysis, into our demand-driven

framework if we wish to compute slices of more modern languages such as C.

3.1 Background

Points-to analysis simply determines, for each variable in the program, the set

of variables that may be pointed to by a given variable [Emami et al., 1994; Steens-

gaard, 1996b; Shapiro and Horwitz, 1997b]. For the purposes of explanation, we use

the termvariablesto mean programmer-declared variables together with other locations

that may be distinguished by the points-to analysis, including members of structures, dy-

namically allocated data, and other temporary locations used by the points-to analysis or

subsequent data-flow analysis. Figure 3.1 shows a small C program with the results of

its points-to analysis. Figure 3.1b shows the results of aflow-sensitivepoints-to analysis,

and Figure 3.1c shows the results of aflow-insensitiveanalysis.

25

26

if (a < b) {
p = &x;
c = *p;

} else {
p = &y;
c = *p;

}

*p = d;

p → {x}
{c} ⇐ {x}

p → {y}
{c} ⇐ {y}

p → {x , y}
{x , y} ⇐ {d}

p → {x , y}
{c} ⇐ {x , y}

p → {x , y}
{c} ⇐ {x , y}

p → {x , y}
{x , y} ⇐ {d}

(a) (b) (c)

Figure 3.1: An example C program with points-to analysis: (a) an example program,
(b) annotations for a flow-sensitive analysis, and (c) annotations for a flow-insensitive
analysis. An annotation ofi → {j} indicates thati now points toj. An annotation of
{i , j} ⇐ {k} indicates thati andj are both assigned the value ofk.

For the flow-sensitive analysis, the points-to set for the variablep changes

according to the flow of data through the program. For the flow-insensitive analysis,

the points-to set is the same throughout the program. Although, flow-sensitive analyses

are more precise than flow-insensitive analyses, they are not suitable for use on large

systems because they have quadratic to exponential time and space requirements.

Dereferencing the pointer variablep yields the contents of its points-to set.

The simple assignments involvingc and d are now assignments from and to sets of

variables.1 Larger points-to sets are usually the result of a more conservative points-to

analysis. The sizes of the points-to sets can greatly affect the precision and running

time of the subsequent data-flow analysis. For example, in backward program slicing,

an assignment to a variable in the current slicing criteria results in the variable being

removed from the criteria and the variables used at the assignment statement being added

to the criteria. If the variables used are the result of a pointer dereference, then all the

variables in the corresponding points-to set are added to the criteria. If the points-to set

is large, the slicing criteria will also be large.

1If more than one variable is the target of an assignment, such a definition is a preserving definition
since in fact only one variable is actually assigned a value.

27

3.2 Motivation

Demand-driven techniques attempt to save space and time by computing only

those data-flow facts and portions of supporting representations that are necessary to

perform the analysis [Atkinson and Griswold, 1996; Duesterwald et al., 1995; Horwitz

et al., 1995]. In this way, large programs can be handled more economically since

the amount of information computed and stored is greatly reduced. Effective demand-

driven analysis depends upon quickly identifying which portions of a representation are

required next and efficiently computing those portions. In backward program slicing,

for example, it is necessary to quickly identify all the callers of a procedure and effi-

ciently construct theCFG for those calling procedures [Atkinson and Griswold, 1996].

Because determining the callers of a procedure requires a global analysis of the pro-

gram, our demand-driven approach saves the call-graph to disk for future invocations of

the program slicing tool.

Depending on the algorithm chosen (e.g., a flow-sensitive algorithm versus a

flow-insensitive algorithm), points-to analysis for large programs can require a large,

possibly prohibitive, amount of time and space. Unfortunately, there are problems with

either demanding or persistently storing points-to information. We discuss these prob-

lems and then present a hybrid compute-and-store solution.

Points-to information is not efficiently computable on demand because com-

puting the effects of any particular pointer reference can require a global analysis of the

program. For example, Figure 3.2 shows a small C program consisting of three source

files. If a backward program slice is started at the assignment toz in function f() of

file y.c , the points-to set of variablep is needed. There is an assignment top in func-

tion main() in file x.c , sox.c must be analyzed. Ignoring pointers, a demand-driven

slicer would not need to examine this file unless the user requested that slicing should

continue into the calling function. Filez.c must be also examined. Although function

g() is not reachable during a backward data-flow analysis fromf() , the file contains

the initialization forp in a static initializer.

28

extern int *p;

main () {
int x;

if (rand ())
p = &x;

f ();
g ();

}

extern int *p;

f () {
int z;

*p = 3;
z = *p;

}

int y, *p = &y;

g () {
y = 2;

}

x.c y.c z.c

Figure 3.2: An example C program consisting of three files. The pointer variablep is
referenced in all files.

An alternative to demand-driven analysis is to persistently retain the points-to

information in a database, as we do with the call-graph. This approach is attractive since

the call-graph requires pointer information for computing the effects of calls through

function pointers anyway. However, storing the pointer information presents several

difficulties. First, a representation would be needed for referencing an arbitrarily nested

variable declared within a function. Second, theCFG’s three-address statements and

associated temporaries would need to be constructed in a reproducible order from one

tool invocation to the next. Finally, the database must be recomputed if any variable

in the program changes, not just if the call structure changes. Although none of these

difficulties is overwhelming, their net complexity led us to consider a third alternative.

3.3 Approach

Our approach is to demand all the points-to information on invocation of the

first slice, employing three techniques to minimize the impact of the required global

analysis.

29

• We use Steensgaard’s near-linear time, context- and flow-insensitive, points-to

analysis, which models storage as equivalence classes of locations and computes

the points-to sets (points-to classes) by computing the transitive relation over as-

signments [Steensgaard, 1996b].2 Although not as precise as some techniques, its

time–space characteristics are superior and the difference in precision is often not

reflected in the subsequent data-flow analysis [Shapiro and Horwitz, 1997a].

• To avoid an extra pass over the program to perform the global analysis, we piggy-

back the computation of points-to information with the construction of the por-

tions of theCFG required for the subsequent data-flow analysis, as shown in

Figure 3.3(b). The call-graph, which was formerly used to demand only those

portions of theCFG reachable from the initial slicing criterion, is now used to de-

termine which portions of theCFG are needed only for points-to analysis and can

therefore be discarded immediately after use.

• To maintain the call-graph’s effectiveness in the demand-driven analysis, the call-

graph saved to disk includes the effects of calls through function pointers, as de-

termined by the points-to analysis, as shown in Figure 3.3(a). Since the points-

to analysis is flow-insensitive—in particular it does not require a call-graph—

performing points-to analysis in a prior pass to gather function pointer information

adds little complexity to the implementation of the program slicer.

Using this approach onGCC, our largest program, computing the points-to

information and other supporting data for the call-graph requires 52 seconds and 63

MB of space (Chapter 8). Although theCFG itself would require only 52MB if fully

constructed, the total savings due toCFG discarding can be substantial. For example,

if only half of the CFG needs to be retained for slicing, the savings of 26MB might be

sufficient for the entire analysis to reside in main memory, eliminating paging and thus

improving overall execution time.

2Our implementation treats relational operators differently from arithmetic operators since the former
do not yield a pointer value. This fact is mentioned in the reference but not included in its equations.

30

for all filesdo
for each function fdo

compute-classes(f)
for each statementcall g () do

calls [f] := calls [f] ∪ {g}
end for
for each statementcall (∗p) () do

indirect [f] := indirect [f] ∪ {p}
end for
discard(f)

end for
end for all

for each f in callsdo
for eachp in indirect [f] do

calls [f] := calls [f] ∪ ∗p
end for each

end for each

write-call-graph()

function get-reachable(f)
reachable:= φ
dfs-over-calls(f, reachable)
return reachable

end function

read-call-graph()
start := get-criteria()
reachable:= get-reachable(start)

for all filesdo
for each function fdo

compute-classes(f)
if f 6∈ reachablethen

discard(f)
end if

end for
end for all

compute-slice(start)

(a) (b)

Figure 3.3: Example pseudocode showing how the call-graph is built and used: (a) the
direct calls and points-to classes for each function is first computed and then combined
to construct the call-graph which is then written; (b) the call-graph is read and used to
determine the reachable portions of theCFG while computing the points-to classes.

3.4 Conclusion

Integrating points-to analysis with demand-driven analyses is difficult. Points-

to analysis typically requires a global analysis over the program, negating the benefits of

a demand-driven analysis. To overcome this problem, we use a near-linear time points-

to analysis that can be performed in a single pass over the program. By piggybacking

construction of the call-graph with the computation of the points-to sets, an extra pass

over the program can be avoided. The call-graph is persistently retained on disk and

read in upon starting a program slice. The call-graph is then used to determine the

31

reachable portions of theCFG, allowing the unreachable portions of theCFG to be dis-

carded, thereby saving space and also time by avoiding use of the slower portions of the

virtual memory hierarchy.

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1998]. The dissertation author was the primary researcher and

author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.

Chapter 4

Flexible Whole-Program

Analysis Tools

4.1 Motivation

Reducing the space requirements of an algorithm will also reduce its running

time by avoiding the movement of representations within the virtual memory hierarchy

(Chapter 2). Because an algorithm can require between polynomial and exponential

time, depending on its precision, it is also necessary to control the time complexity

of the algorithm itself in order to obtain acceptable performance of a whole-program

analysis tool. Since many data-flow analyses are iterative [Aho et al., 1986], significant

improvements can be achieved by either reducing the running time of each iteration or

by reducing the number of iterations performed.

4.2 Approach: Controlling Precision

As with demand-driven computation, providing the tool user with control over

the precision of an analysis should require only minor modifications to the original it-

erative algorithm, since the algorithm can be quite complex. One approach is to allow

the tool user to specify the interproceduralcontext-sensitivityof the algorithm. Before

32

33

C A C B C A C B

DCA
DCB

(a)

M

A B

C

D

M

A B

D

M

A B

(b) (c) (d)

M

A B

C

D

Figure 4.1: A sample program with (a) its call-graph, (b) its depth-1 context-graph, (c)
its depth-2 context-graph, and (d) its unbounded-depth context-graph. A procedure with
multiple contexts is annotated with its call path.

we describe our support for this feature, we present some background on precision and

context-sensitivity.

4.2.1 Background

Recent work has focused on the trade-offs between context-insensitive and

context-sensitive analyses [Wilson and Lam, 1995; Ruf, 1995]. Many approaches such

as the slicing algorithm of Weiser [Weiser, 1984] use only a single calling context for

each procedure—that is, there is no accounting of the calling sequence that led to the

call in order to precisely estimate the calling sequence’s influence—and therefore are

context-insensitive. In contrast, the invocation graph approach [Emami et al., 1994]

is fully context-sensitivesince each procedure has a distinct calling context for each

possible call sequence starting from the main procedure of the program.1 The invoca-

tion graph can be understood as treating all the procedures as inlined at their call sites.

Figure 4.1 presents the call-graph of a simple program, withM representing the main

procedure, along with variouscontext-graphs.

The nodes of a context-graph represent a calling context of a procedure and

the edges represent procedure calls. Each context-graph has an associatedcontext-depth.

1Recursion is handled by following the recursive call once and then using the resulting data-flow set
of the recursive call as an approximation for subsequent calls.

34

Figure 4.1b shows the context-graph using Weiser’s approach. Since each procedure has

only a single context, this graph is identical to the call-graph of Figure 4.1a. This is the

depth-1context-graph, since the context of a procedure is determined by searching a

singleprocedure down the call stack. For example, the call stacksM A C andM B C

(shown growing from left to right) are equivalent since only the topmost procedure,C, is

examined in tracing the call stack. Figure 4.1d shows a context-graph equivalent to the

invocation graph for the program, with procedures having multiple contexts annotated

by their call path. This graph has effectiveunbounded-depth, since the context of a

procedure is determined by searching back through the call stack as many procedures as

necessary to reach the main procedure.

4.2.2 Approach

In order to control precision, our approach allows a variable degree of context-

sensitivity. For example, Figure 4.1c shows thedepth-2context-graph for the program.

The call stacksM A C andM B C are not defined to be equivalent since the depth-2 call

stacksA C andB C are unequal, resulting in two contexts forC. However,D still has

only a single calling context since the call stacksM A C D andM B C D are equivalent,

as both have a depth-2 call stack ofC D. This approach is similar to the approach of

Shivers [Shivers, 1991] for analyzing control-flow in languages with functions as first-

class objects.

A depth-1 context-graph has an equal number of procedures and contexts,

resulting in a high degree of imprecision but an efficient analysis. An iterative algorithm

using a depth-1 context-graph withn procedures andm data-flow facts will requireO(n)

space andO(mn) time in the worst case. An iterative algorithm using an unbounded-

depth context-graph will produce a precise result but will require exponential space

and time in the worst case. As the context-depth increases the analysis becomes more

precise, but requires more time and space.

The tool user may first perform the analysis at a low context-depth and exam-

ine the results, as shown in Figure 4.2. If the user’s query has not been satisfactorily

35

Is output
acceptable? Modify

approach.

Increase
context-depth.

Start at low
context-depth.

Is performance
still acceptable?

Yes

No
Yes

Stop.

