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ABSTRACT OF THE DISSERTATION

The Design and Implementation of Practical and

Task-Oriented Whole-Program Analysis Tools

by

Darren C. Atkinson
Doctor of Philosophy in Computer Science
University of California, San Diego, 1999

Professor William G. Griswold, Chair

Building efficient tools for understanding large software systems is difficult.
Many existing program understanding tools build control-flow and data-flow represen-
tations of the program priori, and therefore require prohibitive space and time when
analyzing large systems.

By customizing the tool to the task and analysis being performed, significant
time and space can be saved. Since much of these representations may be unused dur-
ing an analysis, we construct them on demand, not in advance. Furthermore, some
representations may be used infrequently during an analysis. We discard these and re-
compute them as needed, reducing the overall space required. Finally, we permit the
user to selectively trade-off time for precision and to customize the termination of these
costly analyses to provide finer user control, thereby improving the flexibility of the tool.
We revised the traditional software architecture for compilers to provide these features
without unnecessarily complicating the analyses themselves.

These solutions improve the effectiveness of whole-program analysis tools by
making the analysis more practical (i.e., faster and scalable) and task-oriented. However,
the use of pointers in most modern programming languages introduces additional prob-
lems. The lessons of adaptability and flexibility must be applied to points-to analysis if

our approach is to remain effective on large systems.

Xi



First, we use a fast, flow-insensitive, points-to analysis before traditional data-
flow analysis. Second, we allow the user to parameterize the points-to analysis so that
the resulting data-flow information more closely matches the actual program behavior.
Such information cannot easily be obtained by the tool or might otherwise be deemed
unsafe. Finally, we present data-flow equations for dealing with pointers to local vari-
ables inrecursive programs. These equations allow the user to select an arbitrary amount
of calling context in order to better trade performance for precision.

To validate our techniques, we constructed program slicers forther s and
C programming languages. We present empirical results using our slicing tools on the
Comprehensive Health Care SysterriCS), a million-line hospital management system
written inMUMPS, and on several C programs with aggressive pointer usage. The results
indicate that cost-effective analysis of large programs with pointers is feasible using our

techniques.

Xii



Chapter 1

Introduction

1.1 Motivation

Today, software development is market-driven. Developers rush their products
to market in order to meet customer demands, to gain a greater share of the market, and
to provide new features that they hope will becamedactostandards. Perhaps the most
apparent example of this strategy is the ongoing “Internet browser war” between the
Microsoft and Netscape corporations. Unfortunately, this philosophy places pressure
on programmers and managers to develop software fast and to reach the market before
their competitors, rather than to develop software that is extensible, well-designed, and
thoroughly tested.

Although the results of such a design philosophy can be beneficial in the short
term, they are often detrimental in the long term, when maintenance costs become the
dominant cost of the software life-cycle. Therefore, significantly reducing the cost of
these software systems entails reducing the cost of maintenance.

In the course of maintenance, software systems may be debugged, restruc-
tured, extended, or perhaps completely rewritten from scratch with a better design in
mind. Software designers and maintainers need to understand their systems in order to
perform any of these tasks correctly and if the successful development and maintenance

of their systems is to continue.



Unfortunately, large software systems are difficult to understand, in part be-
cause of their age. Some of these systems were not implemented using modern pro-
gramming techniques that can help reduce the complexity of a system, such as infor-
mation hiding [Parnas, 1972]. Additionally, many modifications to these systems were
not anticipated in the original design, resulting in global modifications being made to
incorporate the change. A global change distributes design information that is prefer-
ably hidden within a single module in order to ease future changes dependent on that
information. As a result, the structure of the system is degraded, and maintenance costs
are increased, since the programmer needs global, rather than local, knowledge to suc-
cessfully implement a desired change. Finally, these large systems have been evolved
in this fashion over several years, with modification after modification being layered
upon the original implementation by several generations of programmers. The resulting
complexity may be exponential in the number of changes made to the system [Lehman
and Belady, 1985].

Large systems are also often written in an aggressive programming style and
use sophisticated language constructs such as function pointers. The use of these con-
structs is typically necessary to achieve good performance or to ease implementation.
However, their use hinders program understanding. For example, function pointers are
commonly used to implement dispatch tables. However, if function pointers are used,
then a call-graph of a program cannot be inferred without first determining the side-
effects due to pointers.

Many of these large systems are still in use today, such as the Comprehen-
sive Health Care Systencfics), a 1,000,000 line hospital management system, written
in the MuMPs programming language [Lewkowicz, 1989] and currently maintained by
Science Applications International Corporati®dn(c). Other large, well-known sys-
tems such as theNu C compiler Gcc) and Emacs editor, although an order of magni-
tude smaller, exhibit many of the same problems.

Because of their complexity, large systems can benefit from automated sup-

port for program understanding. Several automated semantic techniques have been de-



function f (a,b)
min = b

swap = false
if a < b then

function f (a,b)
min ;= b

if a < b then

min = a min = a

swap = true swap = true
end end
if swap then if swap then

c=b-a c:=b-a
else else

c=a-b c=a->b
end end
write (c) write (c)
return min return min
end end

(@ (b) (c)

Figure 1.1: An example program and slices: (a) an example function, (b) a backward
slice frommin at the return statement, (c) a forward slice from the assignmemap.

veloped for understanding software. For instance, a program slicer computes the set
of statements in a program thatay affectthe value of a programmer-specified vari-
able [Weiser, 1984]. This type of program slicing is knowrbaskward slicing since

the slicing tool traces the flow of values backward through the control-flow of the pro-
gram, and is useful during debugging. In contréstyard slicingtraces the flow of
values forward through the program, computing the set of statements#yabe af-
fected bythe value of a programmer-specified variable. Forward slicing can be used
by a programmer to predict the effects of a proposed change. Figure 1.1 shows an ex-
ample program written in a high-level language, along with an example backward and
forward program slice. A programmer or designer can better understand the system by
using these tools to answer their queries about the system, but only if they run in an

economical amount of time and space.



Other examples of semantic tools include assertion and invariant checkers. A
static assertion checker suchresPECTChecks the consistency of a program’s data-flow
and control-flow characteristics against declared computational dependencies [Jackson,
1991]. An invariant checker such &sAVERS infers facts about the state of the pro-
gram and checks those facts against assertions provided by the programmer [Dwyer and
Clarke, 1994].

In order to analyze a program, such tools construct control-flow and data-
flow representations of the program, similar to those used by an optimizing compiler.
One such representation is the program dependence gragh[Ferrante et al., 1987],
in which nodes denote operations and edges denote dependencies between operations.
Program slicing using theDG is simple and algorithmically efficient, once tlr®G
has been constructed [Ottenstein and Ottenstein, 1984]. A similar representation is the
value dependence graph(G) [Weise et al., 1994], in which nodes denote operations
and edges denote demands for stores (mappings from variables to values) by opera-
tions. More traditional representations include the abstract syntaxAsag, (control-
flow graph €CFG), dominator trees, and def-use chains [Aho et al., 1986].

However, unlike compilation, program understanding tasks are interactive and
an analysis such as slicing is often applied iteratively to answer a programmer’s question
about the program. For example, a programmer may need to perform several slices
with different slicing criteria, incorporating the knowledge gained from previous slices
(e.g., which functions were included in the slice), in order to successfully answer a
qguery. Thus, a whole-program analysis tool must perform analyses quickly in order to
answer effectively many of the questions posed by programmers and designers. Two
problems arise when applying traditional compiler techniques to the construction of
whole-program analysis tools.

First, unlike an optimizing compiler, which typically analyzes a few proce-
dures at a time, these tools analyze the entire program in order to provide the program-
mer or designer with a global view of the system [Barth, 1978]. Consequently, both

the running time and space required for many traditional interprocedural compiler algo-



representation comments on construction time space

(1) source 1 million lines N/A 40

(2) AST construction for entire program; 13.1 414
18 million nodes

(3) AST construction on a per-routine basis; 6.9 30
25% greatecpu utilization than above

(4) | crFG- symbolic| preserving routine’asT after use; unknown| ~ 800
exhausts virtual memory capacity

(5) | cFG- symbolic| discarding routine’asT after use; 17.9 397
6.5 million three-address statements

(6) | cFG- complete| symbolic labels replaced by graph edges; 27.5 397
39%cpu utilization

Table 1.1: Statistics for constructing various representatiolsiafs. Time is given in
minutes and space in megabytes.

rithms may be prohibitive for a large program, especially in an interactive context such
as software maintenance. For example, the sizeref@can be quadratic or greater in

the size of the program (depending on the handling of pointers), and therefoefar

a large system may exceed the virtual memory capacity of a typical desktop machine.
Even the cost of constructing simple, linear-space representations suchssan be
prohibitive. As the second item in Table 1.1 illustrates, although the size afarns

linear in the size of the program, the space consumed sarconstructed focHCS,

414 MmB, exceeds the capacity of the main memory of the machine, even though care
was exercised in its design [Griswold and Atkinson, 1996]j.such cases, the time re-
quired to first construct the representation and then later retrieve it for actual use after it
has been paged out of main memory may be unacceptable. The space required for both
anAST and acFG can exceed the virtual memory capacity of the machine (Table 1.1,
item 4). Furthermore, the additional iteration over the three-address statements of the

CFGthat resolves symbolic references to labels into graph edges (Table 1.1, item 6) re-

LAll statistics forcHcswere gathered on a SparcStation 10 Model 61 withMB®f physical memory
and 450vB of swap space. All statistics for other programs were gathered on a 200 MHz Sun UltraSparc
2 with 192 mB of physical memory and &B of swap space. Experiments were performed with the
machine otherwise idle.



quires an additional 9.6 minutes, illustrating poor performance due to heavy use of the
slower parts of the memory hierarchy. Based on the per-routine cost of constructing the
AST (Table 1.1, item 3), we estimate that the actual cost of constructingrbes 11
minutes, only 1.4 minutes longer than this additional iteration.

The second problem is that a program understanding tool must be able to an-
swer a wide variety of questions about a program. Since program understanding tools
are difficult to construct, general tools are typically built to amortize the high cost of
construction. However, because program analysis algorithms are complex, it is not al-
ways feasible for the tool user to program a new algorithm to answer a specific question.
Consequently, program understanding tools tend to provide a small set of general anal-
ysis algorithms that together can answer a wide variety of questions. Unfortunately,
although these algorithms can be used to answer most questions, their generality can
result in an unacceptably long running time and the gathering and reporting of extra-
neous information. For example, if a tool user desires to know only if a procé&tsre
included in a forward slice (e.qg., if the procedure may be affected by a proposed change)
then the entire slice may not need to be computed. In particular, a statenfentag
appear in the slice during the first few iterations of the analysis. If so, then computing
the entire slice is unnecessary, saving not only computation time but also time spent by

the tool user interpreting the results.

1.2 Approach: Adaptability and Flexibility

One might argue that simply buying more memory, disk, and a faster proces-
sor could solve these problems, but this solution is not cost effective. The size of many
modern systems is several times greater than the million linesiafs and is always
growing. A project may also have many programmers requiring such resources to per-
form analyses. The real problem is waste of computational resources, not lack of them.

For simplicity, program representations are often constructed in their entirety

in batch or once before an analysis is begun. The representations are typically never



discarded once constructed. Should changes to the representations be necessary (e.g.,
the program has been transformed by the analysis), the representations are either recon-
structed in batch or are incrementally updated, if the changes are small and structured.

However, the per-routine construction of the representations shown in Ta-
ble 1.1, which requires much less space and time, and exhibits much beterti-
lization, suggests that the prohibitive computational costs are largely due to the compu-
tation and movement of program representations within the virtual memory hierarchy,
regardless of the analysis algorithm to be subsequently applied to the representations.
The underlying tool infrastructuriails to adaptto the nature of the analysis being per-
formed and the program being analyzed.