No
program slicer

Figure 4.2: Example scenario showing how context-depth can be used in a program
slicing tool to solve a tool user’s question about a program.

answered then the context-depth is increased until either a satisfactory answer is pro-

duced or the running time of the analysis becomes unacceptable. For example, suppose

that some function in a large system has recently been changed and soon afterward the

system behaves incorrectly. A programmer might suspect that the recently changed

function is the cause of the error. Using a backward slicing tool, the programmer can

compute a slice at a low context-depth starting at the statement where the error occurs. If

the computed slice does not include the suspected function, then the programmer knows

that the function did not in fact cause the error. If the context-depth were to be increased,

then precision would be improved and less statements—not more—would be included

in the slice. However, if some statement in the suspected function is included in the

slice, then the function might be the source of the error. The programmer would then

need to increase the context-depth and recompute the slice if the performance of the tool

is still acceptable and the function is still believed to be in error.

The context-graph approach integrates easily with our demand-driven soft-

ware architecture (Figure 2.2). In order to isolate the analysis algorithm from our addi-

tions, we introduce a context module that encapsulates the control of context sensitivity.

When a data-flow algorithm traverses a call edge of theCFG, a new context is demanded

for the called procedure. The context module either creates a new context for the pro-

cedure or returns a pre-existing context. As a consequence, the analysis algorithm is

impervious to the changes in context-sensitivity. The only real difference is the context-

36

graph that is implicitly traversed. Contexts are demanded with a standard procedure

call to the context module, not an event, since an analysis algorithm is not logically

independent of precision.

4.2.3 Calling Context Creation

When a data-flow algorithm traverses a call edge of theCFG, a new calling

context must be demanded for the called function. The context module either creates

a new context for the function or returns a pre-existing context. Our backward slicing

algorithm performs the following operations when acall statement is encountered:

1. Demand-derive a context for the called function,Q, using the context of the calling

functionP.

2. Using the current slicing criterion, create new slicing criteria at thereturn state-

ments of the context forQ. The new slicing criteria are merged with any already

existing criteria using aunion operation (Chapter 6).

3. Compute the slice ofQ during a backward depth-first search ofQ from eachre-

turn statement (Chapter 7).

4. Use the updated criterion at the first statement ofQ as the new slicing criterion for

thecall statement and resume slicingP.

In the depth-1 context-graph of Figure 4.1b, firstM slices intoA, andA calls

C by demand-deriving a context forC and updating the slicing criteria at thereturn

statements ofC. After a depth-first search ofC, the criteria at the first statement ofC is

used to continue slicingA. Next,M callsB, andB follows the same steps asA. However,

sinceC has only one context, the criteria fromA andB are merged inC. The depth-first

search returns immediately, since all blocks inC have been marked as visited byA, and

B uses the (approximate) criterion at the first statement ofC to continue slicing. Thus,

data placed inC by A flows back intoB, and on the next iteration the data fromB will

flow back intoA, resulting in imprecision. If the depth-2 context-graph of Figure 4.1c

37

is used, this imprecision will not occur; however, some imprecision may still occur

sinceD has only a single context. Using a depth-3 context-graph, which is equivalent

to the unbounded-depth context-graph for our sample program, will result in a precise

analysis.

Unless an unbounded-depth context-graph is used, data may be propagated

along unrealizable paths[Horwitz et al., 1995; Horwitz et al., 1990]. For example,

data merged at thereturn statements ofC, which is the source of the imprecision, is

propagated along unrealizable paths (e.g., the data ofA is propagated throughC to B).

Our slicing algorithm tries to avoid unrealizable paths. Since the call toC from A returns

to A and not toB, should the slicing algorithm terminate beforeB is called fromM then

no imprecision will result.2

4.3 Approach: Customizable Termination

Controlling precision can reduce the running time of each iteration of an itera-

tive analysis, thereby reducing the overall time needed to perform the analysis. However,

the overall running time may still be unacceptable for many uses of a whole-program

analysis tool. For example, in our scenario in which the programmer is trying to deter-

mine if a given function is the source of an error, the programmer needs the program

slice to be computed quickly. If the program slice requires a long time to compute, the

iterative scenario that we described would be impractical. Consequently, to further re-

duce the running time of the analysis, the number of iterations needs to be decreased.

One approach is to allow the user to limit the number of iterations performed.

If an iterative analysis initially converges towards the ultimate answer quickly,

but does not complete for some time, thencustomizable terminationcan substantially

reduce the analysis time required. One way to provide user-controlled termination of an

analysis is to permit the user to suspend an analysis, examine the intermediate results,

2The algorithm may terminate if the slicing criterion becomes empty or if the algorithm is interrupted
by the tool user. Additionally,B may not be called fromM if the call paths are constrained, as in chop-
ping. [Jackson and Rollins, 1994; Reps and Rosay, 1995]

38

and decide if the analysis has sufficiently answered the tool user’s question. Another

way is to allow the user to provide a termination test procedure that is periodically

applied to the current result of the analysis. A simpler but less flexible approach is for

the tool to provide a fixed set of parameterized termination tests.

Supporting customized termination requires a minor modification to the anal-

ysis algorithm. Events can be used to announce that a certain slicing milestone is met—

such as the end of an iteration—giving the tool’s user interface an opportunity to update

the display and apply the user’s termination test to the current results of the analysis.

The only requirement that the events impose is that the analysis’s data structures should

be consistent so that they can be viewed without crashing the tool. In this sense, the

event protocol of a module is an inherent part of the module’s behavior [Sullivan and

Notkin, 1992].

Our program slicing tool currently provides suspension of an analysis for in-

spection of the current results. The user can unobtrusively monitor the progress of the

analysis by means of an on-the-fly display. Our program slicer allows viewing the num-

ber of statements analyzed, size of the slice, and other criteria interactively.

4.4 Conclusion

By increasing the flexibility of a whole-program analysis tool, the time and

space requirements can be substantially reduced. We advocate allowing the tool user to

have high-level control over the data-flow analysis being performed. By allowing the

user to control the precision of the analysis, substantial time and space can be saved by

performing an analysis that better matches the tool user’s needs. By allowing the user

to control the termination of the analysis, the computation of unnecessary data-flow

information can be avoided, saving time.

We have implemented our approach in our program slicing tools. We have

found that the data-flow information computed in backward program slicing has an ini-

tial rapid convergence, with 90% of the total number of statements in the slice being

39

included within the first 20% of the total iterations (Chapter 8). By tuning the amount

of context-sensitivity, significant time and space can be saved. We have found that in-

creasing the context-depth yields only a small improvement in precision of the data-flow

analysis (i.e., a small reduction in the number of statements in the program slice), but

increases the running time of the analysis considerably. Our approach of improving

flexibility through user-specified information can also be applied to the computation

of the points-to information for C programs, substantially improving the results of the

subsequent program slices (Chapter 5).

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1996]. The dissertation author was the primary researcher and

author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.

Chapter 5

Pointer Usage in Large Systems

In this chapter, we examine how the ways in which pointers are used can im-

pact the precision of the points-to analysis. If the points-to analysis is too conservative,

then the subsequent data-flow analysis will suffer (e.g., be too conservative, require too

much time and space). In the previous chapter, we showed that by improving the flexi-

bility of an analysis tool significant time and space can be saved by avoiding the com-

putation of unnecessary data-flow information. In particular, we improved flexibility by

allowing the tool user to parameterize the data-flow analysis. To overcome the problems

introduced by stylized pointer usage in C programs, we allow the tool user to parameter-

ize the points-to analysis. In Chapter 8, we present our results on how parameterization

can significantly improve the precision of the points-to and data-flow analyses.

5.1 Motivation

C provides powerful, albeit low-level, language features like type casting,

pointer arithmetic, and function pointers. Programmers often use these sophisticated

language constructs in order to improve performance and ease implementation. For

example, all of our example systems use an array of function pointers to implement a

dispatch table—a table in which the key is an integer value designating an operation

and the corresponding value is the address of a function that performs that operation.

40

41

define SIN 0
define COS 1

. . .
define POW 10

struct {
double (*func) ();
int args;

} func_tab [] = {
{sin, 1},
{cos, 1},

. . .
{pow, 2},

};

n = func_tab [i].args;
f = func_tab [i].func;

x = pop ();

if (n == 1)
return (*f) (x);

y = pop ();

if (n == 2)
return (*f) (x, y);

return 0

(a) (b)

Figure 5.1: Example of dispatch tables: (a) a simple dispatch table, and (b) its use.

Sometimes this dispatch table is an array of structures that contain pointers to functions,

as shown in Figure 5.1.

The way that such aggregates are allocated and manipulated often causes their

points-to classes to be merged, yielding imprecise resolution of pointer references dur-

ing analysis. The use of type casting, pointer arithmetic, and custom memory allocators

are especially problematic. The resulting merges often cascade, yielding unacceptably

conservative results. For example, if two separate dispatch tables become merged by the

analysis, then the structures they contain become merged, and finally the fields within

the structures are merged. Such collapsing of points-to classes not only results in overly

conservative resolution of pointer references during data-flow analysis, but also during

the computation of the program call-graph. As a result, the subsequent data-flow anal-

ysis can be both very inefficient and imprecise, since the analysis will traverse a large

number of function calls that cannot actually occur during program execution.

Although some of these problems with points-to class merging can be over-

come by using a context-sensitive points-to analysis, the analysis may then become too

42

strong checking weak checking
arguments number of actuals number of actuals

must match number at least number
of formals of formals

specifiers one is assignable to one is assignable to
other; structure tags other; structure tags
must match need not match

declarators must match exactly, match at outermost
unless one is pointer level, unless one is
to void and other is pointer and other is
pointer integer

qualifiers ignored ignored

int f (int x, int y) {
 ...
 g (x, y + 1.5);
 ...
}

specifiers

const int *x, y, z ();

formals

actuals

qualifiers declarators

Figure 5.2: Prototype filtering rules for both strong and weak prototype filtering. The
example code fragments illustrate the program components being checked.

expensive [Atkinson and Griswold, 1996]. Furthermore, the increase in precision may

be small [Ruf, 1995] or may not yield substantially better data-flow information [Shapiro

and Horwitz, 1997b].

5.2 Approach

Since our tool is designed for program understanding, we allow the user to

provide both optimistic (i.e., “unsafe”) and conservative information. In tasks such as

compilation or automatic parallelization, the meaning of the program must be preserved.

However in program understanding, the tool user is attempting to gain knowledge about

the system or provide reassurance of an assumption made about the system. As long as

the tool user is readily aware that certain parameters may yield unsafe information, we

feel the ability to provide optimistic information is justified.

We have developed several options for parameterizing (e.g., annotating [Koel-

bel et al., 1994]) the points-to analysis that the user of our program slicer may enable.

Each has its own effect on the points-to analysis.

43

void (*p) ();
int (*q) (), y;

int main () {
(*p) (1);
(*q) (2, "a");
(*q) (3, &y);

}

void f (int x) {
y = x;

}

int g (int x) {
return x;

}

int h (int x, void *p) {
return x + *(int *) p;

}

int i (int x, char *p) {
return *p + x;

}

Figure 5.3: A program fragment using function pointers.

5.2.1 Function prototypes

In many cases we found it too costly in time and space to compute sufficiently

precise points-to sets for function pointers. Consequently, we turned to using type infor-

mation to achieve better results. In particular, the user may specify whether the program

uses weakly (old-style “K&R” C) or stronglyANSI-compliant function prototypes. The

filtering rules for both levels of checking are shown in Figure 5.2. Function prototypes

provide additional typing information for static semantic checking by ensuring that the

type and number of formal and actual arguments agree. After retrieving the points-to

set for a function pointer reference, the prototypes of the resultant set of function defi-

nitions are compared against the prototype implied by the function call. The prototypes

are computed from the actual function definition and the function call since the pro-

gram may beANSI-compliant, but not be written usingANSI-style prototypes. Enabling

this option does not affect the construction of the points-to classes, but rather filters the

classes based on the calling statement, reducing the number of functions that may be

called for a given function call expression.

For example, Figure 5.3 presents a small program using function pointers. Let

us assume that the four functions,f() , g() , h() , andi() , have all been merged into

44

expression not enabled enabled
(*p) (1); {f ,g,h,i } {f }
(*q) (2, "a"); {f ,g,h,i } {h,i }
(*q) (3, &y); {f ,g,h,i } {h}

Table 5.1: Effect of strong prototype filtering, showing the points-to sets for each func-
tion call of Figure 5.3 with filtering not enabled and then enabled by the user.

the same points-to class and that bothp andq point to this class, as shown in the second

column of Table 5.1. By filtering on the prototypes of the function call and definition,

the first function call inmain() can only refer to functionf() since the other three

functions return anint andp is declared to returnvoid . The second call can refer to

either functionh() or functioni() since they both require two arguments and a string

is assignable to thevoid pointer argument in functionh() . The third call can only refer

to functionh() since a pointer toint is assignable to avoid pointer, but not to achar

pointer (i.e., string literal). The results with strong prototype filtering enabled are shown

in the third column of Table 5.1.

5.2.2 Private memory allocators

Because large programs typically process lots of information, they can dynam-

ically allocate several thousand objects. Since calling the standard Cmalloc() func-

tion for each object incurs an overhead, many large systems employ their own mem-

ory allocator. Implementing a private memory allocator is not difficult since C’s own

memory allocator,malloc() , is itself implemented in C. Typically, a private memory

allocator is just a “wrapper” around calls to the underlying memory allocator such as

malloc() that allocates larger blocks of memory and then doles them out in appropri-

ately sized pieces, as shown in Figure 5.4(a). Another type of simple allocator, such as

thexmalloc() function in our example programs, is one that merely callsmalloc()

and then checks the return value to see if virtual memory has been exhausted, as shown

in Figure 5.4(b).