Our first goal, then, is that the cost of an analysis be a function of the size of
the relevant portions of the program, rather than of the size of the entire program. For
example, the cost of computing a program slice should be a function of the number of
statements in the slice. To meet this goal, the execution of the analysis algorithm needs
to drive the construction of the representations that it accesses. In particular, we propose

that a whole-program analysis tool:

e Constructall program representations on demand, rather ¢hanori: Demand-
driven construction reduces the space and time required since portions of the pro-
gram that are irrelevant to the analysis are ignored. Current approaches [Choi

et al., 1991; Horwitz et al., 1995] only demand-derive portions of the analysis.

e Discard and recompute infrequently used representations that are large but rela-
tively inexpensive to compute: Many representations such asgheare infre-
guently used but can exhaust virtual memory if retained. The recomputation cost
for these representations may be no worse than the cost of moving them to the

slower portions of the memory hierarchy and later retrieving them.

e Persistently cache frequently used representations that are small but relatively ex-
pensive to compute: Resolving interprocedural labels irctheis expensive and

impractical to demand incrementally, but requires little space. Time can be saved



time to construct

fast slow
B = build and retain persistently retain
% & (points-to and data-flow sets) (call-graph, function pointers)
% @ discard if infrequently used rework approach to improve time / space
B I (AST, CFG) (PDG, VDG)

Figure 1.2: Decision space showing how a program representation should be handled.

by saving this information on disk and only recomputing it when the analyzed

software is changed.

In general, the properties of a representation such as the space occupied, cost to construct
in its entirety, cost to demand in parts, and frequency of access determine whether it
should be discarded, retained during execution, or retained persistently across uses of
the tool, as shown in Figure 1.2.

The second source of waste is performing an analysis that is more general
than the tool user requires becausdagk of flexibilityin these tools. Our second goal,
then, is that the tool user should be able to customize the parameters of the analysis—
possibly saving computation time—to better match the tool user’s needs. Since our tool
is designed for interactive program understanding rather than for batch compilation, we
can take advantage of information provided by the tool user. For example, if the tool
user only wishes to know whether a certain procedure is in a slice, then the analysis
should terminate when this fact becomes known. In particular, we propose that a whole-

program analysis tool:

e Allow the user to control the precision of the analysis algorithm: The user can
provide additional information based on external factors such as the desired pre-
cision of the result, urgency, and system load. For example, by reducing precision
the tool user can reduce the time of an iteration of an iterative analysis and thus

receive an answer more quickly.



e Allow the user to customize the termination criterion for a particular analysis:
For example, the number of iterations required can be substantially reduced be-
cause iterative algorithms tend to have an initial rapid convergence and so might

discover the needed information quickly.

These new features risk complicating analysis algorithms that are already
complicated. Consequently, we have a designed a software architecture [Garlan and
Shaw, 1993; Perry and Wolf, 1992] that is event-based and exploits the structure of
interprocedural analysis to support demand-deriving and discarding data without com-

plicating these algorithms [Atkinson and Griswold, 1996].

1.3 Issues Due to Pointers

The use of pointers in most modern programming languages complicates our
approach. The lessons of adaptability and flexibility must be applied to points-to and
alias analyses if our approach is to remain effective on large systems. If an analysis is
implemented naively, many of the benefits that we have discussed will be reduced or
negated. In particular, three problems arise in dealing with pointers in large systems.

First, the use of pointers negates the performance benefits of demand-driven
techniques [Atkinson and Griswold, 1996; Duesterwald et al., 1995; Horwitz et al.,
1995] since determining the memory locations possibly referenced through a pointer
typically requires a global analysis over the program. For example in the C programming
language [Kernighan and Ritchie, 1988], all files must be analyzed to account for the
use of pointers in initializers for static variables, regardless of whether a file contains a
function that might be reachable during subsequent data-flow analysis. All three of our
example programs in Table 1.2 use function pointers in static variables to implement
late binding or dispatch tables.

Second, in a flexible and performance-oriented language such as C, the way

in which pointers are used complicates performing a points-to analysis that is suffi-

2After processing wittcpp, all blank lines were removed.
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lines of code AST CFG
beforecpp aftercPP | time space time space
GCC 217,675 224,776| 24.0 55.3|42.4 51.6

EMACS 99,439 113,596| 16.9 39.3|22.1 293
BURLAP 49,601 88,057| 10.0 23.3|14.8 16.3

Table 1.2: Statistics for constructing representations of three programs written in the C
programming language. Time is given in seconds and space in megabytes.

ciently precise for the subsequent data-flow analysis. For instance, the use of specialized
memory allocators can reduce precision by hindering the analysis’s ability to accurately
model heap storage. Furthermore, pointer arithmetic on arrays and structures limits the
points-to analysis’s ability to accurately discern distinct memory locations. Because
these aggregates often store pointers to functions, the imprecise analysis can result in an
overly conservative call-graph, degrading both the performance and precision of inter-
procedural data-flow analysis.

Finally, pointer usage can complicate performing the subsequent data-flow
analysis. Pointers to local variables are commonly used in C programs to emulate pass-
ing parameters by reference, which the language itself does not support. Pointers to
local variables in the presence of recursion require changes to the traditional bit-vector
equations for data-flow analysis [Aho et al., 1986], since different activations of a local
variable may be referenced in functions other than the function in which it is declared. If
the equations are not changed, the data-flow analysis will be in error. Naive solutions to
this problem can be prohibitively expensive unless local variables are handled specially

in the implementation of the data-flow equations.

1.4 Applying Our Approach to Pointer Analysis

We need to apply our lessons of adaptability and flexibility to the implemen-
tation of points-to analyses in order to construct practical whole-program analysis tools

for programs written in languages such as C.
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First, because points-to information cannot be demand-derived, we use Steens-
gaard’s near-linear time, context-insensitive, flow-insensitive, points-to analysis algo-
rithm [Steensgaard, 1996b]. To avoid the cost of an extra pass over the program, the
points-to analysis is “piggybacked” with the demand construction of the control-flow
graph €FG). During points-to analysis, the representations (ecg6) for functions
needed for the data-flow analysis are retained, while other representations are discarded,
saving space and improving reference locality. Since our approach previously saved the
call-graph to disk to speed-up subsequent executions of the tool (Page 8), the saved call-
graph now includes calls to functions through function pointers (as computed by the
points-to analysis).

Second, to increase the precision of pointer analysis without unnecessarily in-
creasing algorithmic complexity, we allow the user to parameterize the analysis. Since
our tool is designed for interactive program understanding rather than for batch compi-
lation, we can take advantage of information provided by the tool user. For example, the
user might specify that the program being analyzed has only stt&tcompliant func-
tion prototypes, helping to more accurately determine which functions may be called
through a function pointer. Such information cannot be obtained automatically by the
tool without substantial additional cost, if at all. This information may be optimistic
(i.e., “unsafe”) or conservative. Although the information may be unsafe for any general
program and therefore cannot typically be used, it may be safe for the specific program
being analyzed. As long as the tool user can readily discern the unsafe results, or ensure
that such information is in fact safe, not only can accuracy be substantially increased,
but also time and space can be saved.

Finally, we derive new data-flow equations for dealing with pointers in the
presence of recursion and pointers to local variables. Our new data-flow equations ex-
tend our work with user-controlled precision for C programs with pointers. By examin-
ing the characteristics of the data-flow analysis and adapting the implementation of the

equations to the analysis, significant space can be saved.
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1.5 Overview

In the following chapters, we discuss our approach to designing an adaptive,
flexible, whole-program analysis tool. We feel that the problems introduced by pointers
are sufficiently complicated that they warrant special discussion. Consequently, pointers
are discussed in separate chapters. To evaluate our design, we discuss the application of
our design choices to the construction of program slicerskmsand for C programs.

We use program slicing as our example data-flow analysis because it is a non-
trivial, interprocedural analysis that is useful to programmers and designers and has a
variety of potential applications [Weiser, 1984; Gallagher and Lyle, 1991]. We do not
address the value of slicing and whether or not the computed program slices are useful
to programmers or designers. However, the infrastructure that we have developed could
be used to assess this.

Our results indicate that effective whole-program analysis is feasible using our
approach. The time and space required to perform a program slice are a function of the
size of the slice, not of the size of the entire program. For example, our tool can compute
program slices oEHcsandGcccin less than one hour. We show that an iterative analysis
such as program slicing converges quite rapidly, with substantially fewer and fewer
statements being added during later iterations. For our example programs, 90% of the
total statements in the slice are obtained within the first 20% of the iterations. This
suggests that our decision to allow the user to suspend the program slicer and view the
partially computed slice is warranted.

Our results also indicate that parameterization of the points-to analysis can
dramatically increase the number of points-to classes. For programs that use function
pointers heavily, the precision of the constructed call-graph can be substantially im-
proved. As a result, program slices can be computed an order of magnitude faster and
contain fewer unnecessary statements. Otherwise, we have found that the subsequent
data-flow analysis is mostly insensitive to the improvement in precision [Shapiro and
Horwitz, 1997a].
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We have found that each aspect of our approach is essential to effective whole-
program analysis. Should one aspect be omitted for our approach, the performance and

effectiveness of the resulting whole-program analysis tool will suffer. In particular:

¢ Without demand-driven computation, the space and time required to perform anal-
yses is necessarily a function of the size of the overall system, and is likely to
exhaust the memory resources of most computers. Precomputing this data and
storing it persistently does not solve the problem because using secondary storage

may be no faster than computing the data on demand (Chapter 2).

e Without discarding, virtual memory can be exhausted by sizable representations
that are not currently involved in the computation. Additional time is also ex-

pended in moving these representations out to disk (Chapter 2).

e Without persistent storage of key representations, deriving data that is costly to
construct, albeit compact, can increase the start-up time of an analysis substan-

tially (Chapter 2).

e Without providing control of precision, an analysis can take unnecessarily long if
a high degree of precision is not required. On the other hand, providing only a low

degree of precision may be ineffective in answering sensitive queries (Chapter 4).

e Finally, without the ability to control the termination of an analysis, it may run

unnecessarily long to answer the question at hand (Chapter 4).

To overcome the problems associated with the use of pointers in modern pro-
gramming languages, we present an approach for integrating points-to analysis with our
demand-driven analysis, thus making the analysis more adaptive to the task at hand. We
also present techniques for improving the flexibility of the points-to analysis by param-
eterizing the analysis to achieve better points-to results. Finally, we present data-flow
equations for computing an interprocedural slice in the presence of pointers to local
variables in recursive programs. Each aspect of our approach to handling pointers con-

tributes to its effectiveness. In particular:
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e Piggybacking the construction of tleFG with the computation of the points-to

sets eliminates an extra pass over the program, saving time (Chapter 3).

e Persistently retaining the call-graph on disk allows only the reachable portions of
the CFG to be retained, saving space and also time by avoiding the use of virtual

memory (Chapter 3).

e Parameterization of the points-to analysis increases the effectiveness of the sub-
sequent data-flow analysis. In the absence of function pointers, the increase in
the number of points-to sets does not result in a substantial increase in precision,
due to the transitive effects of the data-flow analysis. However, in the presence
of function pointers, the computed call-graph is substantially more precise, which
greatly increases the precision of the data-flow analysis with respect to function

calls and realizable paths (Chapter 5).

e Through an aggressive implementation of the data-flow sets, significant space can
be saved, making whole-program analysis practical in the presence of pointers to

local variables in recursive programs (Chapter 6 and Chapter 7).

To conclude the dissertation, we summarize our work, discuss some of the
open issues and how our work can be extended in different ways and to other languages,

and briefly discuss our infrastructure for constructing whole-program analysis tools.

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation
author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this chapter.



Chapter 2

Adaptive Whole-Program

Analysis Tools

Since program understanding tools extract detailed information from the pro-
gram source, their designs have tended to borrow heavily from optimizing compilers.
However, the added requirements of full interprocedural analysis and the wide range of
user queries stress traditional compiler designs. Demand-driven computation, discard-
ing, and persistence of data on disk can improve performance substantially, but these are
not accommodated by standard compiler practice. Because the algorithms used in com-
pilers are quite complicated, our goal is to introduce techniques that minimally perturb

these algorithms, while also giving us the performance we desire.