45

void *oballoc () {
static char *ptr, *end;

if (ptr == end) {
ptr = malloc (1024);
end = ptr + 1024;

}

return p += 16;
}

void *xmalloc (int n) {
void *ptr = malloc (n);

if (ptr == NULL) {
printf ("oops\n");
abort ();

}

return ptr;
}

(a) (b)

Figure 5.4: Example private memory allocators: (a) an efficient memory allocator for
sixteen-byte objects, and (b) a simplexmalloc() function from our example programs.

The use of private memory allocators can reduce the precision of points-to

analysis. One method of modeling dynamically created storage is to treat each static

call to malloc() as though it has its own heap, which is modeled as if it were a single

large array of bytes from which objects are allocated. As a consequence, all pointers that

are associated with a particularmalloc() call site are treated as referencing the same

memory address (assuming array indices are ignored). This approach, which we use, is

simple to implement and often yields adequate precision [Steensgaard, 1996b]. For a

program using thexmalloc() function described above, the program will contain sev-

eral distinct calls toxmalloc() , but only one static call tomalloc() (by xmalloc()

itself). Thus, usingxmalloc() rather thanmalloc() results in modeling memory as a

single large, shared array, rather than several separate ones. All pointers to dynamically

allocated memory are treated as referencing the same memory location. In effect, the

points-to analysis is penalizing the programmer for writing efficient and modular code.

With the private memory allocator option, the user specifies the names of those

functions that should be treated as if they were calls tomalloc() . Each call site of the

memory allocator is treated as if it returned the address of a temporary static variable,

rather than all calls returning the address of the same variable.1 This information may be

1Functions such asfree() need to be treated similarly to avoid merging due to parameter passing.

46

a = xmalloc (10);
b = xmalloc (10);
x = malloc (10);
y = malloc (10);

points-to sets

not declared: declared:
{a,b } {x} {y} {a} {b} {x} {y}

(a) (b)

Figure 5.5: Effect of declaring private memory allocators: (a) example code using the
xmalloc() function of Figure 5.4, and (b) the resulting points-to sets based on whether
the user has declaredxmalloc() as a private memory allocator.

optimistic if the user is unsure which functions serve as memory allocators. The effect

of using this option is to introduce more addresses to the points-to analysis, resulting in

more points-to locations, as shown in Figure 5.5 in which the locations ofa andb are

now distinct just as the locationsx andy are distinct.

5.2.3 Structure members

A typical C program uses structures quite heavily to model objects. A struc-

ture may contain pointers to other objects of different types. Since these objects are

of different types, they are likely distinct. Although distinguishing structure members

in points-to analysis can increase precision, sometimes the benefit is small and is not

justified by the higher cost. In the worst case the analysis may require exponential time

when structure members are distinguished [Steensgaard, 1996a].

To permit managing the time and space complexity of the analysis, our anal-

ysis distinguishes structure members only when chosen as an option by the user. Thus,

references toa.x anda.y are normally treated as a reference toa. As a result, any

objects pointed to by thex andy members are merged into a single points-to class.

When the user enables the structure members option, two such locations are

not merged.2 A structure assignment is treated as assigning the individual members. If

2The points-to analysis is similar to that described in [Steensgaard, 1996a], but assumes that adjacent
structure members are infinitely far apart and thus does not take into account the size of an access during
the analysis.

47

char a [10];
char *p, *q;
int i, j;

i = 1;
p = &a;
p [i] = 0;

j = (int) p; /* j is just p */
q = (char *) i; /* q is just i */

printf ("%d\n", p [i]); /* same as *(p + i) */
printf ("%d\n", j [q]); /* same as *(j + q) */

Figure 5.6: A program fragment showing commutativity of the array operator. Although
the variablej is the integer and variableq is the pointer in the final array reference, it is
j , and notq, that in fact carries the pointer information.

pointer arithmetic is performed on a structure pointer, then the members are “collapsed”

(i.e., the points-to sets for all members are merged and the structure is thereafter treated

as a single location) since a dereference through the generated pointer value may assign

to any member or possibly multiple members. A variant structure or “union” type in C

is considered to be a structure whose fields are already collapsed.

5.2.4 Strict arrays

In C, the array operator is commutative because array references are semanti-

cally equivalent to pointer addition, which itself is commutative. The expressionsa[i]

and i[a] are identical. However, the second form in which the pointer value appears

within the brackets is generally not used. Normally, the points-to analysis must assume

that this second form can be used. Thus, if the indexi is used to index two distinct

locationsa andb, they become indistinguishable to the analysis since it assumes thata

andb may be the indices and thati is the pointer value. (Use of the cast operator in C

to override the type system makes this possible, as shown in Figure 5.6.)

48

s.ptr = &z;
i = s.idx;
x = a [i];
y = b [i];

points-to sets

not enabled: enabled:
{a,b } {a} {b}

(a) (b)

Figure 5.7: Effect of the strict arrays option: (a) example code showing accesses to two
arrays with the same index, and (b) the resulting points-to sets based on whether the tool
user has enabled the strict arrays option.

Although the programmer may not deliberately write code in this fashion, the

points-to analysis may still detect such an occurrence. For example, if either operand of

the array operator is a structure reference and either structure members have not been

distinguished or the corresponding structure has been collapsed, then any integer and

pointer members of the structure will have been merged, and the resulting operand may

therefore be seen as carrying the pointer information. For example, in Figure 5.7 the

two arraysa andb are indexed with the same variable, which is the result of a structure

reference. However, the structure also holds a pointer value by the first assignment. If

structure members are not distinguished or the structure has been collapsed (perhaps the

structure is aunion type), then the two arrays will be merged by the points-to analysis.

By enabling the strict arrays option, the user precludes this possibility, result-

ing in the two locations not being merged. Using this option may yield unsafe infor-

mation unless the tool user is sure that the second form of array indexing is never used.

However, a special case exists ifa is declared as an array rather than a pointer. Since an

array variable is constant and cannot be assigned, we can be sure thati is the index and

thata is always the pointer value.

5.2.5 Combining parameters

Although each parameter can individually improve the precision of the points-

to analysis, when combined the results are magnified. Continuing our example ofGCC,

49

the array commutativity parameter prevents merging of separate arrays of structures, and

the structure and prototype parameters distinguish the individual structure components.

However, in some cases, the effects of one parameter will subsume the effects of another.

In particular, we have found for function pointers that filtering the points-to classes using

strong prototypes is the most beneficial (Chapter 8).

5.3 Conclusion

The use of pointers in large programs can have a significant impact on the pre-

cision of the points-to analysis. The use of private memory allocators, dispatch tables,

and structures can decrease the precision of the analysis. To overcome the difficulties

presented by these and other uses of pointers, we allow the tool user to parameterize the

points-to analysis. By allowing the user to easily specify high-level parameterizations of

the analysis, the precision of the points-to analysis can be substantially increased while

imposing little burden on the tool user.

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1998]. The dissertation author was the primary researcher and

author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.

Chapter 6

Data-Flow Analysis in the Presence of

Pointers to Locals

In the absence of either recursion or pointers to local variables, interprocedural

slicing is simple and well-understood. However, for a language such as C that provides

both of these features, traditional data-flow analyses may yield unsafe results. We first

present the traditional data-flow equations and then describe how the analysis may be

in error. Finally, we present our space-efficient data-flow equations that overcome these

problems.

6.1 Background and Motivation

6.1.1 Data-flow equations

Figure 6.1 presents traditional data-flow equations for backward slicing. At

each program point,D represents a data-flow set. At each assignment statement (Equa-

tions 6.1.3–6.1.5), some set of variables,defs, are defined and another set of variables,

uses, are used. If some variable indefs is also inD, then the killing definitions ofdefs

are removed fromD anduses are added toD. Otherwise,D remains unchanged. In

Equation 6.1.5, we assume that all assignments through a pointer dereference are pre-

50

51

return from f()

Dexit = Dexit ∪ (Di ∩ S) (6.1.1)

call to f()

Di = (Di − S) ∪ (Dentry ∩ S) (6.1.2)

x := y

if x ∈ Di then
Di = Di − {x} ∪ {y} (6.1.3)

x := *p

if x ∈ Di then
Di = Di − {x} ∪ ∗p ∪ {p} (6.1.4)

*p := x

if ∗p ∩Di 6= φ then
Di = Di ∪ {p, x} (6.1.5)

D = variables of interest
S = all global (static) variables
∗p= points-to set of variable p

Figure 6.1: Traditional data-flow equations for slicing in the presence of recursion with-
out pointers to local variables. Sets are subscripted with the program point to which
they refer. Sets that are not subscripted are the same for all program points. The current
statement has program pointi. Unless otherwise noted, a set passes through a program
point unchanged.

serving, since the points-to set may contain more than one variable, but only one variable

is in fact updated. The remaining two equations (Equations 6.1.1 and 6.1.2) show how

theD set is manipulated across function calls using theCFG shown in Figure 6.2. The

S set contains all static (global) variables in the program and is used to partition a set

into its local and global variables.1

6.1.2 Incorrectness of traditional equations

Figure 6.3 shows a small C program with a recursive functionf() . Consider

performing a backward program slice at the assignment toy in f() . Consequently,

we are looking for an assignment tox , which is a local variable tof() . Proceeding

backward through the function, the next statement examined is the recursive call tof() .

When slicing into the recursive call, we need to remove local variables from the data-

flow sets (Equations 6.1.1 and 6.1.2) [Knoop and Steffen, 1992]. This step is necessary

1We use the termlocal variableto mean anautomatic variablein C. Similarly, the termglobal variable
should be read asstatic variable. Since C overloads the use of the “static” keyword, we use the terms
local and global variable instead.

52

entry

call to

return from

exit

f ()main ()

Figure 6.2: ExampleCFG showing program points relevant to function calls.

to avoid finding a definition of the same local variable but with adifferent activation

in the recursive call. Continuing our example, the data-flow sets become empty after

removingx , resulting in no further information being added to the slice by the recursive

call. However, we have now erroneously excluded the last assignment inf() from

the slice. This statement is clearly an assignment tox , although which activation ofx

we do not know. This is amissing definitionof x . On the other hand, if we do not

removex from the data-flow set, then we can find false definitions ofx because these

definitions may in fact refer to other activations ofx . If any of these definitions is a

killing definition, then we have afalse killof x and our analysis is also in error.

6.2 Approach

The main difficulty with incorporating both recursion and pointers to local

variables is that the two features require that local variables be treated in contradictory

ways when slicing into a function call. To ensure correctness, local variables must be

removed for the data-flow sets in the presence of recursion, but must remain in the data-

flow sets in the presence of pointers to local variables. We introduce two new data-flow

sets,N andP , in our equations, shown in Figure 6.4. TheN set is used to solve the

problem of a missing definition, and theP set it used to solve the problem of a false kill.

53

f () {
int x = 1;

if (g ())
p = &x;

if (g ()) {
x = 2;
f ();

}

y = x;
*p = 3;

}

int y, *p;

main () {
f ();
printf ("%d\n", y);

}

g () {
int z;

scanf ("%d", &z);
return z;

}

Figure 6.3: Example program showing pointers to local variables in the presence of
recursion. The global pointer variablep is conditionally assigned to the local variable
x of function f() , which is recursive. As a result of the assignment,p may point to
different activations ofx , which introduces the possibility of a missing definition or a
false kill.

6.2.1 Solving the problem of a missing definition

In the presence of recursion, a local variable must be removed fromD in order

to avoid finding a killing definition of the same variable but with a different activation.

However, the local variable may be referenced through a pointer in a called function.

In our approach, local variables are removed fromD and placed intoN of the called

function (Equation 6.4.1c). This process is similar to the mapping and unmapping of

nonvisible variables [Emami et al., 1994; Landi et al., 1993]. Consider an assignment

made by dereferencing a pointer variablep (Equation 6.4.5). If the points-to set ofp

overlaps withN , then a local variable declared in another function has been defined.

However, which activation of the variable that has been defined is unknown, and there-

fore the assignment must be treated as a preserving definition. The assignment statement

should be added to the slice and the variables used at that statement added toD, but the

variables defined are not removed.

54

return from f()

Pexit = Pexit ∪ Pi (6.4.1a)
Dexit = Dexit ∪ (Di ∩ S) (6.4.1b)
Nexit = Nexit ∪Ni ∪ (Di − S) (6.4.1c)

call to f()

Pi = Pi ∪ Pentry (6.4.2a)
Di = (Di − S) ∪ (Dentry ∩ S) (6.4.2b)

x := y

if x ∈ Pi then
Di = Di ∪ {y} (6.4.3a)

else ifx ∈ Di then
Di = Di − {x} ∪ {y} (6.4.3b)

x := *p

if x ∈ Pi then
Pi = Pi ∪ (∗p− S) (6.4.4a)
Di = Di ∪ (∗p ∩ S) ∪ {p} (6.4.4b)

else ifx ∈ Di then
Pi = Pi ∪ (∗p− S) (6.4.4c)
Di = Di−{x}∪(∗p∩S)∪{p}(6.4.4d)

*p := x

if ∗p ∩ (Di ∪ Pi ∪Ni) 6= φ then
Di = Di ∪ {p, x} (6.4.5)

N = nonlocal local variables of interest
D = variables of interest with killing defs
P = locals of interest with preserving defs
S = all global (static) variables
∗p= points-to set of variable p

Figure 6.4: Our data-flow equations for slicing in the presence of recursion and pointers
to local variables. Sets are subscripted with the program point to which they refer. Sets
that are not subscripted are the same for all program points. The current statement
has program pointi. Unless otherwise noted, a set passes through a program point
unchanged.