2.1 Background: Compiler Architectures

Figure 2.1 presents a typical software architecture for the front-end of a com-
piler, which iterates over each file in the program. The general flow of control is from
top-to-bottom and left-to-right. The flow of data is left-to-right. The space required in a
typical optimizing compiler is not prohibitive, since the program representations for one
file are discarded before processing the next file, as they are no longer needed. However,

if the representations were to be retained for later use, as required by a whole-program

15
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compiler
file for each file file
construction lexer/ 3-addr.
parser code gen.
representations pr?g:tam AST CEG
flow of data

Figure 2.1: Typical front-end compiler architecture, showing iteration over each file
of the program. Boxes indicate modules and arrows indicate calls. Italicized items
designate program components being accessed.

analysis tool, then the resulting space could be prohibitive. Deriving required repre-
sentations on demand, discarding representations that are infrequently used (but not too
expensive to reconstruct if needed), and retaining representations that are expensive to

compute (but require little space) are obvious solutions to this problem.

2.2 Approach: Overview

A demand-driven algorithm [Choi et al., 1991; Choi et al., 1994; Horwitz
et al., 1995] can reduce the space (and time) requirements of an analysis by ignoring
portions of the program that are irrelevant to the analysis. However, we have found that
demand-driven construction of a single program representation does not sufficiently re-
duce the space requirements, since many program representations are derived from other
representations. For example, a representation such apthés often derived from
other representations such as ttfes and the control dependence gragpG). The
CDG may itself be computed from theFG and the reverse dominator tree of the pro-

gram [Cytron et al., 1991]. Although in some analyses the intermediate representations
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may bea priori discarded, in others many must be retained [Griswold and Notkin, 1993].
For example, our program slicer depends upar@ dominance frontiers [Cytron et al.,
1991], and amsT for display. Thus, there are many representations for each procedure
in the program, but large portions of some of these representations are used infrequently
or not at all. In computing a backward slice, for example, the only needed portions of the
program representations are those that are on the control-flow path from the beginning
of the program to the slicing criterion.

Basic demand-driven computation does not provide all the savings possible.
In particular, our analysis in Table 1.1 shows that retaining an infrequently used rep-
resentation can exhaust the main memory or even the virtual memory resources of the
computer. Thus, we choose to discard such representations—in our casythand
recompute them when they are required. Although this adds time to recompute any dis-
carded data that is later needed, we can still achieve savings by avoiding the cost of (1)
moving out retained data to the slower parts of the memory hierarchy, and (2) retrieving
it later when needed.

Other representations are expensive to compute and are used frequently, but
require little space. For instance, our slicer needs to compute the callers of a procedure,
which would normally be resolved by the second pass ovecH#® as discussed in
Chapter 1. Although this information is demanded like other representations, it is stored
on disk rather than discarded. Subsequent runs of the slicer on the same program can

reuse this information as long as the program has not changed.

2.3 Approach: Software Architecture

Many control-flow and data-flow analyses such as interval analysis [Aho et al.,
1986] or alias analysis [Landi and Ryder, 1992; Choi et al., 1993] are sufficiently com-
plicated without the additional burden of requiring the algorithm to demand-derive ad-
ditional data structures. It is desirable to make minimal changes to these algorithms

when addressing the problems encountered when analyzing large systems. We have re-
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vised the standard software architecture for compilers to allow us to make only small
changes to existing analysis algorithms and yet support the demand-driven construction
and subsequent discarding of the program representations.

The primary problem with the standard architecture is that the flow of control
largely follows the flow of data from source to sink. This flow is controlled from the
top-level analysis algorithm. However, demand-driven computation requires that the
sink must be able to “demand” data from the source, reversing the control-flow relation
to be not only right-to-left, but also coming from the bottom of the hierarchy, not the
top. One solution to this problem is to have ttiec module directly call theasT mod-
ule, and so forth. However, this solution significantly reduces the independence of the
CFGmodule. For instance, it no longer could be constructed easily from representations
other than thasT. A solution that instead modifies the analysis algorithm would further
complicate an already complicated algorithm. Additionally, each new algorithm would
require essentially the same (complex) modifications. The redundancy distributes the
design decisions regarding demand-driven computation across several system compo-
nents, potentially complicating future changes related to those decisions.

To accommodate the needed changes in control-flow without compromising
independence, our solution is to modify the existing architecture to use events and map-
pings. This architecture borrows from our previous experience with layered and event-
based architectures [Griswold and Notkin, 1995; Griswold and Atkinson, 1995], but
these architectures do not accommodate demand-driven computation or discarding. Fig-
ure 2.2 presents an example of our architecture containing three program representations
(the program text, thesT, and thecFG) with each representation fully encapsulated in-
side a module. Accessed data structures, shown italicized, are program components,
rather than the entire program or whole files as in Figure 2.1. Unlike in the compiler
architecture of Figure 2.1, the analysis algorithm does not call the construction modules
directly, since the program representations are demand-derived as they are accessed
through their module abstractions. The architecture’s underpinnings, described below,

take care of computing the required structures.
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mapping ext-AST_ | ] AST-CFG
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3-addr.
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program
text

representations

flow of data

Figure 2.2: Software architecture for a whole-program analysis tool. Boxes indicate
modules, solid arrows indicate calls, and dashed arrows indicate events. Italicized items
designate program components being accessed.

2.3.1 Maediator modules

Many semantic tools must maintain mappings between the various program
representations. For example, in a program slicer, when the user selects a variable in
the program text represented by theT, the correspondingsT node must be mapped
to a three-address statement in ttreG to begin slicing. When the resulting slice is
displayed, thecFG statements in the slice must be mapped back to their corresponding
AST nodes. These mappings could be maintained explicitly within each module (e.qg.,
by having eaclasT node contain a pointer to its correspond@ri statement), but this
would reduce the independence of the individual modules [Sullivan and Notkin, 1992].
Instead, we use separatediatorsto maintain mappings between the modules [Sulli-
van, 1994; Sullivan and Notkin, 1992]. However, since the representations need to be

constructed on demand, each mediator may call the required construction module for
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the representation, as shown in Figure 2.2. For exampledhecFG mediator module,
which maintains a mapping betweesT nodes and three-address statements ig Heg
calls the code generator if there is a need to mapsannode to its correspondingFG

statement, but that statement has either never been constructed or has been discarded.

2.3.2 Events, callbacks, and protocols

Giving mediators the ability to construct representations on demand does not
allow the program representations to demand-dexaeh other Thecalled _routine
operation on &FG call statement, for example, may need to access a three-address
statement that has not been constructed yet, which may in turn require construction
of the AST nodes from which it is to be derived. Rather than havedhe module
call the AST-CFG mediator, which would require a modification to tbeG module
and consequently reduce its independence, our solution is to use events [Sullivan and
Notkin, 1992], shown in Figure 2.2 as dashes. Tms module can send an event
“announcing” that it is about to execute tballed _routine  operation. The mediator
module “hears” this announcement, and thus responds to the event by calling the code
generator, if necessary. For the mediator to hear the announcement, the event handler of
the mediator module must be registered withalrfe module by an initialization module
(not shown in Figure 2.2).

If an event were announced for every exportat operation, the resulting
overhead could be prohibitive. This cost can be reduced by having a high granularity for
event announcements: tle&G module announces an event for accesses to major pro-
gram components such as a procedure, and as a resatd®r an entire procedure
may be constructed. This concept of processing granularity for events and the construc-
tion of program representations unifies the entire architecture, since it naturally exploits
the structure of the problem [Johnson, 1978], namely interprocedural analysis. The in-
traprocedural algorithms are unaffected. If tt/eG was constructed incrementally for
each statement and thsT constructed incrementally for each file, the resulting archi-

tecture would be more complicated.
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Figure 2.3: Implementation of the program slicer tmcs, adapted from Figure 2.2

with the addition of a protocol layer. Boxes indicate modules, solid arrows indicate calls,
and dashed arrows indicate protocols. Italicized items designate program components
being accessed.

Our architecture can also be described and implemented in tercadilodicks
or protocols Callbacks are similar to events with the distinction that events are usually
asynchronous but callbacks are usually synchronous [Nye, 1990]. In some event models,
events also cannot return data to the module that announced the event. However, both
events and callbacks provide “late binding” between modules. In our architecture, we
do not wish the program representation modules do not contain explicit references to
the mediator modules.

To use either events or callbacks, the representation modules must be instru-
mented with the appropriate operations. However, this task may not always be possible

or practical. For example, the representation modules might be provided externally by a
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software library and cannot be modified. To avoid these problems and minimally perturb
the underlying tool infrastructure, we can instead aghdciocol layer As an example,

the architecture for our program slicer forncsis shown in Figure 2.3. In our slicer,
thesite-taganodule maintains mappings between the program text angidtheand the
index-tablemodule maintains mappings between fs and thecFa.

The modules of the protocol layer are virtual in that they do not manifest
themselves as functions, but rather as requirements. If the slicer wishes to call the
called _routine function of thecFG module, it must first obey the protocol that re-
quires it to first “announce” an event to the index module. Rather than events flowing
from a lower layer to a higher layer, the protocol requests flow from a higher layer to a
lower layer. The protocol layer requires no modifications in the lower layers, but instead
places a burden on the client (i.e., the slicer) of these layers. However, to both minimize
additions to the client and increase performance, the protocol uses the same high level

of granularity between requests as proposed for events (i.e., procedure granularity).

2.3.3 Address-independent mappings

If a representation may be discarded, then the mapping module must support
address-independemappings. These are in essence a pointer abstraction similar to
that provided by virtual memory, but resulting in the rederivation of data, rather than
the movement of data. Since thsT may be discarded, thesT-CFG mediator must
support this type of mapping. Address-independent mappings can be implemented, for
example, by assigning eaelsT node a unique index number that can be reassigned to
a reconstructed node, or by using the file name and character position as a key for each
AST node.

For example, in our program slicing tool faHcs, the index-table module
functions as a mediator, maintaining mappings betwegnnodes and three-address
statements in theFgG, as shown in Figure 2.4. The address-independent mappings are
maintained usingndex numbersWhen theasT for a routine is constructed, each node

is assigned an increasing index number during a preorder traversalafth&he index
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Figure 2.4: The index-table module maintaining mappings betweeaghsg for two
functions and the associated three-address statements.

numbers of each root node are also stored in a small auxiliary table for later use. The
index-table itself contains bidirectional mappings frasT nodes to three-address state-
ments using hash-tables. Each three-address statement also contains an index number
representing its associatea$T node! If the AST for a routine is destroyed, its corre-
sponding entries in the index-table are removed. lintbE needs to be reconstructed for

a given three-address statement (i.e., a miss occurs in accessing the hash-takdsg), the

for the entire routine containing the statement is reconstructed. The routine name and
its starting index number are determined by searching the auxiliary table using the index
number of the three-address statement, and a preorder traversahafitieeperformed

to update the index-table.

LAn index number is explicitly stored within a three-address statement for simplicity. A design with
more separation would be to use another hash-table for mapping statements to index humbers.
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2.4 Conclusion

Demand-driven construction of program representations can greatly improve
the performance of whole-program understanding tools. However, some program rep-
resentations are large but accessed infrequently and require little time to compute. We
advocate discarding such representations and recomputing them when needed in order
to reduce to overall space required and also save time by avoiding use of the slower
parts of the virtual memory hierarchy. Finally, some representations require a long time
to compute, but require little space. We argue that these representations should be con-
structed once and then persistently retained on disk across invocations of the tool. This
technique reduces the start-up time of the tool since it is faster to read the information
from disk than it is to compute it.

To implement our approach, we designed a new software architecture, since
the standard compiler architecture does not accommodate many of our new features.
However, to minimize the impact on the top-level analysis algorithm, our architecture
uses mediators, events, and address-independent mappings to transparently demand-
derive the program representations.

Using our approach, we successively implemented program slicing tools for
themumps and C programming languages [Atkinson and Griswold, 1998]. Our slicing
tool for MuMPs can compute slices afHcs a 1,000,000 line hospital management sys-
tem, in under 10 minutes (Chapter 8). Although some slices can take longer to compute,
the space and time consumed by the analysis are proportional to the size of the slice, not
to the size of the entire program. However, before we could successfully compute slices
of C programs, we needed to solve the problems introduced by pointers (Chapter 3,

Chapter 5, and Chapter 6).

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1996]. The dissertation author was the primary researcher and
author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.



Chapter 3

Points-To Analysis with

Demand-Driven Analyses

By using our adaptive, demand-driven framework described in Chapter 2, we
are able to construct an efficient, task-oriented program slicing tool for large programs
written in MUMPS, a language without pointers (Chapter 8). However, we need to inte-
grate pointers, and in particular performing a points-to analysis, into our demand-driven

framework if we wish to compute slices of more modern languages such as C.

3.1 Background

Points-to analysis simply determines, for each variable in the program, the set
of variables that may be pointed to by a given variable [Emami et al., 1994; Steens-
gaard, 1996b; Shapiro and Horwitz, 1997b]. For the purposes of explanation, we use
the termvariablesto mean programmer-declared variables together with other locations
that may be distinguished by the points-to analysis, including members of structures, dy-
namically allocated data, and other temporary locations used by the points-to analysis or
subsequent data-flow analysis. Figure 3.1 shows a small C program with the results of
its points-to analysis. Figure 3.1b shows the resultsflove-sensitivgpoints-to analysis,

and Figure 3.1c shows the results df@v-insensitiveanalysis.
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if (a < b) {

p = &X; p — {x} p—{z,y}

c = *p, {C}¢{$} {C}¢{$7y}
} else {

p = &y; p—{y} p—{z,y}
} c = *p; {c} < {9} {e} = {z v}

p—>{$,y} p—>{$,y}
= d: {z,y} = {d} {z,y} < {d}
(@) (b) ()

Figure 3.1: An example C program with points-to analysis: (a) an example program,
(b) annotations for a flow-sensitive analysis, and (c) annotations for a flow-insensitive
analysis. An annotation of — {;} indicates that now points toj. An annotation of
{i,7} < {k} indicates that and; are both assigned the value/of

For the flow-sensitive analysis, the points-to set for the varipbddanges
according to the flow of data through the program. For the flow-insensitive analysis,
the points-to set is the same throughout the program. Although, flow-sensitive analyses
are more precise than flow-insensitive analyses, they are not suitable for use on large
systems because they have quadratic to exponential time and space requirements.

Dereferencing the pointer variabfeyields the contents of its points-to set.

The simple assignments involvirggandd are now assignments from and to sets of
variables. Larger points-to sets are usually the result of a more conservative points-to
analysis. The sizes of the points-to sets can greatly affect the precision and running
time of the subsequent data-flow analysis. For example, in backward program slicing,
an assignment to a variable in the current slicing criteria results in the variable being
removed from the criteria and the variables used at the assignment statement being added
to the criteria. If the variables used are the result of a pointer dereference, then all the
variables in the corresponding points-to set are added to the criteria. If the points-to set

is large, the slicing criteria will also be large.

L1f more than one variable is the target of an assignment, such a definition is a preserving definition
since in fact only one variable is actually assigned a value.
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3.2 Motivation

Demand-driven techniques attempt to save space and time by computing only
those data-flow facts and portions of supporting representations that are necessary to
perform the analysis [Atkinson and Griswold, 1996; Duesterwald et al., 1995; Horwitz
et al., 1995]. In this way, large programs can be handled more economically since
the amount of information computed and stored is greatly reduced. Effective demand-
driven analysis depends upon quickly identifying which portions of a representation are
required next and efficiently computing those portions. In backward program slicing,
for example, it is necessary to quickly identify all the callers of a procedure and effi-
ciently construct theFG for those calling procedures [Atkinson and Griswold, 1996].
Because determining the callers of a procedure requires a global analysis of the pro-
gram, our demand-driven approach saves the call-graph to disk for future invocations of
the program slicing tool.

Depending on the algorithm chosen (e.g., a flow-sensitive algorithm versus a
flow-insensitive algorithm), points-to analysis for large programs can require a large,
possibly prohibitive, amount of time and space. Unfortunately, there are problems with
either demanding or persistently storing points-to information. We discuss these prob-
lems and then present a hybrid compute-and-store solution.

Points-to information is not efficiently computable on demand because com-
puting the effects of any particular pointer reference can require a global analysis of the
program. For example, Figure 3.2 shows a small C program consisting of three source
files. If a backward program slice is started at the assignmentindunctionf() of
file y.c , the points-to set of variableis needed. There is an assignmenp o func-
tion main() in file x.c , sox.c must be analyzed. Ignoring pointers, a demand-driven
slicer would not need to examine this file unless the user requested that slicing should
continue into the calling function. Filec must be also examined. Although function
g() is not reachable during a backward data-flow analysis fim the file contains

the initialization forp in a static initializer.
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extern int *p; extern int *p; int 'y, *p = &y;
main () { f(){ g (){
int Xx; int z; y = 2;
}
if (rand ()) p =3
p = &X; zZ = *p;
}
f ()
g ()
}
X.C y.C z.c

Figure 3.2: An example C program consisting of three files. The pointer vapaisle
referenced in all files.

An alternative to demand-driven analysis is to persistently retain the points-to
information in a database, as we do with the call-graph. This approach is attractive since
the call-graph requires pointer information for computing the effects of calls through
function pointers anyway. However, storing the pointer information presents several
difficulties. First, a representation would be needed for referencing an arbitrarily nested
variable declared within a function. Second, theG's three-address statements and
associated temporaries would need to be constructed in a reproducible order from one
tool invocation to the next. Finally, the database must be recomputed if any variable
in the program changes, not just if the call structure changes. Although none of these

difficulties is overwhelming, their net complexity led us to consider a third alternative.

3.3 Approach

Our approach is to demand all the points-to information on invocation of the
first slice, employing three techniques to minimize the impact of the required global

analysis.
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e We use Steensgaard’s near-linear time, context- and flow-insensitive, points-to
analysis, which models storage as equivalence classes of locations and computes
the points-to sets (points-to classes) by computing the transitive relation over as-
signments [Steensgaard, 1998Although not as precise as some techniques, its
time—space characteristics are superior and the difference in precision is often not

reflected in the subsequent data-flow analysis [Shapiro and Horwitz, 1997a].

e To avoid an extra pass over the program to perform the global analysis, we piggy-
back the computation of points-to information with the construction of the por-
tions of thecFaG required for the subsequent data-flow analysis, as shown in
Figure 3.3(b). The call-graph, which was formerly used to demand only those
portions of thecFG reachable from the initial slicing criterion, is now used to de-
termine which portions of theFG are needed only for points-to analysis and can

therefore be discarded immediately after use.

¢ To maintain the call-graph’s effectiveness in the demand-driven analysis, the call-
graph saved to disk includes the effects of calls through function pointers, as de-
termined by the points-to analysis, as shown in Figure 3.3(a). Since the points-
to analysis is flow-insensitive—in particular it does not require a call-graph—
performing points-to analysis in a prior pass to gather function pointer information

adds little complexity to the implementation of the program slicer.

Using this approach ogcc, our largest program, computing the points-to
information and other supporting data for the call-graph requires 52 seconds and 63
MB of space (Chapter 8). Although tleEa itself would require only 5218 if fully
constructed, the total savings duedeG discarding can be substantial. For example,
if only half of the CFG needs to be retained for slicing, the savings o6 might be
sufficient for the entire analysis to reside in main memory, eliminating paging and thus

improving overall execution time.

20ur implementation treats relational operators differently from arithmetic operators since the former
do not yield a pointer value. This fact is mentioned in the reference but not included in its equations.



for all filesdo

for each function fdo

compute-classg$)

for each statemerdall g () do
calls[f]:= calls[f] U {g}

end for

for each statemerdall (xp) () do
indirect[f] := indirect[f] U {p}

end for
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function get-reachabl€f)
reachable= ¢
dfs-over-callqf, reachabl¢
return reachable

end function

read-call-graph()
start := get-criteria()
reachable= get-reachabléstart)

discard(f)
end for for all filesdo
end for all for each function fdo

compute-classg$)
for eachf in callsdo if f & reachablethen
for eachpin indirect[f] do discard(f)
calls[f] :=calls[f] U xp end if
end for each end for
end for each end for all

write-call-graph() compute-slicéstart)

() (b)

Figure 3.3: Example pseudocode showing how the call-graph is built and used: (a) the
direct calls and points-to classes for each function is first computed and then combined
to construct the call-graph which is then written; (b) the call-graph is read and used to
determine the reachable portions of tt¥eG while computing the points-to classes.

3.4 Conclusion

Integrating points-to analysis with demand-driven analyses is difficult. Points-
to analysis typically requires a global analysis over the program, negating the benefits of
a demand-driven analysis. To overcome this problem, we use a near-linear time points-
to analysis that can be performed in a single pass over the program. By piggybacking
construction of the call-graph with the computation of the points-to sets, an extra pass
over the program can be avoided. The call-graph is persistently retained on disk and

read in upon starting a program slice. The call-graph is then used to determine the
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reachable portions of thergG, allowing the unreachable portions of thec to be dis-
carded, thereby saving space and also time by avoiding use of the slower portions of the

virtual memory hierarchy.

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1998]. The dissertation author was the primary researcher and
author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.



Chapter 4

Flexible Whole-Program

Analysis Tools

4.1 Motivation

Reducing the space requirements of an algorithm will also reduce its running
time by avoiding the movement of representations within the virtual memory hierarchy
(Chapter 2). Because an algorithm can require between polynomial and exponential
time, depending on its precision, it is also necessary to control the time complexity
of the algorithm itself in order to obtain acceptable performance of a whole-program
analysis tool. Since many data-flow analyses are iterative [Aho et al., 1986], significant
improvements can be achieved by either reducing the running time of each iteration or

by reducing the number of iterations performed.

4.2 Approach: Controlling Precision

As with demand-driven computation, providing the tool user with control over
the precision of an analysis should require only minor modifications to the original it-
erative algorithm, since the algorithm can be quite complex. One approach is to allow

the tool user to specify the interproceducahtext-sensitivitpf the algorithm. Before

32
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Figure 4.1: A sample program with (a) its call-graph, (b) its depth-1 context-graph, (c)
its depth-2 context-graph, and (d) its unbounded-depth context-graph. A procedure with
multiple contexts is annotated with its call path.

we describe our support for this feature, we present some background on precision and

context-sensitivity.

4.2.1 Background

Recent work has focused on the trade-offs between context-insensitive and
context-sensitive analyses [Wilson and Lam, 1995; Ruf, 1995]. Many approaches such
as the slicing algorithm of Weiser [Weiser, 1984] use only a single calling context for
each procedure—that is, there is no accounting of the calling sequence that led to the
call in order to precisely estimate the calling sequence’s influence—and therefore are
context-insensitive In contrast, the invocation graph approach [Emami et al., 1994]
is fully context-sensitivaince each procedure has a distinct calling context for each
possible call sequence starting from the main procedure of the prdgiém.invoca-
tion graph can be understood as treating all the procedures as inlined at their call sites.
Figure 4.1 presents the call-graph of a simple program, Mitrepresenting the main
procedure, along with variountext-graphs

The nodes of a context-graph represent a calling context of a procedure and

the edges represent procedure calls. Each context-graph has an assoaciteeddepth

'Recursion is handled by following the recursive call once and then using the resulting data-flow set
of the recursive call as an approximation for subsequent calls.
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Figure 4.1b shows the context-graph using Weiser’s approach. Since each procedure has
only a single context, this graph is identical to the call-graph of Figure 4.1a. This is the
depth-1lcontext-graph, since the context of a procedure is determined by searching a
singleprocedure down the call stack. For example, the call sté¢ksC andM B C

(shown growing from left to right) are equivalent since only the topmost proce@ui®,
examined in tracing the call stack. Figure 4.1d shows a context-graph equivalent to the
invocation graph for the program, with procedures having multiple contexts annotated
by their call path. This graph has effectiv@bounded-deptlsince the context of a
procedure is determined by searching back through the call stack as many procedures as

necessary to reach the main procedure.