TheN set models the transitive closure of the program stack, but only for

local variables of interest rather than for all local variables. When a function is called,

the local variables of interest to the caller are added toN of the called function along

with the caller’sN set (Equation 6.4.1c). SinceN only containsnonlocallocal variables

of interest, it need only be examined in statements containing an assignment by means

of a pointer dereference (Equation 6.4.5).

6.2.2 Solving the problem of a false kill

If a local variable is referenced out of scope by means of a pointer dereference,

we cannot be certain which activation of the variable is actually used. To be safe, we

55

must therefore assume that all possible activations are referenced. The activations of a

local variable can be thought of as an array, with the stack pointer referring to the last

element of the array. If a local variable is referenced out of scope, we do not know the

array “index” and so must assume all activations are referenced. Thus, a local variable

referenced out of scope is treated just like an array—any definition is always a preserv-

ing definition. In our approach, theP set keeps track of these variables. Using theS set,

the variables referenced by means of a pointer dereference are partitioned into its local

and global variables (Equations 6.4.4a–6.4.4d). The local variables are added toP , and

the global variables are added toD. At an assignment statement, if the variable being

defined is present inP , then the statement is included in the slice and the corresponding

variables used are added toD, but the variable is not removed. Consequently, Equa-

tion 6.1.3 now requires two cases (Equations 6.4.3a and 6.4.3b), as does Equation 6.1.4

(Equations 6.4.4a-b and 6.4.4c-d).

The P set contains those local variables that have been “demoted” to have

only preserving definitions. The demotion occurs only if the variable is referenced out

of scope by means of a pointer dereference. Once a local variable is added toP , it

is never removed. Finally, the demotion propagates through all (backward) reachable

program points—P is propagated into a called function (Equation 6.4.1a) and also into

any calling function (Equation 6.4.2a).

6.2.3 Correctness of our equations

To provide insight into the correctness of our equations, we can examine how

the equations are transformed if pointers to local variables are not allowed. In this

case, the points-to set of a variablep contains only global variables. Consequently, no

variables are added to theP set in Equations 6.4.4a and 6.4.4c. Since these are the only

equations in which individual variables are added toP , theP set is therefore always

empty and Equations 6.4.1a, 6.4.2a, 6.4.3a, 6.4.4a, 6.4.4b, and 6.4.4c can be eliminated.

Also, since theN set contains only local variables and theP set is always empty, both

theN andP sets can be eliminated in the conditional test for Equation 6.4.5. Therefore,

56

without pointers to local variables, the equations reduce to the more familiar data-flow

equations for backward program slicing given in Figure 6.1.

6.3 Conclusion

Traditional equations for interprocedural slicing are incorrect if pointers to

local variables are used in recursive programs. We demonstrated that the problem is

due to either a false definition or a missing kill. We presented new data-flow equations,

derived from the traditional equations, which solve these problems. In Chapter 7, we

discuss an efficient implementation of our equations.

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1998]. The dissertation author was the primary researcher and

author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.

Chapter 7

Implementation

Because of the high space and time demands of whole-program analysis, spe-

cial attention to implementation details are required. In this chapter we present several

aspects of the implementation of the data-flow framework of our program slicing tools

that was not presented in earlier chapters.

7.1 Block Visitation Algorithms

To perform data-flow analysis, a compiler or program understanding tool prop-

agates the computed data-flow information along the edges of the constructedCFG. The

data-flow facts along the incoming edges of a node are combined into a single set that

is then transformed according to the data-flow properties of the node. The resulting set

is then propagated along all output edges of the node. If theCFG is reducible (e.g.,

the program does not contain any unstructured jump statements), then the data-flow in-

formation can typically be propagated fully in a single pass over theCFG [Aho et al.,

1986]. Otherwise, an iterative algorithm must be used that propagates the data-flow

information until no further changes to the data-flow sets occur. One way to achieve

good performance in an analysis tool is to design and implement an iterative algorithm

that converges quickly or that has a short iteration time. Chapter 4 presents high-level

techniques for achieving both goals.

57

58

changed:= true

while changeddo
changed:= false
for each block Bdo

old := out [B]
visit (B)
if old 6= out [B] then

changed:= true
end if

end for
end while

worklist := {start}

while worklist 6= φ do
worklist := worklist - {B}
old := out [B]
visit (B)
if old 6= out [B] then

for P in pred [B] do
worklist := worklist∪ {P}

end for
end if

end while
(a) (b)

Figure 7.1: Example pseudocode for vistation algorithms: (a) the iterative search algo-
rithm, and (b) the worklist algorithm.

Since both theMUMPS and C languages allow unstructured control-flow, an

iterative algorithm is needed by our program slicing tool. The visitation order of the

nodes does not affect the correctness of the algorithm, so long as the data-flow infor-

mation is fully propagated along all edges until no more changes occur to the data-flow

sets. However, the visitation order can greatly impact the performance of the algorithm.

Two common visitation algorithms are used, as shown in Figure 7.1.

Iterative search algorithm: In the iterative search (i.e., “for each basic block”) algo-

rithm (Figure 7.1a), each block (i.e.,CFG node) is visited once. If any changes have

occurred, then each block is visited once again. This process repeats until no further

changes occur to the data-flow sets. Typically, a depth-first or breadth-first search of the

CFG is used to visit all blocks exactly once in an iteration, with depth-first search usually

resulting in fewer required iterations [Aho et al., 1986].

Worklist algorithm: In the worklist algorithm (Figure 7.1b), the blocks (i.e., nodes)

to be visited are placed on a worklist, which is typically implemented using a stack or

queue, with a stack implementation usually resulting in fewer block visits. A block is

59

i = 0;

while (i < n) {
if (sum > 20)

j = j + 1;

sum = sum + i;
i = i + 1;

}

return sum;

sum = sum + i
i = i + 1

i = 0

sum > 20

i < n

j = j + 1

return sum

B1

B2

B3

B4

B5

B6

Figure 7.2: A program fragment and its annotatedCFG.

removed from the worklist and visited. If any changes occur to the data-flow sets of the

block, then all predecessors of the block (successors for a forward data-flow analysis)

are placed on the worklist. The algorithm repeats until the worklist is empty.

Figure 7.2 shows a program fragment and its associatedCFG, annotated with

block numbers. Consider starting a backward program slice at the return statement

located at blockB6. An example visitation order forone iterationof the iterative search

algorithm would beB6, B2, B1, B5, B4, andB3. For the worklist algorithm, acomplete

visitationorder might beB6, B2, B5, B4, B3, B2, B5, andB1. Unlike the iterative search

algorithm, the worklist algorithm can visit a block many times before visiting other

blocks. For example, blocksB2andB5are visited twice before blockB1 is ever visited.

In a whole-program analysis tool, the space required to perform the analysis

must be reduced in order to obtain good performance. We implemented both the iterative

search and worklist algorithms for our slicing tool for C programs. The algorithms

required equal implementation time. We found that the worklist algorithm results in

approximately 50% less block visits than the iterative search algorithm. However, the

iterative search algorithm can be implemented such that significant space can be saved,

while the worklist algorithm to our knowledge cannot.

60

7.2 Reclamation of Data-Flow Sets

Although the worklist algorithm requires substantially fewer node visits to

converge than the iterative search algorithm, we chose to use the iterative search algo-

rithm because it has the advantage that the data-flow sets for each block can be reclaimed

during an iteration. The iterative search algorithm guarantees that each block in the pro-

gram is visited exactly once before any block is revisited. Recall that the input data-flow

set of a block is the confluence of the data-flow sets on all incoming edges. In a back-

ward data-flow analysis, once all predecessors of a block have been visited then the

data-flow set for the block itself will no longer be needed. Consequently, the data-flow

set can be deallocated. If a depth-first search is used to visit all blocks, then the maxi-

mum number of data-flow sets that need to be allocated at any one time is proportional

to the width of theCFG, resulting in substantial savings in space.

In our first implementation of this reclamation approach, we found that it was

cumbersome to keep a reference count on each block to keep track of the number of its

predecessors that had been visited. Consequently, we chose a simpler implementation

without reference counts: once the depth-first search of a called function is complete and

all blocks have been visited, the data-flow set of each block (other than the entry and

exit blocks) is deallocated if all predecessors of the block were visited after the block

itself was visited. Therefore, data-flow analysis with reclamation can easily be done as

a two-step process, in which the first step visits each block and also stores the visitation

order (Figure 7.3a), and the second step reclaims the data-flow sets of those blocks that

meet the mentioned criteria (Figure 7.3b). Slightly more data-flow sets remain active

at any time than are minimally needed, but the implementation is much simpler since

reference counting is not needed.

Unfortunately, data-flow set reclamation is not possible to our knowledge us-

ing the worklist algorithm. Whereas the iterative search algorithm is driven strictly by

the control-flow properties of the program and has the inherent property than all blocks

will be visited exactly once during each iteration, the worklist algorithm is driven more

61

function dfs(B)
ordered:= ordered· [B]
visited:= visited∪ {B}
old := out [B]
visit (B)

if old 6= out [B] then
changed:= true

end if

for P in pred [B] do
if P /∈ visitedthen

dfs(P)
end if

end for
end function

for B in ordereddo
before:= before∪ {B}
if B 6= entryand B 6= exit then

reclaimable:= true

for P in pred [B] do
if P∈ beforethen

reclaimable:= false
end if

end for

if reclaimablethen
delete(out [B])

end if
end if

end for

(a) (b)

Figure 7.3: Example of data-flow set reclamation: (a) a depth-first search algorithm
that also stores the visitation order, and (b) a reclamation algorithm that uses the visita-
tion order to safely reclaim unneeded data-flow sets. The notationa · [x] indicates the
concatenation of the lista with the single-element list containingx.

by the data-flow properties of the program. As a result, data-flow information is propa-

gated more effectively, but blocks are visited in an unpredictable order and a block may

be visited many times before all of its predecessors are visited. Therefore, a reference

counting approach is not easily implemented.

Attempting to use our simpler reclamation implementation with the worklist

algorithm also has performance problems. A small change in the data-flow set of the

calling function may require that the called function be visited again, in which case the

data-flow sets for the entire function need to be recomputed and reconverged. This type

of nested convergence could require exponential time. Although we did implement this

type of reclamation, we found that the number of block visits was substantially larger

than the number of visits needed by the iterative search algorithm (regardless of whether

reclamation was performed).

62

space
required

iterative search
with reclamation

worklist with
reclamation

worklist iterative search

number of block visits

Figure 7.4: A comparison of our block visitation algorithms.

Figure 7.4 summarizes the characteristics of our different visitation algorithms

with and without data-flow set reclamation. Although the worklist algorithm requires

fewer block visits, for large programs the iterative search algorithm with reclamation is

a better choice since it saves considerable space.

7.3 Data-Flow Set Implementation

In Chapter 6 we presented data-flow equations for correctly computing a back-

ward program slice for recursive C programs containing pointers to local variables. If

implemented naively, our data-flow equations requires three data-flow sets per block

(i.e., there is oneD, P , andN set per block). Given thatGCC has 238,000 symbols and

120,000 blocks, a bit-set implementation of data-flow sets would require over 10GB

(238,000symbols× 120,000blocks× 3 sets / block× 1 bit / symbol÷ 8 bits / byte) of

space. (A bit-set is implemented by consecutively mapping the elements of the input set

onto the natural numbers. Each number represents the bit position in a bit-vector. An

element is a member of the set if and only if its corresponding bit in the bit-vector is

set. A bit-vector representation allows set operations such as union and intersection to

be implemented efficiently using logical bit-wise operations. However, such operations

can only be performed across bit-sets with identical mappings (bit-numberings).)

63

globals

globals

locals

locals

locals

globals

temporaries

temporaries

temporaries

P

N

D D ⊆ globals ∪ locals ∪ temps

P ⊆ globals ∪ locals ∪ temps

N ⊆ globals ∪ locals ∪ temps

Figure 7.5: A simple implementation of the data-flow sets for our equations. The space
required is approximately 3.4GB for GCC even if theN andP sets are flow-insensitive.

However, sinceN does not change while slicing a function, a singleN set can

be used for all blocks of the function. Examining theP set, we see that it is nondecreas-

ing in size since variables are only added to the set and never removed, unlike theD

set. This fact suggests thatP can be made flow-insensitive with little loss in precision.

Consequently, we chose to also use a singleP set for all blocks of a function. This de-

cision sacrifices precision slightly in favor of performance. Using this implementation,

the space requirements forGCC are reduced to approximately 3.3GB (10 GB÷ 3), still

an unacceptable amount of space. This simple implementation is shown in Figure 7.5.

An analysis of the bit-sets revealed that they are typically very sparse. Exam-

ining our equations, we see thatP andN contain only local variables, whileD contains

local variables, global variables, and generated temporaries. Also, temporaries cannot

be the target of a pointer and therefore cannot be referenced out of scope.1 We therefore

decided to partition the bit-sets into three distinct classes: global variables, local vari-

ables, and temporaries for each function, as shown in Figure 7.6. TheD set now consists

of three bit-sets, but requires space to store only all the global variables, local variables,

and themaximumnumber of temporariesper function. If we assume for simplicity that

the 220,000 temporaries are evenly distributed amongGCC’s 2,300 functions, the space

requirements are reduced to approximately 60MB, which is acceptable.