4.2.2 Approach

In order to control precision, our approach allows a variable degree of context-
sensitivity. For example, Figure 4.1c shows tiepth-2context-graph for the program.

The call stack$/1 A CandM B C are not defined to be equivalent since the depth-2 call
stacksA C andB C are unequal, resulting in two contexts f0r However,D still has

only a single calling context since the call statks\ C DandM B C D are equivalent,

as both have a depth-2 call stack@fD. This approach is similar to the approach of
Shivers [Shivers, 1991] for analyzing control-flow in languages with functions as first-
class objects.

A depth-1 context-graph has an equal number of procedures and contexts,
resulting in a high degree of imprecision but an efficient analysis. An iterative algorithm
using a depth-1 context-graph wittprocedures anah data-flow facts will requiré(n)
space and)(mn) time in the worst case. An iterative algorithm using an unbounded-
depth context-graph will produce a precise result but will require exponential space
and time in the worst case. As the context-depth increases the analysis becomes more
precise, but requires more time and space.

The tool user may first perform the analysis at a low context-depth and exam-

ine the results, as shown in Figure 4.2. If the user’'s query has not been satisfactorily
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Increase
context-depth.

Start at low Is output Is performance
context-depth. g acceptable? No Still acceptable? ~ Modify
program slicer No . approach,

Yes

Stop.

Figure 4.2: Example scenario showing how context-depth can be used in a program
slicing tool to solve a tool user’s question about a program.

answered then the context-depth is increased until either a satisfactory answer is pro-
duced or the running time of the analysis becomes unacceptable. For example, suppose
that some function in a large system has recently been changed and soon afterward the
system behaves incorrectly. A programmer might suspect that the recently changed
function is the cause of the error. Using a backward slicing tool, the programmer can
compute a slice at a low context-depth starting at the statement where the error occurs. If
the computed slice does not include the suspected function, then the programmer knows
that the function did not in fact cause the error. If the context-depth were to be increased,
then precision would be improved and less statements—not more—would be included
in the slice. However, if some statement in the suspected function is included in the
slice, then the function might be the source of the error. The programmer would then
need to increase the context-depth and recompute the slice if the performance of the tool
is still acceptable and the function is still believed to be in error.

The context-graph approach integrates easily with our demand-driven soft-
ware architecture (Figure 2.2). In order to isolate the analysis algorithm from our addi-
tions, we introduce a context module that encapsulates the control of context sensitivity.
When a data-flow algorithm traverses a call edge ofthe, a new context is demanded
for the called procedure. The context module either creates a new context for the pro-
cedure or returns a pre-existing context. As a consequence, the analysis algorithm is

impervious to the changes in context-sensitivity. The only real difference is the context-
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graph that is implicitly traversed. Contexts are demanded with a standard procedure
call to the context module, not an event, since an analysis algorithm is not logically

independent of precision.

4.2.3 Calling Context Creation

When a data-flow algorithm traverses a call edge ofdhe, a new calling
context must be demanded for the called function. The context module either creates
a new context for the function or returns a pre-existing context. Our backward slicing

algorithm performs the following operations whenal statement is encountered:

1. Demand-derive a context for the called functi@nusing the context of the calling

functionP.

2. Using the current slicing criterion, create new slicing criteria atéhen  state-
ments of the context foR. The new slicing criteria are merged with any already

existing criteria using anion operation (Chapter 6).

3. Compute the slice d during a backward depth-first search@from eachre-

turn statement (Chapter 7).

4. Use the updated criterion at the first statemei@ at the new slicing criterion for

thecall statement and resume sliciRg

In the depth-1 context-graph of Figure 4.1b, fiktslices intoA, andA calls
C by demand-deriving a context f&@ and updating the slicing criteria at tiheturn
statements of. After a depth-first search @, the criteria at the first statement Gfis
used to continue slicing. Next,M callsB, andB follows the same steps &sHowever,
sinceC has only one context, the criteria frofmandB are merged irfC. The depth-first
search returns immediately, since all block€ihave been marked as visited Ayand
B uses the (approximate) criterion at the first stateme® taf continue slicing. Thus,
data placed irC by A flows back intoB, and on the next iteration the data fradwill

flow back intoA, resulting in imprecision. If the depth-2 context-graph of Figure 4.1c
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is used, this imprecision will not occur; however, some imprecision may still occur
sinceD has only a single context. Using a depth-3 context-graph, which is equivalent
to the unbounded-depth context-graph for our sample program, will result in a precise
analysis.

Unless an unbounded-depth context-graph is used, data may be propagated
along unrealizable pathgHorwitz et al., 1995; Horwitz et al., 1990]. For example,
data merged at theeturn  statements o€, which is the source of the imprecision, is
propagated along unrealizable paths (e.g., the dafai®propagated throug@ to B).

Our slicing algorithm tries to avoid unrealizable paths. Since the c@lftom Areturns
to A and not toB, should the slicing algorithm terminate befd@es called fromM then

no imprecision will result.

4.3 Approach: Customizable Termination

Controlling precision can reduce the running time of each iteration of an itera-
tive analysis, thereby reducing the overall time needed to perform the analysis. However,
the overall running time may still be unacceptable for many uses of a whole-program
analysis tool. For example, in our scenario in which the programmer is trying to deter-
mine if a given function is the source of an error, the programmer needs the program
slice to be computed quickly. If the program slice requires a long time to compute, the
iterative scenario that we described would be impractical. Consequently, to further re-
duce the running time of the analysis, the number of iterations needs to be decreased.
One approach is to allow the user to limit the number of iterations performed.

If an iterative analysis initially converges towards the ultimate answer quickly,
but does not complete for some time, tharstomizable terminatiooan substantially
reduce the analysis time required. One way to provide user-controlled termination of an

analysis is to permit the user to suspend an analysis, examine the intermediate results,

2The algorithm may terminate if the slicing criterion becomes empty or if the algorithm is interrupted
by the tool user. AdditionallyB may not be called fronM if the call paths are constrained, as in chop-
ping. [Jackson and Rollins, 1994; Reps and Rosay, 1995]
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and decide if the analysis has sufficiently answered the tool user’s question. Another
way is to allow the user to provide a termination test procedure that is periodically

applied to the current result of the analysis. A simpler but less flexible approach is for
the tool to provide a fixed set of parameterized termination tests.

Supporting customized termination requires a minor modification to the anal-
ysis algorithm. Events can be used to announce that a certain slicing milestone is met—
such as the end of an iteration—giving the tool’s user interface an opportunity to update
the display and apply the user’s termination test to the current results of the analysis.
The only requirement that the events impose is that the analysis’s data structures should
be consistent so that they can be viewed without crashing the tool. In this sense, the
event protocol of a module is an inherent part of the module’s behavior [Sullivan and
Notkin, 1992].

Our program slicing tool currently provides suspension of an analysis for in-
spection of the current results. The user can unobtrusively monitor the progress of the
analysis by means of an on-the-fly display. Our program slicer allows viewing the num-

ber of statements analyzed, size of the slice, and other criteria interactively.

4.4 Conclusion

By increasing the flexibility of a whole-program analysis tool, the time and
space requirements can be substantially reduced. We advocate allowing the tool user to
have high-level control over the data-flow analysis being performed. By allowing the
user to control the precision of the analysis, substantial time and space can be saved by
performing an analysis that better matches the tool user’'s needs. By allowing the user
to control the termination of the analysis, the computation of unnecessary data-flow
information can be avoided, saving time.

We have implemented our approach in our program slicing tools. We have
found that the data-flow information computed in backward program slicing has an ini-

tial rapid convergence, with 90% of the total number of statements in the slice being
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included within the first 20% of the total iterations (Chapter 8). By tuning the amount
of context-sensitivity, significant time and space can be saved. We have found that in-
creasing the context-depth yields only a small improvement in precision of the data-flow
analysis (i.e., a small reduction in the number of statements in the program slice), but
increases the running time of the analysis considerably. Our approach of improving
flexibility through user-specified information can also be applied to the computation
of the points-to information for C programs, substantially improving the results of the

subsequent program slices (Chapter 5).

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1996]. The dissertation author was the primary researcher and
author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.



Chapter 5

Pointer Usage in Large Systems

In this chapter, we examine how the ways in which pointers are used can im-
pact the precision of the points-to analysis. If the points-to analysis is too conservative,
then the subsequent data-flow analysis will suffer (e.g., be too conservative, require too
much time and space). In the previous chapter, we showed that by improving the flexi-
bility of an analysis tool significant time and space can be saved by avoiding the com-
putation of unnecessary data-flow information. In particular, we improved flexibility by
allowing the tool user to parameterize the data-flow analysis. To overcome the problems
introduced by stylized pointer usage in C programs, we allow the tool user to parameter-
ize the points-to analysis. In Chapter 8, we present our results on how parameterization

can significantly improve the precision of the points-to and data-flow analyses.

5.1 Motivation

C provides powerful, albeit low-level, language features like type casting,
pointer arithmetic, and function pointers. Programmers often use these sophisticated
language constructs in order to improve performance and ease implementation. For
example, all of our example systems use an array of function pointers to implement a
dispatch table—a table in which the key is an integer value designating an operation

and the corresponding value is the address of a function that performs that operation.

40
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# define SIN O n = func_tab [i].args;
# define COS 1 f = func_tab [i].func;
# define POW 10 x = pop ();
struct { if (n == 1)

double (*func) ( ); return (*f) (x);

int args;
} func_tab [ ] = { y = pop ()

{sin, 1},

{cos, 1}, if (n == 2)

return (*f) (x, y);

{pow, 2},
k return O

(a) (b)

Figure 5.1: Example of dispatch tables: (a) a simple dispatch table, and (b) its use.

Sometimes this dispatch table is an array of structures that contain pointers to functions,
as shown in Figure 5.1.

The way that such aggregates are allocated and manipulated often causes their
points-to classes to be merged, yielding imprecise resolution of pointer references dur-
ing analysis. The use of type casting, pointer arithmetic, and custom memory allocators
are especially problematic. The resulting merges often cascade, yielding unacceptably
conservative results. For example, if two separate dispatch tables become merged by the
analysis, then the structures they contain become merged, and finally the fields within
the structures are merged. Such collapsing of points-to classes not only results in overly
conservative resolution of pointer references during data-flow analysis, but also during
the computation of the program call-graph. As a result, the subsequent data-flow anal-
ysis can be both very inefficient and imprecise, since the analysis will traverse a large
number of function calls that cannot actually occur during program execution.

Although some of these problems with points-to class merging can be over-

come by using a context-sensitive points-to analysis, the analysis may then become too
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weak checking

specifiers

const int *x, vy, z ();

arguments| number of actuals | number of actuals
must match number at least number
of formals of formals
specifiers | one is assignable tg one is assignable to

other; structure tags
must match

qualifiers declarators

other; structure tags
need not match

formals

must match exactly,
unless one is pointe

declarators

match at outermost

rlevel, unless oneis '™ f (int x

int y) {

to void and other is | pointer and other is g (x, y+ 1.5);
pointer integer y ‘\acw/;s
qualifiers | ignored ignored

Figure 5.2: Prototype filtering rules for both strong and weak prototype filtering. The
example code fragments illustrate the program components being checked.

expensive [Atkinson and Griswold, 1996]. Furthermore, the increase in precision may
be small [Ruf, 1995] or may not yield substantially better data-flow information [Shapiro
and Horwitz, 1997b].

5.2 Approach

Since our tool is designed for program understanding, we allow the user to
provide both optimistic (i.e., “unsafe”) and conservative information. In tasks such as
compilation or automatic parallelization, the meaning of the program must be preserved.
However in program understanding, the tool user is attempting to gain knowledge about
the system or provide reassurance of an assumption made about the system. As long as
the tool user is readily aware that certain parameters may yield unsafe information, we
feel the ability to provide optimistic information is justified.

We have developed several options for parameterizing (e.g., annotating [Koel-
bel et al., 1994]) the points-to analysis that the user of our program slicer may enable.

Each has its own effect on the points-to analysis.
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void (*p) ( ) int g (int x) {
int (*a) (), y; return X;
}
int main () {
(*p) (Q); int h (int x, void *p) {
(*q) (2, "a"); return x + *(int *) p;
\ (a) (3, &y); }
int i (int x, char *p) {
void f (int x) { return *p + Xx;
\ y =X }

Figure 5.3: A program fragment using function pointers.

5.2.1 Function prototypes

In many cases we found it too costly in time and space to compute sufficiently
precise points-to sets for function pointers. Consequently, we turned to using type infor-
mation to achieve better results. In particular, the user may specify whether the program
uses weakly (old-style “K&R” C) or stronglyNsi-compliant function prototypes. The
filtering rules for both levels of checking are shown in Figure 5.2. Function prototypes
provide additional typing information for static semantic checking by ensuring that the
type and number of formal and actual arguments agree. After retrieving the points-to
set for a function pointer reference, the prototypes of the resultant set of function defi-
nitions are compared against the prototype implied by the function call. The prototypes
are computed from the actual function definition and the function call since the pro-
gram may besNsi-compliant, but not be written usingnsi-style prototypes. Enabling
this option does not affect the construction of the points-to classes, but rather filters the
classes based on the calling statement, reducing the number of functions that may be
called for a given function call expression.

For example, Figure 5.3 presents a small program using function pointers. Let

us assume that the four functiori§, , g() , h() , andi() , have all been merged into
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expression | not enabled enabled
(*p) (1); {f.ohi} | {f}
(*a) (2, "a"); {f.g.hi} | {hi}
(*a) 3, &y); {f.g.hi} | {h}

Table 5.1: Effect of strong prototype filtering, showing the points-to sets for each func-
tion call of Figure 5.3 with filtering not enabled and then enabled by the user.

the same points-to class and that be#indqg point to this class, as shown in the second
column of Table 5.1. By filtering on the prototypes of the function call and definition,
the first function call inmain() can only refer to functiori() since the other three
functions return aint andp is declared to returmoid . The second call can refer to
either functionh() or functioni() since they both require two arguments and a string
is assignable to thenid pointer argument in function() . The third call can only refer

to functionh() since a pointer tint is assignable to@id pointer, but not to ahar
pointer (i.e., string literal). The results with strong prototype filtering enabled are shown

in the third column of Table 5.1.

5.2.2 Private memory allocators

Because large programs typically process lots of information, they can dynam-
ically allocate several thousand objects. Since calling the standaral@c() func-
tion for each object incurs an overhead, many large systems employ their own mem-
ory allocator. Implementing a private memory allocator is not difficult since C’s own
memory allocatormalloc() , is itself implemented in C. Typically, a private memory
allocator is just a “wrapper” around calls to the underlying memory allocator such as
malloc() that allocates larger blocks of memory and then doles them out in appropri-
ately sized pieces, as shown in Figure 5.4(a). Another type of simple allocator, such as
thexmalloc()  function in our example programs, is one that merely cal#ioc()
and then checks the return value to see if virtual memory has been exhausted, as shown
in Figure 5.4(b).
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void *oballoc ( ) { void *xmalloc (int n) {
static char *ptr, *end; void *ptr = malloc (n);
if (ptr == end) { if (ptr == NULL) {
ptr = malloc (1024); printf ("oops\n™);
end = ptr + 1024; abort ();
} }
return p += 16; return ptr;
} }
(a) (b)

Figure 5.4. Example private memory allocators: (a) an efficient memory allocator for
sixteen-byte objects, and (b) a simpiealloc()  function from our example programs.

The use of private memory allocators can reduce the precision of points-to
analysis. One method of modeling dynamically created storage is to treat each static
call tomalloc() as though it has its own heap, which is modeled as if it were a single
large array of bytes from which objects are allocated. As a consequence, all pointers that
are associated with a particulaalloc() call site are treated as referencing the same
memory address (assuming array indices are ignored). This approach, which we use, is
simple to implement and often yields adequate precision [Steensgaard, 1996b]. For a
program using themalloc()  function described above, the program will contain sev-
eral distinct calls tacmalloc() , but only one static call tmalloc()  (by xmalloc()
itself). Thus, usingmalloc()  rather thammalloc()  results in modeling memory as a
single large, shared array, rather than several separate ones. All pointers to dynamically
allocated memory are treated as referencing the same memory location. In effect, the
points-to analysis is penalizing the programmer for writing efficient and modular code.

With the private memory allocator option, the user specifies the names of those
functions that should be treated as if they were callsdtioc() . Each call site of the
memory allocator is treated as if it returned the address of a temporary static variable,

rather than all calls returning the address of the same varidkiés information may be

LFunctions such asee()  need to be treated similarly to avoid merging due to parameter passing.
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a = xmalloc (10); points-to sets

b = xmalloc (10);

x = malloc (10); not declared: declared:

y = malloc (10); {ab} {x} {y} {ap {b} {x} {y}
(a) (b)

Figure 5.5: Effect of declaring private memory allocators: (a) example code using the
xmalloc()  function of Figure 5.4, and (b) the resulting points-to sets based on whether
the user has declarechalloc()  as a private memory allocator.

optimistic if the user is unsure which functions serve as memory allocators. The effect
of using this option is to introduce more addresses to the points-to analysis, resulting in
more points-to locations, as shown in Figure 5.5 in which the locatioasamidb are

now distinct just as the locatiorsandy are distinct.

5.2.3 Structure members

A typical C program uses structures quite heavily to model objects. A struc-
ture may contain pointers to other objects of different types. Since these objects are
of different types, they are likely distinct. Although distinguishing structure members
in points-to analysis can increase precision, sometimes the benefit is small and is not
justified by the higher cost. In the worst case the analysis may require exponential time
when structure members are distinguished [Steensgaard, 1996a].

To permit managing the time and space complexity of the analysis, our anal-
ysis distinguishes structure members only when chosen as an option by the user. Thus,
references ta.x anda.y are normally treated as a referenceatoAs a result, any
objects pointed to by the andy members are merged into a single points-to class.

When the user enables the structure members option, two such locations are

not merged. A structure assignment is treated as assigning the individual members. If

2The points-to analysis is similar to that described in [Steensgaard, 1996a], but assumes that adjacent
structure members are infinitely far apart and thus does not take into account the size of an access during
the analysis.
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char a [10];

char *p, *q;

int i, j;

=1

p = &a

p [l =0;

j = (int) p; * jis just p ¥/
q = (char *) i [* q is just i *

printf ("%d\n", p [i]); [* same as *(p + i) */
printf ("%d\n", j [q]); [* same as *(j + q) */

Figure 5.6: A program fragment showing commutativity of the array operator. Although
the variablg is the integer and variabtgis the pointer in the final array reference, it is
j ,» and notg, that in fact carries the pointer information.

pointer arithmetic is performed on a structure pointer, then the members are “collapsed”
(i.e., the points-to sets for all members are merged and the structure is thereafter treated
as a single location) since a dereference through the generated pointer value may assign
to any member or possibly multiple members. A variant structure or “union” type in C

is considered to be a structure whose fields are already collapsed.

5.2.4 Strict arrays

In C, the array operator is commutative because array references are semanti-
cally equivalent to pointer addition, which itself is commutative. The expressi@ns
andi[a] are identical. However, the second form in which the pointer value appears
within the brackets is generally not used. Normally, the points-to analysis must assume
that this second form can be used. Thus, if the indeg used to index two distinct
locationsa andb, they become indistinguishable to the analysis since it assumes that
andb may be the indices and thitis the pointer value. (Use of the cast operator in C

to override the type system makes this possible, as shown in Figure 5.6.)
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s.ptr = &z; points-to sets

i = s.idx;

x = a [i; not enabled: enabled:

y = b [i]; {ab } {a} {b}
() (b)

Figure 5.7: Effect of the strict arrays option: (a) example code showing accesses to two
arrays with the same index, and (b) the resulting points-to sets based on whether the tool
user has enabled the strict arrays option.

Although the programmer may not deliberately write code in this fashion, the
points-to analysis may still detect such an occurrence. For example, if either operand of
the array operator is a structure reference and either structure members have not been
distinguished or the corresponding structure has been collapsed, then any integer and
pointer members of the structure will have been merged, and the resulting operand may
therefore be seen as carrying the pointer information. For example, in Figure 5.7 the
two arraysa andb are indexed with the same variable, which is the result of a structure
reference. However, the structure also holds a pointer value by the first assignment. If
structure members are not distinguished or the structure has been collapsed (perhaps the
structure is ainion type), then the two arrays will be merged by the points-to analysis.

By enabling the strict arrays option, the user precludes this possibility, result-
ing in the two locations not being merged. Using this option may yield unsafe infor-
mation unless the tool user is sure that the second form of array indexing is never used.
However, a special case existaifs declared as an array rather than a pointer. Since an
array variable is constant and cannot be assigned, we can be suregdiia index and

thata is always the pointer value.

5.2.5 Combining parameters

Although each parameter can individually improve the precision of the points-

to analysis, when combined the results are magnified. Continuing our exangdecof
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the array commutativity parameter prevents merging of separate arrays of structures, and
the structure and prototype parameters distinguish the individual structure components.
However, in some cases, the effects of one parameter will subsume the effects of another.
In particular, we have found for function pointers that filtering the points-to classes using

strong prototypes is the most beneficial (Chapter 8).

5.3 Conclusion

The use of pointers in large programs can have a significant impact on the pre-
cision of the points-to analysis. The use of private memory allocators, dispatch tables,
and structures can decrease the precision of the analysis. To overcome the difficulties
presented by these and other uses of pointers, we allow the tool user to parameterize the
points-to analysis. By allowing the user to easily specify high-level parameterizations of
the analysis, the precision of the points-to analysis can be substantially increased while

imposing little burden on the tool user.

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1998]. The dissertation author was the primary researcher and
author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.



Chapter 6

Data-Flow Analysis in the Presence of

Pointers to Locals

In the absence of either recursion or pointers to local variables, interprocedural
slicing is simple and well-understood. However, for a language such as C that provides
both of these features, traditional data-flow analyses may yield unsafe results. We first
present the traditional data-flow equations and then describe how the analysis may be
in error. Finally, we present our space-efficient data-flow equations that overcome these

problems.

6.1 Background and Motivation

6.1.1 Data-flow equations

Figure 6.1 presents traditional data-flow equations for backward slicing. At
each program point) represents a data-flow set. At each assignment statement (Equa-
tions 6.1.3-6.1.5), some set of variablésfs, are defined and another set of variables,
uses, are used. If some variable ifefs is also inD, then the killing definitions oflefs
are removed fronD anduses are added t@). Otherwise,D remains unchanged. In

Equation 6.1.5, we assume that all assignments through a pointer dereference are pre-
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return from f()

D.wit = Degis U (D; NS) (6.1.1)
X =y
if z € D, then

D; = D; — {z} U{y} (6.1.3)
*p o= X
if xp N D; # ¢ then

51

call to f()

Di = (D; — S) U (Dentry N S)  (6.1.2)

X =

if z € D, then

D = variables of interest
S = all global (static) variables
xp= points-to set of variable p

Figure 6.1: Traditional data-flow equations for slicing in the presence of recursion with-
out pointers to local variables. Sets are subscripted with the program point to which
they refer. Sets that are not subscripted are the same for all program points. The current
statement has program pointUnless otherwise noted, a set passes through a program
point unchanged.

serving, since the points-to set may contain more than one variable, but only one variable
is in fact updated. The remaining two equations (Equations 6.1.1 and 6.1.2) show how
the D set is manipulated across function calls usingdke shown in Figure 6.2. The

S set contains all static (global) variables in the program and is used to partition a set
into its local and global variablés.