1There are a few cases where temporaries can be the target of a pointer such as when a structure is
returned from a function. In these cases, we introduce a new type of temporary variable called aspecial.
The introduction of specials allows us to treat the vast majority of temporaries as though they could not
be the target of a pointer.

64

globals

globals

globals

locals

locals

locals

temporaries

temporaries

temporaries

N

P

D

temporaries for one function

D ⊆ globals ∪ locals ∪ temps f

P ⊆ locals

N ⊆ locals

Figure 7.6: A better implementation of the data-flow sets for our data-flow equations.
The sets are partitioned into their three distinct classes. Only the shaded areas of a set
are actually used at any given time.

The partitioning also improves algorithmic performance and eases implemen-

tation. The data-flow equations of Figure 6.4 require that theD andP sets be partitioned

into their local and global variables components. Logically, this partitioning is done us-

ing set intersections and differences. With these components maintained as separate

sets, the partitioning operations are trivial. For example, rather than computingD ∩ S

to retrieve the global variables ofD, only the set of global variables ofD (symbolically

D.globals) need be retrieved, thereby changing anO(n) operation into anO(1) op-

eration.

Examining theP andN sets in even greater detail, we see that they can con-

tain only local variables that are pointed to by some pointer variable. Since there are

far fewer of thesetarget localsthan local variables that are not pointed to by some vari-

able (nontarget locals), the locals of theP andN sets can be further partitioned into

two classes to save space, as shown in Figure 7.7. However, examining our data-flow

equations, we see that the local variables of theP andN sets must be operated on in

conjunction with those of theD sets (Equations 6.4.1c and 6.4.5). Therefore,explic-

itly partitioning the local variables into two classes would complicate these operations.

Such an implementation of the data-flow equations would be complicated by the need to

combine the sets of target and nontarget locals into one set for any operation involving

the locals from theD set. Given that all data-flow are implemented using bit-sets, this

process could be complicated if the various sets have different bit-numberings.

65

globals

globals

globals

locals temporaries

temporaries

temporaries

N

P

D

temporaries for one function

nontarget localstarget locals

D ⊆ globals ∪ locals ∪ temps f

P ⊆ locals target

N ⊆ locals target

Figure 7.7: Our final implementation of the data-flow sets for our data-flow equations.
The local variables of theP andN sets are further separated into target and nontarget
locals. The slicing tool assigns the target locals lower bit-numbers than the nontarget
locals to ensure “packing” of the bit-sets.

Rather than partitioning the local variables into two distinct sets, we elected to

keep them as one set. However, since the points-to analysis is performed prior to data-

flow analysis (Chapter 3), we know which local variables are target locals and which are

nontarget locals. We can therefore easily ensure that the target locals are assigned lower

bit-numbers than the nontarget locals. This numbering ensures that the target locals are

“packed” at the start of the bit-sets, giving us the space savings we desire without the

implementation complexities of splitting the locals into two bit-sets. Because programs

often contain few target locals, the space allocated for theP andN sets is negligible

as a result of our aggressive implementation. Consequently, the space required for the

data-flow sets of our new equations is approximately the same space required for the

sets of the more traditional equations given in Figure 6.1.

7.4 Control-Flow Dependencies

Program slicing requires the computation of control-flow dependencies as well

as the computation data-flow information. For example, a backward program slice is

defined as the set of all statements that might affect the value of a specified variable.

Consequently, if the execution of a statement included in the slice is dependent upon

the execution of another program statement (e.g., the included statement is within a

conditional), then the variables used at the controlling statement must also be included

66

in the slicing criteria. We therefore need to determine which statements are control-

dependent upon which other statements in the program.

We compute control-flow dependencies by computing the dominance frontiers

of the reversedCFG [Cytron et al., 1991]. Computation of the dominance frontiers in

turn requires the computation of the dominators of the flowgraph [Lengauer and Tarjan,

1979]. Both computations can be performed in linear time in the size of the flowgraph.

7.5 Conclusion

Because whole-program analysis imposes such high time and demands, spe-

cial attention to implementation details is required. In particular, the implementation

of the data-flow analysis can significantly affect a tool’s time and space requirements.

We presented different block visitation algorithms and showed that use of the iterative

search algorithm is more appropriate in a whole-program analysis tool because it fa-

cilitates data-flow set reclamation. We also showed an efficient implementation of our

data-flow equations given in Chapter 6.

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1998]. The dissertation author was the primary researcher and

author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.

Chapter 8

Evaluation and Results

To evaluate the time, space, and precision characteristics of our approach, we

implemented program slicers based on our ideas for the C andMUMPS programming

languages and measured their performance. The measurements given in this chapter are

a representative subset of the complete data, which is given in Appendix A.

MUMPS is an interpreted programming language with aBASIC-like syntax,

reference parameters, and dynamic scoping. Our slicing algorithm forMUMPS correctly

handles dynamic scoping by treating each variable reference as a pointer dereference

to any of the reaching variable declarations. In addition to analyzingCHCS, whose

basic statistics appear in Table 1.1, we also analyzedCOMPLY, a 1,000 line compliance

checker forCHCS, also written inMUMPS.

We analyzed three large C programs whose basic statistics appear in Table 1.2.

GCC refers to thecc1 program of theGNU C compiler [Stallman, 1991], version 2.7.2

for SunOS 4.1.3;EMACS refers to thetemacs program of theGNU Emacs editor [Stall-

man, 1993], version 19.34b for SunOS 4.1.3 without window system support;BURLAP

refers to theburlap program of the FElt finite element analysis system [Gobat and

Atkinson, 1994], version 3.02 for SunOS 4.1.3.

Our slicer for C programs correctly handles functions with a variable number

of arguments and the effects due to library functions. Library functions are handled

by providing a skeleton for each function that correctly summarizes its effects. Our

67

68

current implementation does not inline library functions, which is a common technique

for increasing precision by adding one level of context-sensitivity. Signal handlers and

the longjmp andsetjmp functions are not handled.

For all slices of the C programs, we tried to choose variables that might be se-

lected by a programmer during debugging. For theMUMPS programs, the slicing criteria

were chosen to produce a reasonable distribution of slice sizes, not to be representative

of typical slices, due to our lack of familiarity with the actual programs, and therefore

conclusions should not be drawn about slicing itself, only about our techniques. Also,

for both the C andMUMPS programs, the slices computed do not slice into the callers of

the function in which the slice is initiated; consequently, the slices are akin to slicing on

statements in the main procedure, which has no callers [Harrold and Ci, 1998].

8.1 Hypotheses

To test our claims about the value of demand-driven computation, discarding,

precision control, and customizable termination, we performed several backward slices

using our program slicers. We expected that our demand-driven techniques would re-

duce the time and space to be a function of the size of the slice, allowing the computation

of slices that were not possible before. However, we expected the basic algorithmic cost

of slicing would still be high, giving us an opportunity to evaluate the potential of the

other features.

For the slices of C programs, it was our expectation that the time and space

requirements would be acceptable, given our use of a near-linear time points-to analy-

sis, our aggressive approach at implementing our data-flow equations, and piggybacking

construction of theCFGwith the computation of the points-to sets. We also expected that

the parameterization of the points-to analysis would significantly increase the number

of points-to classes, and thereby also increase the precision of the subsequent data-flow

analysis. By filtering the points-to classes for function pointers based on their com-

puted prototypes, we also expected the average number of functions called by means

69

of a function pointer to decrease, improving the precision of the call-graph and hence

the subsequent data-flow analysis. With the exception of distinguishing structure mem-

bers, which is known to take worst-case exponential time and space, we anticipated that

the parameterizations of the points-to analysis would have little effect on its time and

space requirements. Finally, we projected that combining parameters could significantly

magnify the effects of the individual parameters.

The times reported do not include the time required to compute and write the

call-graph to disk, since it is only recomputed when a file of the program to be sliced is

changed (Chapters 2 and 3). ForCHCS, this information is computed in 8.0 minutes on

a SparcStation 10 and occupies 1.1MB of disk space. For our largest C program,GCC,

the information is computed in only 52 seconds on an UltraSparc 2 and occupies similar

space (see the footnote on Page 5 for details on the gathering of results).

8.2 Demand-Driven Computation and Discarding

Figure 8.1 presents the statistics for a range of slices ofCHCS. Figure 8.1a

shows that the times and sizes of the slices appear to be related quadratically. Figure 8.1b

shows that the space required appears to be linearly related to the slice size. These results

indicate that we have met our goal of having the cost of the analysis be a function of the

result’s size, rather than the size of the entire program (Chapter 2).

Because the slices did not exhaust real memory—much less virtual memory—

the role of discarding did not come into play. However, a separate set of measurements

of slicing without discarding indicates that the cost of discarding theAST was insignif-

icant. Recomputing slices withoutAST discarding results in smaller slices being a few

percent faster, and larger slices being a few percent slower.

The results for the largest slices of the C programs that we performed are also

presented in Figure 8.1. The time given in the table is the time necessary to perform

only the slice, not to compute the points-to information, which is given in Table A.5.

We believe that the time and space requirements are acceptable for a large program such

70

20,000
�

40,000
�

60,000
�

80,000
�

number of statements

0

50

100

150

200

tim
e

(m
in

ut
es

)

quadratic regression

20,000
�

40,000
�

60,000
�

80,000
�

number of statements

0

20

40

60

80

sp
ac

e
(M

B
)

linear regression

(a) (b)

0
�

100,000 200,000 300,000
number of statements

–5�

5

15

25

35

45

tim
e

(m
in

ut
es

)

quadratic regression

EMACS

BURLAP / GCC

GCC

100,000 200,000 300,000
number of statements

0

20

40

60

80

sp
ac

e
(M

B
)

linear regression

GCC

EMACS

BURLAP / GCC

(c) (d)

Figure 8.1: Statistics for different slices: (a) and (b) slices ofCHCSwith a single context
per procedure, (c) and (d) slices of the three C programs using thestrong prototypes
option (Chapter 5). The complete measurements are given in Figures A.1 and A.2.

as GCC. For smaller programs, such asBURLAP, the slicer performs extremely well.

These results indicate that slicing large programs is feasible using our approach.

8.3 Context-Depth Sensitivity

By allowing the user to control the context-depth of the data-flow analysis, we

allow the user to balance the trade-offs between precision and performance (Chapter 4).

Computing program slices at a high context-depth may yield better results, but at the

71

criteria depth contexts time space size of slice
COMPLY (COMBLK:14,{ERRTYP}) 1 36 0.030 0.37 780

2 74 0.058 0.43 774
3 121 0.092 0.55 769
∞ 602 0.484 1.42 769

CHCS (DIC:38,{DUOUT}) 1 248 5.3 19.6 14,711
2 488 10.3 23.1 14,532
3 2,553 121.0 53.6 14,530

Table 8.1: Statistics at different context-depths for the twoMUMPS programs. Time
is given in minutes and space in megabytes. The symbol∞ is used to indicate an
unbounded context-depth.

cost of an unacceptably long running time. On the other hand, computing slices at a low

context-depth may not be sufficiently precise.

Table 8.1 contains statistics for one sliceCOMPLY and one slice ofCHCS, at

different context-depths. In each slice, the number of calling contexts increases rapidly

with the context-depth, significantly increasing the time and space required. However,

in the slices ofCOMPLY, a low context-depth yields a program slice equivalent to a

program slice obtained at an unbounded context-depth. Although the resulting context-

graphs differ, unbounded context-depth does not improve the results. The slices ofCHCS

show that as the context-depth increases, at first there is an appreciable decrease (1%)

in the number of statements in the slice. However, an additional increase of the context-

depth yields little improvement. These slices suggest that a high context-depth may

be unnecessary to obtain a precise slice. They also support our hypothesis that a low

context-depth slice is usually several times less costly than a higher one, suggesting that

there is little extra cost to the tool user in performing a low context-depth slice first, on

the hope that the result will adequately answer the tool user’s question.

Table 8.2 presents statistics for one slice ofBURLAP and one slice ofGCC,

at different context-depths. These slices exhibit the same behavior as the slices of the

MUMPS programs—increasing the context-depth yields a small decrease in the number

of statements in the slice and a large increase in the time and space required. For all

72

criteria depth time space size of slice
BURLAP (arith.c:145,{type error}) 1 0.20 2.0 8,849

2 1.24 5.4 8,824
3 3.56 17.5 8,680

GCC (unroll.c:3085,{const0rtx}) 1 0.46 2.6 9,702
2 4.20 12.9 9,574
3 29.98 71.0 9,556

Table 8.2: Statistics at different context-depths for two C programs. Time is given in
minutes and space in megabytes. The points-to analysis was performed using thestrong
prototypesoption (Chapter 5).

but the smallest slices (i.e., less than 1,000 statements), we were unable to compute a

slice at unbounded context-depth because of the high time and space requirements. For

example, several slices ofGCC failed to complete the first iteration after 12 hours. For

other slices performed at a moderate context-depth (e.g., 2 or 3), the space requirements

did not exceed the virtual memory capacity of the machine, but did exceed the main

memory capacity. As a result, the program slicer spent most of its time moving data

within the virtual memory hierarchy. These slices illustrate a disadvantage—poor ref-

erence locality—of the iterative search algorithm that was used (Chapter 7). However,

without the use of this algorithm, data-flow set reclamation is not possible, and without

reclamation, the space requirements would exceed the virtual memory capacity.