6.1.2 Incorrectness of traditional equations

Figure 6.3 shows a small C program with a recursive fundion. Consider
performing a backward program slice at the assignment ito f() . Consequently,
we are looking for an assignment ¢ which is a local variable té() . Proceeding
backward through the function, the next statement examined is the recursivefQall to
When slicing into the recursive call, we need to remove local variables from the data-

flow sets (Equations 6.1.1 and 6.1.2) [Knoop and Steffen, 1992]. This step is necessary

We use the terrtocal variableto mean amutomatic variablén C. Similarly, the ternglobal variable
should be read astatic variable Since C overloads the use of the “static” keyword, we use the terms
local and global variable instead.
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return from

Figure 6.2: ExampleFG showing program points relevant to function calls.

to avoid finding a definition of the same local variable but witHifferent activation

in the recursive call. Continuing our example, the data-flow sets become empty after
removingx, resulting in no further information being added to the slice by the recursive
call. However, we have now erroneously excluded the last assignméfit ifirom

the slice. This statement is clearly an assignment, talthough which activation of

we do not know. This is anissing definitiorof x. On the other hand, if we do not
removex from the data-flow set, then we can find false definitiong dlecause these
definitions may in fact refer to other activationsxaf If any of these definitions is a

killing definition, then we have talse killof x and our analysis is also in error.

6.2 Approach

The main difficulty with incorporating both recursion and pointers to local
variables is that the two features require that local variables be treated in contradictory
ways when slicing into a function call. To ensure correctness, local variables must be
removed for the data-flow sets in the presence of recursion, but must remain in the data-
flow sets in the presence of pointers to local variables. We introduce two new data-flow
sets,N and P, in our equations, shown in Figure 6.4. Theset is used to solve the

problem of a missing definition, and tlieset it used to solve the problem of a false Kkill.
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f(){ int y, *p;
int x = 1;
main () {
if (g ()) F O
p = &X; printf ("%d\n", y);
}
if (9 () {
X = 2;
f () g () {
} int z;
= X scanf ("%d", &z);
*p = 3; return z;
} }

Figure 6.3: Example program showing pointers to local variables in the presence of
recursion. The global pointer varialgpeis conditionally assigned to the local variable

x of functionf() , which is recursive. As a result of the assignmeninay point to
different activations ok, which introduces the possibility of a missing definition or a
false kill.

6.2.1 Solving the problem of a missing definition

In the presence of recursion, a local variable must be removedframorder
to avoid finding a killing definition of the same variable but with a different activation.
However, the local variable may be referenced through a pointer in a called function.
In our approach, local variables are removed fromand placed intaV of the called
function (Equation 6.4.1c). This process is similar to the mapping and unmapping of
nonvisible variables [Emami et al., 1994; Landi et al., 1993]. Consider an assignment
made by dereferencing a pointer variapléEquation 6.4.5). If the points-to set pf
overlaps with/NV, then a local variable declared in another function has been defined.
However, which activation of the variable that has been defined is unknown, and there-
fore the assignment must be treated as a preserving definition. The assignment statement
should be added to the slice and the variables used at that statement adddéaitthe

variables defined are not removed.
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return from f() call to f()

Pyt = Pezit U B (641(’:1) P,=PU Pentry (642a)
Dewit = Deacit ) (Dz N S) (641b) Dz = (Dz - S) U (Dentry N S) (642b)
Newit = Negig U N; U (Dz - S) (641C)

X =y X = *p
if x € P, then if x € P, then
D; = D; U {y} (6.4.3a) P,=P,U(xp—5) (6.4.4a)
elseifx € D, then D;,=D;U(xpNS)Uu{p} (6.4.4b)
D;=D; —{z}U{y} (6.4.3b) elseifz € D, then
P,=P U (xp—19) (6.4.4c)

*n o= X N = nonlocal local variables of interest

D = variables of interest with killing defs
P = locals of interest with preserving defs
S = all global (static) variables

*p = points-to set of variable p

if xp N (D; U P;UN,) # ¢then

Figure 6.4: Our data-flow equations for slicing in the presence of recursion and pointers
to local variables. Sets are subscripted with the program point to which they refer. Sets
that are not subscripted are the same for all program points. The current statement
has program point. Unless otherwise noted, a set passes through a program point

unchanged.

The N set models the transitive closure of the program stack, but only for
local variables of interest rather than for all local variables. When a function is called,
the local variables of interest to the caller are added ' tof the called function along
with the caller’'sV set (Equation 6.4.1c). Sin¢é only containsionlocallocal variables
of interest, it need only be examined in statements containing an assignment by means

of a pointer dereference (Equation 6.4.5).

6.2.2 Solving the problem of a false Kill

If alocal variable is referenced out of scope by means of a pointer dereference,

we cannot be certain which activation of the variable is actually used. To be safe, we
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must therefore assume that all possible activations are referenced. The activations of a
local variable can be thought of as an array, with the stack pointer referring to the last
element of the array. If a local variable is referenced out of scope, we do not know the
array “index” and so must assume all activations are referenced. Thus, a local variable
referenced out of scope is treated just like an array—any definition is always a preserv-
ing definition. In our approach, the set keeps track of these variables. UsingSrset,

the variables referenced by means of a pointer dereference are partitioned into its local
and global variables (Equations 6.4.4a—6.4.4d). The local variables are adeedrtd

the global variables are addedfo At an assignment statement, if the variable being
defined is present i, then the statement is included in the slice and the corresponding
variables used are added iy but the variable is not removed. Consequently, Equa-
tion 6.1.3 now requires two cases (Equations 6.4.3a and 6.4.3b), as does Equation 6.1.4
(Equations 6.4.4a-b and 6.4.4c-d).

The P set contains those local variables that have been “demoted” to have
only preserving definitions. The demotion occurs only if the variable is referenced out
of scope by means of a pointer dereference. Once a local variable is addtdtto
is never removed. Finally, the demotion propagates through all (backward) reachable
program points—P is propagated into a called function (Equation 6.4.1a) and also into

any calling function (Equation 6.4.2a).

6.2.3 Correctness of our equations

To provide insight into the correctness of our equations, we can examine how
the equations are transformed if pointers to local variables are not allowed. In this
case, the points-to set of a variapleontains only global variables. Consequently, no
variables are added to thieset in Equations 6.4.4a and 6.4.4c. Since these are the only
equations in which individual variables are addedPothe P set is therefore always
empty and Equations 6.4.1a, 6.4.2a, 6.4.3a, 6.4.4a, 6.4.4b, and 6.4.4c can be eliminated.
Also, since theV set contains only local variables and tReset is always empty, both

the N and P sets can be eliminated in the conditional test for Equation 6.4.5. Therefore,
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without pointers to local variables, the equations reduce to the more familiar data-flow

equations for backward program slicing given in Figure 6.1.

6.3 Conclusion

Traditional equations for interprocedural slicing are incorrect if pointers to
local variables are used in recursive programs. We demonstrated that the problem is
due to either a false definition or a missing kill. We presented new data-flow equations,
derived from the traditional equations, which solve these problems. In Chapter 7, we

discuss an efficient implementation of our equations.

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1998]. The dissertation author was the primary researcher and
author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.



Chapter 7

Implementation

Because of the high space and time demands of whole-program analysis, spe-
cial attention to implementation details are required. In this chapter we present several
aspects of the implementation of the data-flow framework of our program slicing tools

that was not presented in earlier chapters.

7.1 Block Visitation Algorithms

To perform data-flow analysis, a compiler or program understanding tool prop-
agates the computed data-flow information along the edges of the constteciethe
data-flow facts along the incoming edges of a node are combined into a single set that
is then transformed according to the data-flow properties of the node. The resulting set
is then propagated along all output edges of the node. Ictheis reducible (e.g.,
the program does not contain any unstructured jump statements), then the data-flow in-
formation can typically be propagated fully in a single pass overcthe[Aho et al.,

1986]. Otherwise, an iterative algorithm must be used that propagates the data-flow
information until no further changes to the data-flow sets occur. One way to achieve
good performance in an analysis tool is to design and implement an iterative algorithm
that converges quickly or that has a short iteration time. Chapter 4 presents high-level

techniques for achieving both goals.
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changed=true worklist := {start}
while changeddo while worklist # ¢ do
changed= false worklist := worklist- {B}
for each block Blo old ;= out[B]
old := out[B] visit (B)
visit (B) if old # out[B] then
if old # out[B] then for P in pred[B] do
changed= true worklist := worklistU {P}
end if end for
end for end if
end while end while
(@) (b)

Figure 7.1: Example pseudocode for vistation algorithms: (a) the iterative search algo-
rithm, and (b) the worklist algorithm.

Since both thevumpPs and C languages allow unstructured control-flow, an
iterative algorithm is needed by our program slicing tool. The visitation order of the
nodes does not affect the correctness of the algorithm, so long as the data-flow infor-
mation is fully propagated along all edges until no more changes occur to the data-flow
sets. However, the visitation order can greatly impact the performance of the algorithm.

Two common visitation algorithms are used, as shown in Figure 7.1.

Iterative search algorithm: In the iterative search (i.e., “for each basic block”) algo-
rithm (Figure 7.1a), each block (i.ecFG node) is visited once. If any changes have
occurred, then each block is visited once again. This process repeats until no further
changes occur to the data-flow sets. Typically, a depth-first or breadth-first search of the
CFGis used to visit all blocks exactly once in an iteration, with depth-first search usually

resulting in fewer required iterations [Aho et al., 1986].

Worklist algorithm:  In the worklist algorithm (Figure 7.1b), the blocks (i.e., nodes)
to be visited are placed on a worklist, which is typically implemented using a stack or

gueue, with a stack implementation usually resulting in fewer block visits. A block is
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) B1
i = 0;
while (i < n) { B2

if (sum > 20)

j =)+ 1 B3

sum = sum + i; B4

i =i+ 1;
} B5 suimiisu:nlri

return sum;
B6 return sum

Figure 7.2: A program fragment and its annotabea.

removed from the worklist and visited. If any changes occur to the data-flow sets of the
block, then all predecessors of the block (successors for a forward data-flow analysis)

are placed on the worklist. The algorithm repeats until the worklist is empty.

Figure 7.2 shows a program fragment and its assocater] annotated with
block numbers. Consider starting a backward program slice at the return statement
located at bloclB6. An example visitation order fayne iterationof the iterative search
algorithm would beB6, B2, B1, B5, B4, andB3. For the worklist algorithm, aomplete
visitationorder might beB6, B2, B5, B4, B3, B2, B5, andB1. Unlike the iterative search
algorithm, the worklist algorithm can visit a block many times before visiting other
blocks. For example, block&2 andB5 are visited twice before blodR1is ever visited.

In a whole-program analysis tool, the space required to perform the analysis
must be reduced in order to obtain good performance. We implemented both the iterative
search and worklist algorithms for our slicing tool for C programs. The algorithms
required equal implementation time. We found that the worklist algorithm results in
approximately 50% less block visits than the iterative search algorithm. However, the
iterative search algorithm can be implemented such that significant space can be saved,

while the worklist algorithm to our knowledge cannot.
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7.2 Reclamation of Data-Flow Sets

Although the worklist algorithm requires substantially fewer node visits to
converge than the iterative search algorithm, we chose to use the iterative search algo-
rithm because it has the advantage that the data-flow sets for each block can be reclaimed
during an iteration. The iterative search algorithm guarantees that each block in the pro-
gram is visited exactly once before any block is revisited. Recall that the input data-flow
set of a block is the confluence of the data-flow sets on all incoming edges. In a back-
ward data-flow analysis, once all predecessors of a block have been visited then the
data-flow set for the block itself will no longer be needed. Consequently, the data-flow
set can be deallocated. If a depth-first search is used to visit all blocks, then the maxi-
mum number of data-flow sets that need to be allocated at any one time is proportional
to the width of theCcFgG, resulting in substantial savings in space.