For most slices, we were unable to determine the context-depth that would

result in a program slice equivalent to that obtained using an unbounded context-depth,

as we were withCOMPLY, since the space required exceeds the virtual memory capacity

of the machine—computing a slice at a context-depth of four ofCHCSexceeded the 600

MB available. The inability to compute slices at high context-depths of large programs

is not unexpected. If the call-graph hasn nodes, then the depth-1 context-graph has

O(n) nodes. In the worst case, each increase in context-depth can increase the number

of nodes in the context-graph by a factor ofn (i.e., a depth-2 context-graph can have

O(n2) nodes, a depth-3 context-graph can haveO(n3) nodes, etc.).

73

0
�

20 40 60 80 100
�

percentage of iterations complete�

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f s
lic

e
co

m
pl

et
e

context-depth = 1
context-depth = 2
context-depth = 3

0
�

20 40 60 80 100
�

percentage of iterations complete�

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f s
lic

e
co

m
pl

et
e

14660 statements
20854 statements
33156 statements
79319 statements

(a) CHCS: varying context-depth (b)CHCS: varying size of slice

0
�

20 40 60 80 100
�

percentage of iterations complete�

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f s
lic

e
co

m
pl

et
e

GCC (236366 statements)
EMACS (130200 statements)
BURLAP (40135 statements)

0
�

20 40 60 80 100
�

percentage of iterations complete�

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f s
lic

e
co

m
pl

et
e

basic (40135 statements)
arrays (40204 statements)
structs (40883 statements)
prototypes (8849 statements)

(c) C: varying programs (d)BURLAP: varying parameterizations

Figure 8.2: Algorithmic convergence: (a) slices ofCHCSat different context-depths, (b)
several different slices ofCHCS at a single context-depth, (c) a large slice of each C
program, and (d) a single slice ofBURLAP at different parameterizations of the points-to
analysis.

8.4 Algorithmic Convergence

Even if a slice is computed at a single context-depth, the running time may

still be unacceptable. For example, some program slices ofCHCS in Figure 8.1 require

more than two hours to complete, which for some uses may be unacceptable. It is our

belief that the tool user should be able to interrupt the program slicer and examine the

intermediate results (Chapter 4).

Our results show that the majority of statements in a slice are obtained after

the first few iterations. Figure 8.2 depicts the convergence properties of our program

74

slicing algorithm by plotting the size of the slice at each iteration.1 These figures show

that approximately 80% of the statements in the slice are obtained within the first 20%

of the iterations. Figure 8.2a presents data for two slices ofCHCS at different context-

depths, illustrating that the rate of convergence appears to be independent of the context-

depth. Figure 8.2b presents data for several sizes of slices ofCHCS, illustrating that the

convergence rate also appears to be independent of the slice size. Figure 8.2c shows

data for three large slices of the C programs. Finally, Figure 8.2c shows data for a single

slice of BURLAP with different parameterizations of the points-to analysis. For these

figures, the convergence rate also appears to be independent of both the program sliced

and the choice of parameterization of the points-to analysis. This data seems to confirm

our belief that the tool user can use customized termination of the slicer to substantially

reduce the number of iterations of an analysis, independent of the context-depth and

slice size.

8.5 Points-To Analysis Parameterization

8.5.1 Construction of points-to sets

In Chapter 5, we demonstrated that the ways in which pointers are used in

large systems can hinder the points-to analysis’s ability to perform an analysis that is

sufficiently precise for the subsequent data-flow analysis. Our solution to overcoming

this problem, without adding algorithmic complexity, is to allow the tool user to param-

eterize the points-to analysis.

Figure 8.3 presents statistics for performing a points-to analysis of our three

example programs. When describing the parameterizations of the points-to analysis,

the following titles are used:none—no parameterization,mallocs—private memory al-

locators are specified,arrays—array operator is not commutative,structs—structure

members are distinguished, andideal structs—structure members are distinguished, but

structures are never collapsed. The last parameterization is extremely optimistic, but

1The data are normalized to percentages so that slices of different sizes and iterations can be compared.

75

0
�

2,000
�

4,000
�

6,000
�

number of points-to classes

none

mallocs

arrays

arrays, mallocs

structs

arrays, structs

arrays, structs, mallocs

ideal structs

pa
ra

m
et

er
iz

at
io

ns
 e

na
bl

ed

burlap
gcc
emacs

(52 seconds, 63 MB)

(117 seconds, 90 MB)

Figure 8.3: Effect of parameterization on points-to classes. The statistics shown in the
graph are forGCC. The complete measurements are given in Table A.5.

provides a best-case upper bound on the number of points-to classes. Use of theproto-

typeoption (shown asweakor strong) is not included in this table, since the option does

not change how the points-to classes are computed, but rather filters the classes once

they are computed.

When comparing the various options, it is important to realize that they affect

the points-to analysis in different ways. For example, thestructsandmallocsoptions

actually introduce additional locations to the points-to analysis, and with the exception

of collapsing structures, do not affect how the points-to classes are merged. In contrast,

thearraysoption does not add any locations, but merely prevents unnecessary merging

of the classes. However, the options are not necessarily orthogonal. Should two or more

options be combined, the number of resulting additional classes may in fact be less than

the sum of the number of additional classes introduced by using the options separately.

The results of thestructsand ideal structsoptions cannot be compared di-

rectly with those of the other options. When structure fields are distinguished by the

points-to analysis, an extended version of the analysis is actually being performed over

76

adifferentrepresentation of the program. In particular, unless structure members are be-

ing distinguished by the points-to analysis and slicing algorithm, references to structure

members are excluded from theCFG for performance reasons. Also, theideal structs

option is extremely optimistic, which explains how the number of classes can actually

decrease when it is combined with other options. Finally, the ordering of statements in

the program can greatly impact the performance of the points-to analysis if members are

distinguished. For example, if all members of a structure are first referenced, and later

pointer arithmetic is performed on the structure, then the structure must be collapsed

and the points-to classes for all members must be recursively merged. In contrast, if the

pointer arithmetic is done first, then the structure is first collapsed, requiring little time,

and all later references to the structure members refer to the same points-to class, since

the structure is now treated as a whole. However, thestructsandideal structsoptions do

provide insight into whether distinguishing structure members has an beneficial effect

on the analysis, given the more complex implementation and additional running time

required.

As expected, enabling themallocsandarraysoptions do not have an apprecia-

ble effect on the performance of the analysis. Yet, these options do increase the number

of points-to classes, making them generally beneficial options. However, the degree of

effectiveness varies significantly. Thearrays option improves the results significantly

for GCC (by 76%) andBURLAP (by 35%), but only slightly forEMACS (by 6%), proba-

bly because it has few occurrences of the array operator. In contrast, themallocsoption

improves the results slightly for bothGCC (by 4%) andEMACS (by 2%), but not at all

for BURLAP, because it contains few references to private memory allocators.

Using thestructsoption increases both the number of points-to classes and

the running time, making it a good choice for some programs, but not for others such

asGCC. For bothEMACS andBURLAP, the number of points-to classes increased by an

order of magnitude while the running time increased by only 30%. ForGCC, use of the

structsoption did not yield a significant increase in the number of points-to classes and

doubled the running time of the analysis. As we can see from Figure 8.3, this is due to

77

the fact that a greater number of structures were collapsed inGCC than inEMACS and

BURLAP. The greater number of collapses also accounts for the increased running time.

Figure 8.3 also shows the results for combining various parameterizations of

the points-to analysis. ForBURLAP, use of themallocsoption does not increase the

number of points-to classes, and therefore combining the option with the other options

is not worthwhile. ForGCC, however, themallocsoption does increase the number of

points-to classes, and combining themallocsandarraysoptions shows a magnification

in the number of points-to classes. By themselves, themallocsoption introduces an ad-

ditional 10 classes and thearraysoption introduces an additional 205 classes. When the

options are combined, the result is an increase of 226 classes. The results are magnified

even more when combined with additional parameters. A similar result holds true for

EMACS. However, the results are not always magnified when options are combined. In

GCC, for example, the combination of thestructsandarraysoptions yields fewer classes

than their sum. This failure to magnify can be explained by recalling that the options

are not orthogonal to one another.

8.5.2 Function calls through pointers

Figure 8.4 shows the number of functions called at each call site using a func-

tion pointer—anindirect call. Use of thearraysoption reduces the average number of

functions called for bothGCC andBURLAP, but not forEMACS, sinceEMACS has few

arrays of function pointers. However, theprototypesoption works well for all three pro-

grams. Strong prototype filtering works extremely well, so much so that the results do

not improve further even if thearraysoption is enabled. Since one of the co-authors is

the author ofBURLAP [Gobat and Atkinson, 1994], we verified the results from using

strong prototype filtering by hand and found them to be near-perfect. The only cases

where the strong prototype filter fails to separate functions of differing intent are when

one of the two merged functions requires a pointer to some type and the other requires

a pointer tovoid . These cases are not surprising since pointers tovoid are explicitly

defined by the language as generic pointers.

78

0
�

100
�

200
�

300
�

average number of functions called per indirect call

none

structs

weak prototypes

arrays

arrays, weak prototypes

strong prototypes

arrays, strong prototypes

pa
ra

m
et

er
iz

at
io

ns
 e

na
bl

ed

burlap
gcc
emacs

Figure 8.4: Effect of parameterization on function pointers. The graph shows the aver-
age number of functions called per call site using a function pointer (anindirect call)
for various parameterizations of the points-to analysis. The complete measurements are
given in Table A.6.

8.6 Effect of Parameterization on Program Slicing

Figure 8.5 shows the effects of user-parameterization of the points-to analysis

on program slicing. The improvements due to thearrays, structs, andmallocsparam-

eters are small (at most 3%), which suggests that the precision of the slicing algorithm

is relatively insensitive to changes in the points-to classes. This is in contrast to our

original expectations, since we saw significant improvements in the number of points-to

classes using these parameters.

For the tool user, the quality of a slice is measured in terms of the number

of statements included in the slice, as we have done, and not in terms of the number

of data-flow facts or dependencies. The improvements of the points-to analysis can

be “washed-out” by the transitive nature of the data-flow analysis being performed, as

discussed in [Shapiro and Horwitz, 1997a]. For example, Figure 8.6 shows a program

fragment containing calls to the private memory allocatorxmalloc() . If the allocator

79

0
�

100,000 200,000 300,000
number of statements

none

mallocs

arrays

structs

strong prototypes

pa
ra

m
et

er
iz

at
io

ns
 e

na
bl

ed
burlap
burlap
gcc
gcc

(28 seconds)

(2500 seconds)

(statements in slice are shaded, statements examined are outlined)

Figure 8.5: Effect of parameterization on program slicing. The statistics shown in the
graph are forGCC. The complete measurements are given in Table A.7.

is not recognized by the points-to analysis, then a slice of either variablex or y will

include the assignment statements top andq. However, if the allocator is recognized,

then a slice of variablex will not include the assignment toq, but the slice of variabley

will still include both assignment statements top andq.

The slices performed using theprototypesoption show a dramatic improve-

ment. The number of statements in the slice decreases several fold, as does the number

of statements examined during slicing (shown as the outlined bar in Figure 8.5). This

reduction is due to the more precise information for function pointers in both programs.

Without use of the strong prototype filter, the computed call-graph is highly imprecise

(i.e., containing a large number of false calls) resulting in a far greater number of state-

ments being examined and subsequently included in the slice than is necessary. This

implies that the filtering of function pointers based on their prototypes would be benefi-

cial to many interprocedural data-flow analyses. We had expected to see similar results

from use of thearraysoption onGCC due to its dramatic reduction in the average num-

ber of calls made through a function pointer. However, this option fails to remove key

80

p = xmalloc (10);
q = xmalloc (10);

*p = 1;
*q = 2;

x = *p;
y = *p + *q;

Figure 8.6: A program fragment showing the negation of improvements in the points-
to sets by program slicing. Even ifxmalloc() is recognized as a private memory
allocator, a slice of the variabley will still include both assignments top andq.

functions from certain call sites, leading to false recursion between major subsystems

(the code generator and declaration manager).

We were unable to find a parameterization of the points-to analysis that pro-

duced any substantial improvement forEMACS. We were disappointed that the use of

the prototypesoption did not yield an improvement as it had forGCC and BURLAP.

After examining the source code forEMACS, we believe that the points-to sets for func-

tion pointers are fairly precise. Rather, it is the nature ofEMACS that is the source of

the problem. In particular, it appears that the subsystems of theEMACS interpreter are

in fact recursively dependent due to the implementation of dynamically scoped error

handling. For this situation, it may be useful for the tool user to provide other kinds of

information, such as explicitly selecting which edges in the call-graph should be ignored

and which should be traversed.

8.7 Conclusion

To test our hypotheses about demand-driven computation, discarding, flexibil-

ity, and parameterization of the points-to analysis, we computed several program slices

of our exampleMUMPS and C programs. We were able to compute slices that were a

function of the result’s size, rather than of the entire program. We showed that increasing

81

context-depth yields little increase in precision, but increases the time and space require-

ments dramatically. Even if the machine has sufficient virtual memory to perform the

subsequent analysis, the resulting paging overhead is detrimental.

By parameterizing the points-to analysis, the number of points-to classes in-

creased and the number of functions called through a function pointer decreased, as

expected. For some slices, parameterization substantially reduced the running time of

the program slicer. However, the improvements were mainly due to the more precise

information for function pointers, rather than to any increase in the number of points-to

classes.

Examining our results, we believe that we have met our goal of developing

practical (i.e., efficient) and task-oriented whole-program analysis tools. However, each

aspect of our approach is critical to its success. For example, without customized termi-

nation, the larger slices ofCHCS andGCC may require too much time to answer a tool

user’s question about the program.

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation

author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this chapter.

Chapter 9

Conclusion

Because a large software system is difficult for its programmers and designers

to understand, they could greatly benefit from automated support for program under-

standing. Tools supporting such analyses need to construct representations similar to

those used by an optimizing compiler. However, unlike an compilation, program un-

derstanding tasks may require analyzing large portions of the program simultaneously.

Consequently, to minimize time and space requirements, the tool infrastructure must

adapt to the requirements of the analysis being performed, and the tool must provide

flexible control of the analysis to the user.

Performing an effective whole-program analysis is difficult in the presence of

pointers. Points-to analysis requires a global analysis over the program, making it diffi-

cult to integrate with demand-driven techniques, which are a necessity when analyzing

large systems. The use of pointers in large programs, specifically function pointers and

pointers to local variables, complicates performing an effective data-flow analysis.

To overcome these problems, we designed an event-driven software architec-

ture for transparently demand-deriving and discarding program representations such as

theAST andCFG. In our approach, we examine how a representation will be used, how

long it takes to construct, and how much space it requires in order to determine how a

representation should be constructed. Infrequently used representations such as theAST

are discarded in order to save space and also time, by avoiding the use of the slower

82

83

portions of the virtual memory hierarchy. We also persistently retain representations

that require a global analysis over the program, but which are inexpensive to store and

reload, such as the program’s call graph.

By allowing the user to parameterize the data-flow analysis—in our case back-

ward program slicing—we have found that significant time and space could be saved by

avoiding the computation of unnecessary data-flow information. Customizable context-

depth allows the tool user to select the amount of context-sensitivity and thereby achieve

a balance between good performance and precision. Our results show that increasing the

context-depth results in a large increase in the time and space required by the data-flow

analysis, but tends to improve precision only slightly. Allowing the user to control the

termination of the analysis and increasing interactivity can avoid the computation of

unnecessary data-flow information, saving time.

To effectively deal with the problems posed by pointer usage in large systems,

we presented a solution for integrating points-to analysis with demand-driven analy-

ses, along with techniques for parameterizing the analysis to achieve better points-to

results. We also presented data-flow equations for computing an interprocedural back-

ward program slice in the presence of both recursion and pointers to local variables, and

described an efficient implementation of our equations.

To validate our techniques, we constructed tools for slicingMUMPS and C

programs. We performed several slices ofCHCS, a 1,000,000 line hospital management

system written inMUMPS, and three large C programs—GCC, EMACS, andBURLAP.

Using our program slicer forMUMPS, we were able to compute slices ofCHCS in an

economical amount of space, requiring just minutes or hours, rather than days. Using

our program slicer for C, we were able to compute slices ofBURLAP in a few seconds

or minutes and ofGCC in a few minutes or hours, without requiring use of the slower

portions of the virtual memory hierarchy.

By parameterizing the points-to analysis, the number of points-to classes could

be increased with little performance cost. Also, the number of functions called through

a function pointer could be substantially decreased. Most notably, filtering the points-

84

to classes based on their prototypes greatly reduces the number of calls. For program

slicing, the improved points-to information for functions resulted in more accurate and

faster program slices, due to the increased precision of the computed call-graph, which

suggests that our techniques would be applicable to many interprocedural data-flow

analyses. For the largest slices that we performed, the time and space requirements

are acceptable for today’s desktop computers, indicating that practical whole-program

analysis of large programs is feasible using our techniques.

9.1 Open Issues

Although we have discussed how to design practical and task-oriented whole-

program analysis tools and have implemented such tools for two programming lan-

guages, a number of open questions remain.

• Can it be cost effective to share program representations among multiple tool

users? How would sharing affect the way representations should be managed?

• Is it possible to design a heuristic for determining the progress of an analysis with

respect to convergence? Since all of the convergence curves in Figure 8.2 are very

similar, a curve-fitting heuristic might allow predicting the progress of a slice.

• Can the optimal context-depth be heuristically determined? Can the context-depth

be increased or the context-graph modified during slicing to provide better preci-

sion where needed?

• How does the structure of the program being sliced affect the slicing algorithm?

Do slices over well-structured modules of the system require fewer iterations and

converge faster? Does the structure impact the recomputation time or the perfor-

mance of the memory hierarchy?

• Is it beneficial to discard procedures of theCFG that have not yet contributed to

the analysis? Is there a way to conservatively summarize information about a

procedure to avoid re-examining it?

85

• How well do our techniques apply to data-flow analyses other than slicing?

• What do our results say about the viability of program slicing? Most slices that we

performed are quite large and typically include 80% of the statements examined.

Are these slices of any practical use to the programmer?

9.2 Extending Our Approach

Since prototype filtering works so well on improving the precision of the com-

puted call-graph, one might wish to extend the technique to ordinary program variables.

By using the type system of the language, similar filters can be constructed for variables.

For example, if the points-to set for a variablep points to both an integer variablen and

a real variablex , butp is declared to be a pointer to integer, thenx can be removed from

the points-to set. Since distinguishing structure members in the points-to analysis has

poor time and space characteristics for some larger programs, filtering based on struc-

ture member types could be an inexpensive alternative. For languages like C, however,

such filtering is almost certainly unsafe in the general case because the programmer can

violate the type system. For languages with strong typing, on the other hand, type vio-

lations are not supported by the language and filtering can be safely applied. We have

found that filtering based on function prototypes is worthwhile given its benefits and the

infrequent violation of the type system for function pointers in C programs (i.e., casting

function pointers is rare in C).

One question that remains is whether our techniques can be applied to other

programming languages. Since points-to analysis requires a global analysis over the

system for any programming language, our approach to integrating the analysis with

demand-driven analyses applies generally. Although parameterizations of the points-to

analysis such as array commutativity are specific to the C language, the general ideas can

be applied to any programming language that is flexible and performance-oriented—any

sufficiently powerful language will have pointer constructs whose use complicates effec-

tive points-to and data-flow analysis. For example, although private memory allocators

86

may not be used for performance reasons, they are often used for reasons of encapsula-

tion and code reuse. The constructor and destructor functions in C++ [Stroustrup, 1991]

are obvious examples. Distinguishing structure members and filtering points-to classes

based on their computed prototypes are also necessary in C++, since its classes are little

more than structures composed of many function pointers and some data. Finally, an ag-

gressive implementation of the data-flow sets such as ours is necessary to achieve good

performance when analyzing large programs, even if the generalization for pointers to

locals is not required.

9.3 Contributions

9.3.1 Identification of key problems

We have identified several problems with designing and implementing effi-

cient, task-oriented whole-program analysis tools. We addressed how program repre-

sentations should be handled in order to provide space-efficient analyses, and we de-

signed a software architecture to transparent implement our techniques. We examined

how user parameterization of analyses can reduce time and space requirements and im-

prove precision. We looked at how pointers can impact the accuracy and efficiency of a

data-flow analysis and derived data-flow equations to overcome these problems. Finally,

we implemented program slicing tools for two programming languages and used them

to analyze several large, well-known systems.

9.3.2 Empirical evaluation

We computed several slices of our example systems. From our results we

can infer some things about how programming style plays a role in program analysis.

Programs that use pointers aggressively are hard to analyze because the style hinders

the accuracy of the points-to analysis. Programs that use function pointers heavily are

significantly impacted. Our results also reveal that program slicing may not be as useful

87

call-graph
generator

call-graph
generator

compliance
checker

language independent
libraries

C language
libraries

MUMPS langauge
libraries

C language
applications

MUMPS language
applications

PONDER

TAWK

ICARIA PERICLES

MAWKCAWK

program slicer

program slicer

code instrumentor

Figure 9.1: Family of tools developed for analyzing large programs.

as the program understanding community first thought. Our program slices are quite

large, with typically 80% of the statements examined being included in the slice.

9.3.3 Family of program understanding tools

Because no single tool is appropriate for all tasks, we need support for devel-

oping new program understanding tools. Therefore, we have designed support for a fam-

ily of tools, as shown in Figure 9.1. Our generic tool infrastructure is calledPONDER.

The PONDER library provides support for a genericAST along with high-performance

memory allocators and flexible abstract data types useful for manipulating computed

program information such as data-flow sets (Chapter 7) and index-tables (Chapter 2).

An extension of thePONDER library is theTAWK library, which provides a high-level

query language for matchingASTs [Griswold et al., 1996].

ThePERICLESlibrary provides the implementation of theAST for theMUMPS

programming language. In addition to containing a parser and lexical analyzer for

MUMPS, it provides an abstract interface for manipulating and searching theAST. The

MAWK tool is high-level pattern matcher forMUMPS built from the TAWK and PERI-

88

CLES libraries. In addition to a program slicing tool, we have also built a compliance

checker, code instrumentation tool, and call-graph generator forMUMPS. The ICARIA

library provides the same services as thePERICLESlibrary, but for the C programming

language. Similarly, theCAWK tool is the equivalent of theMAWK tool, but for C pro-

grams. These tools and the supporting libraries are publicly available via the Internet at

http://www-cse.ucsd.edu/users/atkinson .

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation

author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this chapter.

Appendix A

Experimental Data

This appendix presents more experimental data than that presented in Chap-

ter 8. The additional data is given for the sake of completeness. The data in the Chapter 8

is a representative subset of the data presented here.

For all of the tables in this appendix, the size of the slice is given as the number

of three-address statements in the slice, space is given in megabytes, and the slicing

criterion is a pair consisting of the statement and a set of variables. The statement is

specified as a routine and line number for theMUMPS programs and as a filename and

line number for the C programs. Unless otherwise stated, time is given in minutes. Also,

each table contains a reference to the table or figure in the body chapter that contains a

subset of its data.

The text of this chapter, in part, is a reprint of the material as it appears in

[Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation

author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this chapter.

89

90

criteria contexts time space size of slice
(NSUN:26,{NSORD}) 253 6.1 17.3 14,660
(FHDRSTR:52,{FHQUIT}) 256 5.0 15.0 14,700
(DGBED:84,{DGW}) 254 5.3 18.1 14,829
(MSAKP:62,{MSAEFFDT}) 267 4.6 15.3 15,645
(CHPLI:33,{LRPTN}) 394 9.0 17.3 20,852
(PSNST:25,{IN}) 596 22.9 22.3 32,351
(LRPRACT:10,{LRALL }) 611 24.1 22.6 33,156
(CPENRFRM:21,{CPRBUF}) 647 29.8 23.8 33,935
(ORSETN:42,{ORACTIN}) 1,255 141.9 60.5 73,707
(ORSIGN:32,{ORLPKFG}) 1,321 154.9 71.8 73,907
(ORENTRY:68,{LRORPTNZ}) 1,432 179.9 74.1 79,319

Table A.1:Abbreviated in Figure 8.1 on Page 70.Statistics for different slices ofCHCS

with a single context per procedure.

criteria time space size of slice
BURLAP (arithmetic.c:245,{type error}) 0.20 2.0 8,849

(apply.c:646,{status}) 0.23 2.0 9,107
(matrixfunc.c:243,{status}) 0.22 2.1 9,332
(apply.c:243,{result}) 1.12 8.1 40,161

EMACS (alloc.c:1610,{gc consthreshold}) 5.38 31.4 129,292
(buffer.c:447,{buf}) 6.15 31.3 129,292
(frame.c:630,{frame}) 6.75 31.6 129,292

GCC (cse.c:8777,{in libcall}) 0.02 0.2 824
(unroll.c:2085,{const0rtx}) 0.46 2.6 9,702
(sched.c:4964,{reg n calls crossed}) 40.04 75.4 235,030
(c-decl.c:2298,{b}) 40.99 76.1 235,037

Table A.2: Abbreviated in Figure 8.1 on Page 70.Statistics for different slices of the
three C programs. The points-to analysis was performed using thestrong prototypes
option (Chapter 5).

91

criteria depth contexts time space size of slice
COMPLY (COMARG:15,{ERRTYP}) 1 26 0.017 0.29 488

2 49 0.033 0.37 483
∞ 363 0.217 0.97 483

COMPLY (COMBLK:14,{ERRTYP}) 1 36 0.030 0.37 780
2 74 0.058 0.43 774
3 121 0.092 0.55 769
∞ 602 0.484 1.42 769

CHCS (PSPA:46,{PSDT}) 1 248 4.9 14.9 14,630
2 488 11.1 18.5 14,448
3 2,586 127.6 49.1 14,446

CHCS (DIC:38,{DUOUT}) 1 248 5.3 19.6 14,711
2 488 10.3 23.1 14,532
3 2,553 121.0 53.6 14,530

Table A.3: Abbreviated in Table 8.1 on Page 71.Statistics at different context-depths
for the twoMUMPS programs.

criteria depth time space size of slice
BURLAP (arith.c:145,{type error}) 1 0.20 2.0 8,849

2 1.24 5.4 8,824
3 3.56 17.5 8,680

BURLAP (apply.c:253,{result}) 1 1.12 8.1 40,161
2 7.30 32.1 39,952
3 30.94 101.3 39,937

BURLAP (apply.c:646,{status}) 1 0.23 2.0 9,107
2 1.23 5.4 9,086
3 3.76 17.5 8,942

BURLAP (matrixfunc.c:767,{status}) 1 0.22 2.1 9,332
2 1.19 5.7 9,296
3 3.90 18.3 9,152

GCC (cse.c:8777,{in libcall}) 1 0.02 0.2 824
2 0.04 0.6 824
3 0.31 3.4 824

GCC (unroll.c:3085,{const0rtx}) 1 0.46 2.6 9,702
2 4.20 12.9 9,574
3 29.98 71.0 9,556

Table A.4: Abbreviated in Table 8.2 on Page 72.Statistics at different context-depths
for two C programs. The points-to analysis was performed using thestrong prototypes
option (Chapter 5).

92

none mallocs arrays

time space classestime space classestime space classes
GCC 51.5 62.8 267 53.6 62.8 277 51.0 63.2 472
EMACS 26.9 38.8 159 26.4 38.8 162 26.5 38.8 169
BURLAP 15.4 22.7 207 15.3 22.7 207 15.2 22.7 279

arrays, mallocs structs arrays, structs

time space classestime space classestime space classes
GCC 51.3 63.6 493 117.3 89.5 543 116.4 90.0 746
EMACS 26.6 38.8 174 40.2 51.5 5638 39.8 51.5 5648
BURLAP 15.2 22.7 279 21.3 29.0 1360 21.4 29.0 1430

arrays, structs, mallocs ideal structs arrays, ideal structs

time space classestime space classestime space classes
GCC 125.0 90.1 1013 457.1 88.4 1835 192.7 89.0 1826
EMACS 40.4 51.5 5654 135.4 51.2 6710 97.9 51.1 6671
BURLAP 21.3 29.0 1430 24.8 28.4 1787 25.1 28.4 1805

Table A.5:Abbreviated in Figure 8.3 on Page 75.Effect of parameterization on points-to
analysis. The table shows the performance of the points-to analysis for various parame-
terizations of the analysis. The space measurements include all necessary data structures
including symbol tables. Also shown is the number of points-to classes. Time is given
in seconds rather than minutes.

weak w/ strong w/
basic structs arrays weak arrays strong arrays

GCC (113) 237.3 237.3 78.1 160.1 54.1 29.2 29.2
EMACS (70) 277.7 277.7 277.7 240.0 240.0 78.8 78.8
BURLAP (16) 183.8 118.2 97.8 111.1 85.5 24.9 24.9

Table A.6:Abbreviated in Figure 8.4 on Page 78.Effect of parameterization on function
pointers. The table shows the average number of functions called per call site using a
function pointer (anindirect call) for various parameterizations of the points-to analysis.
The number in parentheses indicates the number of indirect call sites in each program.

93

points-to size of statements
options time slice examined

GCC basic 49.44 236,366 282,192
(c-decl.c:2298,{b}) arrays 39.11 230,306 282,192

prototypes 43.66 235,037 235,037
GCC basic 42.32 236,354 282,192
(unroll.c:3085,{const0rtx}) mallocs 48.20 236,351 282,192

arrays 32.41 230,305 282,192
prototypes 0.46 9,702 13,281
combined 0.42 9,702 13,281

BURLAP basic 1.29 40,135 51,863
(arith.c:145,{type error}) arrays 1.04 40,204 51,863

structs 1.72 40,883 53,535
prototypes 0.20 8,849 12,195
combined 0.23 8,661 12,319

BURLAP basic 1.29 40,135 51,863
(matrixfunc.c:767,{status}) arrays 1.07 40,204 51,863

structs 1.62 40,858 53,535
prototypes 0.22 9,332 12,764
combined 0.25 9,144 12,890

Table A.7:Abbreviated in Figure 8.5 on Page 79.Effect of parameterization on program
slicing. The table shows the statistics for various slices of the example programs with
different parameterizations (basic, arrays, structs, and strong prototypes) of the points-
to analysis. (Some of the additional three-address statements generated for structure
member accesses have been removed for comparison with the other parameterizations.
However, not all additionally generated statements could be easily removed.) ForGCC,
the arrays andprototypesoptions were combined; forBURLAP, thestructsandproto-
typeswere combined.

Bibliography

Aho, A. V., Sethi, R., and Ullman, J. D. (1986).Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA.

Atkinson, D. C. and Griswold, W. G. (1996). The design of whole-program analysis
tools. InProceedings of the 18th International Conference on Software Engineering,
pages 16–27, Berlin, Germany.

Atkinson, D. C. and Griswold, W. G. (1998). Effective whole-program analysis in
the presence of pointers. InProceedings of the 6th ACM International Symposium on
the Foundations of Software Engineering, pages 46–55, Lake Buena Vista, FL.

Barth, J. M. (1978). A practical interprocedural data flow analysis algorithm.Com-
munications of the ACM, 21(9):724–736.

Choi, J.-D., Burke, M., and Carini, P. (1993). Efficient flow-sensitive interprocedu-
ral computation of pointer-induced aliases and side effects. InProceedings of the
20th ACM Symposium on Principles of Programming Languages, pages 232–245,
Charleston, SC.

Choi, J.-D., Cytron, R., and Ferrante, J. (1991). Automatic construction of sparse data
flow evaluation graphs. InProceedings of the 18th ACM Symposium on Principles of
Programming Languages, pages 55–66, Orlando, FL.

Choi, J.-D., Cytron, R., and Ferrante, J. (1994). On the efficient engineering of ambi-
tious program analysis.IEEE Transactions on Software Engineering, 20(2):105–114.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1991). Ef-
ficiently computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems, 13(4):451–490.

Duesterwald, E., Gupta, R., and Soffa, M. L. (1995). Demand-driven computation of
interprocedural data flow. InProceedings of the 22nd ACM Symposium on Principles
of Programming Languages, pages 37–48, San Francisco, CA.

Dwyer, M. B. and Clarke, L. A. (1994). Data flow analysis for verifying properties of
concurrent programs. InProceedings of the 2nd ACM Symposium on the Foundations
of Software Engineering, pages 62–75, New Orleans, LA.

94

95

Emami, M., Ghiya, R., and Hendren, L. J. (1994). Context-sensitive interprocedural
points-to analysis in the presence of function pointers. InProceedings of the ACM
’94 SIGPLAN Conference on Programming Language Design and Implementation,
pages 20–24, Orlando, FL.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. (1987). The program dependence
graph and its use in optimization.ACM Transactions on Programming Languages
and Systems, 9(3):319–349.

Gallagher, K. B. and Lyle, J. R. (1991). Using program slicing in software mainte-
nance.IEEE Transactions on Software Engineering, 17(8):751–761.

Garlan, D. and Shaw, M. (1993). An introduction to software architecture. InAd-
vances in Software Engineering and Knowledge Engineering, volume 1, pages 1–39.
World Scientific, Singapore.

Gobat, J. I. and Atkinson, D. C. (1994). The FElt system: User’s guide and reference
manual. Computer Science Technical Report CS94-376, University of California,
San Diego, Department of Computer Science & Engineering.

Griswold, W. G. and Atkinson, D. C. (1995). Managing the design trade-offs for a
program understanding and transformation tool.Journal of Systems and Software,
30(1–2):99–116.

Griswold, W. G., Atkinson, D. C., and McCurdy, C. (1996). Fast, flexible syntactic
pattern matching and processing. InProceedings of the 4th Workshop on Program
Comprehension, pages 144–153, Berlin, Germany.

Griswold, W. G. and Notkin, D. (1993). Automated assistance for program restruc-
turing.ACM Transactions on Software Engineering and Methodology, 2(3):228–269.

Griswold, W. G. and Notkin, D. (1995). Architectural tradeoffs for a meaning-
preserving program restructuring tool.IEEE Transactions on Software Engineering,
21(4):275–287.

Harrold, M. J. and Ci, N. (1998). Reuse-driven interprocedural slicing. InProceed-
ings of the 20th International Conference on Software Engineering, pages 74–83,
Kyoto, Japan.

Horwitz, S., Reps, T., and Binkley, D. (1990). Interprocedural slicing using de-
pendence graphs.ACM Transactions on Programming Languages and Systems,
12(1):26–60.

Horwitz, S., Reps, T., and Sagiv, M. (1995). Demand interprocedural dataflow anal-
ysis. In Proceedings of the 3rd ACM Symposium on the Foundations of Software
Engineering, pages 104–115, Washington, DC.

96

Jackson, D. (1991). ASPECT: An economical bug-detector. InProceedings of the
13th International Conference on Software Engineering, pages 13–22, Austin, TX.

Jackson, D. and Rollins, E. J. (1994). A new model of program dependences for
reverse engineering. InProceedings of the 2nd ACM Symposium on the Foundations
of Software Engineering, pages 2–10, New Orleans, LA.

Johnson, S. C. (1978). A portable compiler: Theory and practice. InProceedings of
the 5th ACM Symposium on Principles of Programming Languages, pages 97–104,
Tucson, AZ.

Kernighan, B. W. and Ritchie, D. M. (1988).The C Programming Language. Prentice
Hall, Englewood Cliffs, NJ, 2nd edition.

Knoop, J. and Steffen, B. (1992). The interprocedural coincidence theorem. InPro-
ceedings of the 4th International Conference on Compiler Construction, pages 125–
140, Paderborn, Germany.

Koelbel, C. H., Zosel, M. E., and Steele, G. L. (1994).The High Performance Fortran
Handbook. MIT Press, Cambridge, MA.

Landi, W. and Ryder, B. G. (1992). A safe approximate algorithm for interprocedural
pointer aliasing. InProceedings of the ACM ’92 SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 235–248, San Francisco, CA.

Landi, W. A., Ryder, B. G., and Zhang, S. (1993). Interprocedural modification
side effect analysis with pointer aliasing. InProceedings of the ACM SIGPLAN ’93
Conference on Programming Language Design and Implementation, pages 56–67,
Albuquerque, NM.

Lehman, M. M. and Belady, L. A., editors (1985).Program Evolution: Processes of
Software Change. Academic Press, Orlando, FL.

Lengauer, T. and Tarjan, R. E. (1979). A fast algorithm for finding dominators in a
flowgraph. ACM Transactions on Programming Languages and Systems, 1(1):121–
141.

Lewkowicz, J. M. (1989).The Complete MUMPS: An Introduction and Reference
Manual for the MUMPS Programming Language. Prentice Hall, Englewood Cliffs,
NJ.

Nye, A. (1990).X Toolkit Intrinsics Programming Manual. O’Reilly & Associates,
Sebastopol, CA, 2nd edition.

Ottenstein, K. J. and Ottenstein, L. M. (1984). The program dependence graph in a
software development environment. InProceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environments,
pages 23–25, Pittsburgh, PA.

97

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058.

Perry, D. E. and Wolf, A. L. (1992). Foundations on the study of software architec-
ture. SIGSOFT Software Engineering Notes, 17(4):40–52.

Reps, T. and Rosay, G. (1995). Precise interprocedural chopping. InProceedings of
the 3rd ACM Symposium on the Foundations of Software Engineering, pages 41–52,
Washington, DC.

Ruf, E. (1995). Context-insensitive alias analysis reconsidered. InProceedings of
the ACM SIGPLAN ’95 Conference on Programming Language Design and Imple-
mentation, pages 13–22, La Jolla, CA.

Shapiro, M. and Horwitz, S. (1997a). The effects of the precision of pointer analysis.
In Proceedings of the 4th International Symposium on Static Analysis, pages 16–34,
Paris, France.

Shapiro, M. and Horwitz, S. (1997b). Fast and accurate flow-insensitive points-to
analysis. InProceedings of the 24th ACM Symposium on Principles of Programming
Languages, pages 1–14, Paris, France.

Shivers, O. (1991).Control-Flow Analysis of Higher-Order Languages. Ph.D. dis-
sertation, Carnegie Mellon University, School of Computer Science.

Stallman, R. M. (1991).GCC Reference Manual. Free Software Foundation, Cam-
bridge, MA.

Stallman, R. M. (1993).GNU EMACS Manual. Free Software Foundation, Cam-
bridge, MA.

Steensgaard, B. (1996a). Points-to analysis by type inference of programs with struc-
tures and unions. InProceedings of the 6th International Conference on Compiler
Construction, pages 136–150, Linköping, Sweden.

Steensgaard, B. (1996b). Points-to analysis in almost linear time. InProceedings of
the 23rd ACM Symposium on Principles of Programming Languages, pages 32–41,
St. Petersburg Beach, FL.

Stroustrup, B. (1991).The C++ Programming Language. Addison-Wesley, Reading,
MA, 2nd edition.

Sullivan, K. J. (1994).Mediators: Easing the Design and Evolution of Integrated
Systems. Ph.D. dissertation, University of Washington, Department of Computer
Science & Engineering.

Sullivan, K. J. and Notkin, D. (1992). Reconciling environment integration and com-
ponent independence.ACM Transactions on Software Engineering and Methodology,
1(3):229–268.

98

Weise, D., Crew, R. F., Ernst, M., and Steensgaard, B. (1994). Value dependence
graphs: Representation without taxation. InProceedings of the 21st ACM Symposium
on Principles of Programming Languages, pages 297–310, Portland, OR.

Weiser, M. (1984). Program slicing.IEEE Transactions on Software Engineering,
SE-10(4):352–357.

Wilson, R. P. and Lam, M. S. (1995). Efficient context-sensitive pointer analysis for
C programs. InProceedings of the ACM SIGPLAN ’95 Conference on Programming
Language Design and Implementation, pages 1–12, La Jolla, CA.