In our first implementation of this reclamation approach, we found that it was
cumbersome to keep a reference count on each block to keep track of the number of its
predecessors that had been visited. Consequently, we chose a simpler implementation
without reference counts: once the depth-first search of a called function is complete and
all blocks have been visited, the data-flow set of each block (other than the entry and
exit blocks) is deallocated if all predecessors of the block were visited after the block
itself was visited. Therefore, data-flow analysis with reclamation can easily be done as
a two-step process, in which the first step visits each block and also stores the visitation
order (Figure 7.3a), and the second step reclaims the data-flow sets of those blocks that
meet the mentioned criteria (Figure 7.3b). Slightly more data-flow sets remain active
at any time than are minimally needed, but the implementation is much simpler since
reference counting is not needed.

Unfortunately, data-flow set reclamation is not possible to our knowledge us-
ing the worklist algorithm. Whereas the iterative search algorithm is driven strictly by
the control-flow properties of the program and has the inherent property than all blocks

will be visited exactly once during each iteration, the worklist algorithm is driven more
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function dfs(B) for Bin ordereddo
ordered:= ordered- [B] before:= beforeu {B}
visited:= visitedu {B} if B # entryand B # exitthen
old := out[B] reclaimable:= true
visit (B)
for P in pred[B] do
if old # out[B] then if P € beforethen
changed=true reclaimable:= false
end if end if
end for
for Pin pred[B] do
if P ¢ visitedthen if reclaimablethen
dfs(P) delete(out[B])
end if end if
end for end if
end function end for
(@) (b)

Figure 7.3: Example of data-flow set reclamation: (a) a depth-first search algorithm
that also stores the visitation order, and (b) a reclamation algorithm that uses the visita-
tion order to safely reclaim unneeded data-flow sets. The notatign] indicates the
concatenation of the list with the single-element list containing

by the data-flow properties of the program. As a result, data-flow information is propa-
gated more effectively, but blocks are visited in an unpredictable order and a block may
be visited many times before all of its predecessors are visited. Therefore, a reference
counting approach is not easily implemented.

Attempting to use our simpler reclamation implementation with the worklist
algorithm also has performance problems. A small change in the data-flow set of the
calling function may require that the called function be visited again, in which case the
data-flow sets for the entire function need to be recomputed and reconverged. This type
of nested convergence could require exponential time. Although we did implement this
type of reclamation, we found that the number of block visits was substantially larger
than the number of visits needed by the iterative search algorithm (regardless of whether

reclamation was performed).
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worklist iterative search
space
required
iterative search worklist with
with reclamation reclamation

number of block visits

Figure 7.4: A comparison of our block visitation algorithms.

Figure 7.4 summarizes the characteristics of our different visitation algorithms
with and without data-flow set reclamation. Although the worklist algorithm requires
fewer block visits, for large programs the iterative search algorithm with reclamation is

a better choice since it saves considerable space.

7.3 Data-Flow Set Implementation

In Chapter 6 we presented data-flow equations for correctly computing a back-
ward program slice for recursive C programs containing pointers to local variables. If
implemented naively, our data-flow equations requires three data-flow sets per block
(i.e., there is ond, P, andN set per block). Given thatcc has 238,000 symbols and
120,000 blocks, a bit-set implementation of data-flow sets would require oveB10
(238,000symbolsx 120,000blocksx 3 sets / blockx 1 bit / symbol-=- 8 bits / byt§ of
space. (A bit-set is implemented by consecutively mapping the elements of the input set
onto the natural numbers. Each number represents the bit position in a bit-vector. An
element is a member of the set if and only if its corresponding bit in the bit-vector is
set. A bit-vector representation allows set operations such as union and intersection to
be implemented efficiently using logical bit-wise operations. However, such operations

can only be performed across bit-sets with identical mappings (bit-numberings).)
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D [ globas | locals temporaries | D C globals U locals U temps
P | globals ' locals | temporaries \ P C globals U locals U temps
N | globals | locals ! temporaries | N C globals U locals U temps

Figure 7.5: A simple implementation of the data-flow sets for our equations. The space
required is approximately 3dB for Gcceven if theN and P sets are flow-insensitive.

However, sincéV does not change while slicing a function, a singjleset can
be used for all blocks of the function. Examining tReset, we see that it is nondecreas-
ing in size since variables are only added to the set and never removed, unlike the
set. This fact suggests th&tcan be made flow-insensitive with little loss in precision.
Consequently, we chose to also use a sifgket for all blocks of a function. This de-
cision sacrifices precision slightly in favor of performance. Using this implementation,
the space requirements fecc are reduced to approximately 3z® (10 GB -+ 3), still
an unacceptable amount of space. This simple implementation is shown in Figure 7.5.
An analysis of the bit-sets revealed that they are typically very sparse. Exam-
ining our equations, we see thatand/N contain only local variables, whil® contains
local variables, global variables, and generated temporaries. Also, temporaries cannot
be the target of a pointer and therefore cannot be referenced out of'sédptherefore
decided to partition the bit-sets into three distinct classes: global variables, local vari-
ables, and temporaries for each function, as shown in Figure 7.6DBe¢now consists
of three bit-sets, but requires space to store only all the global variables, local variables,
and themaximurmumber of temporarigger function If we assume for simplicity that
the 220,000 temporaries are evenly distributed an®ngs 2,300 functions, the space

requirements are reduced to approximately@) which is acceptable.

!There are a few cases where temporaries can be the target of a pointer such as when a structure is
returned from a function. In these cases, we introduce a new type of temporary variable cpkésibh
The introduction of specials allows us to treat the vast majority of temporaries as though they could not
be the target of a pointer.
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I temporaries for one function

D [gobas| | locas | [ [ |  temporaries | D C globals U locals U temps;
P [gobas| | locds | | temporaries | P C locals
N ‘ globals ‘ ‘ locals ‘ ‘ temporaries ‘ N C locals

Figure 7.6: A better implementation of the data-flow sets for our data-flow equations.
The sets are partitioned into their three distinct classes. Only the shaded areas of a set
are actually used at any given time.

The partitioning also improves algorithmic performance and eases implemen-
tation. The data-flow equations of Figure 6.4 require thai2tad P sets be partitioned
into their local and global variables components. Logically, this partitioning is done us-
ing set intersections and differences. With these components maintained as separate
sets, the partitioning operations are trivial. For example, rather than computing
to retrieve the global variables @i, only the set of global variables @ (symbolically
D.globals ) need be retrieved, thereby changing(m) operation into arD(1) op-
eration.

Examining theP and NV sets in even greater detail, we see that they can con-
tain only local variables that are pointed to by some pointer variable. Since there are
far fewer of these¢arget localsthan local variables that are not pointed to by some vari-
able fiontarget localy the locals of the” and NV sets can be further partitioned into
two classes to save space, as shown in Figure 7.7. However, examining our data-flow
equations, we see that the local variables of thand NV sets must be operated on in
conjunction with those of thé sets (Equations 6.4.1c and 6.4.5). Therefeselic-
itly partitioning the local variables into two classes would complicate these operations.
Such an implementation of the data-flow equations would be complicated by the need to
combine the sets of target and nontarget locals into one set for any operation involving
the locals from theD set. Given that all data-flow are implemented using bit-sets, this

process could be complicated if the various sets have different bit-numberings.
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I temporaries for one function

D [gobas| [ locas | | [ [  temporaries | D C globals U locals U temps;
P ‘ globals ‘ ‘ ‘ ‘ ‘ temporaries ‘ P C ZOcalstarget
N [ globais | [ ] || temporaries | NC locals grget

target locals ! L nontarget locals

Figure 7.7: Our final implementation of the data-flow sets for our data-flow equations.
The local variables of thé> and N sets are further separated into target and nontarget
locals. The slicing tool assigns the target locals lower bit-numbers than the nontarget
locals to ensure “packing” of the bit-sets.

Rather than partitioning the local variables into two distinct sets, we elected to
keep them as one set. However, since the points-to analysis is performed prior to data-
flow analysis (Chapter 3), we know which local variables are target locals and which are
nontarget locals. We can therefore easily ensure that the target locals are assigned lower
bit-numbers than the nontarget locals. This numbering ensures that the target locals are
“packed” at the start of the bit-sets, giving us the space savings we desire without the
implementation complexities of splitting the locals into two bit-sets. Because programs
often contain few target locals, the space allocated forithend V sets is negligible
as a result of our aggressive implementation. Consequently, the space required for the
data-flow sets of our new equations is approximately the same space required for the

sets of the more traditional equations given in Figure 6.1.

7.4 Control-Flow Dependencies

Program slicing requires the computation of control-flow dependencies as well
as the computation data-flow information. For example, a backward program slice is
defined as the set of all statements that might affect the value of a specified variable.
Consequently, if the execution of a statement included in the slice is dependent upon
the execution of another program statement (e.g., the included statement is within a

conditional), then the variables used at the controlling statement must also be included



66

in the slicing criteria. We therefore need to determine which statements are control-
dependent upon which other statements in the program.

We compute control-flow dependencies by computing the dominance frontiers
of the reversedFG [Cytron et al., 1991]. Computation of the dominance frontiers in
turn requires the computation of the dominators of the flowgraph [Lengauer and Tarjan,

1979]. Both computations can be performed in linear time in the size of the flowgraph.

7.5 Conclusion

Because whole-program analysis imposes such high time and demands, spe-
cial attention to implementation details is required. In particular, the implementation
of the data-flow analysis can significantly affect a tool’'s time and space requirements.
We presented different block visitation algorithms and showed that use of the iterative
search algorithm is more appropriate in a whole-program analysis tool because it fa-
cilitates data-flow set reclamation. We also showed an efficient implementation of our

data-flow equations given in Chapter 6.

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1998]. The dissertation author was the primary researcher and
author and the co-author of this publication directed and supervised the research that

forms the basis for this chapter.



Chapter 8

Evaluation and Results

To evaluate the time, space, and precision characteristics of our approach, we
implemented program slicers based on our ideas for the QuamgPs programming
languages and measured their performance. The measurements given in this chapter are
a representative subset of the complete data, which is given in Appendix A.

MUMPS is an interpreted programming language witlBasic-like syntax,
reference parameters, and dynamic scoping. Our slicing algorithenf@ir s correctly
handles dynamic scoping by treating each variable reference as a pointer dereference
to any of the reaching variable declarations. In addition to analyziags, whose
basic statistics appear in Table 1.1, we also analgzadrPLy, a 1,000 line compliance
checker forcHCS, also written inMUMPS.

We analyzed three large C programs whose basic statistics appear in Table 1.2.
Gccrefers to theccl program of thesNu C compiler [Stallman, 1991], version 2.7.2
for SunOS 4.1.3emAcsrefers to theemacs program of thesNu Emacs editor [Stall-
man, 1993], version 19.34b for SunOS 4.1.3 without window system SUE.RLAP
refers to theburlap program of the FEIt finite element analysis system [Gobat and
Atkinson, 1994], version 3.02 for SunOS 4.1.3.

Our slicer for C programs correctly handles functions with a variable number
of arguments and the effects due to library functions. Library functions are handled

by providing a skeleton for each function that correctly summarizes its effects. Our
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current implementation does not inline library functions, which is a common technique
for increasing precision by adding one level of context-sensitivity. Signal handlers and
thelongjmp andsetjimp functions are not handled.

For all slices of the C programs, we tried to choose variables that might be se-
lected by a programmer during debugging. ForuavpPs programs, the slicing criteria
were chosen to produce a reasonable distribution of slice sizes, not to be representative
of typical slices, due to our lack of familiarity with the actual programs, and therefore
conclusions should not be drawn about slicing itself, only about our techniques. Also,
for both the C andiumPs programs, the slices computed do not slice into the callers of
the function in which the slice is initiated; consequently, the slices are akin to slicing on

statements in the main procedure, which has no callers [Harrold and Ci, 1998].

8.1 Hypotheses

To test our claims about the value of demand-driven computation, discarding,
precision control, and customizable termination, we performed several backward slices
using our program slicers. We expected that our demand-driven techniques would re-
duce the time and space to be a function of the size of the slice, allowing the computation
of slices that were not possible before. However, we expected the basic algorithmic cost
of slicing would still be high, giving us an opportunity to evaluate the potential of the
other features.

For the slices of C programs, it was our expectation that the time and space
requirements would be acceptable, given our use of a near-linear time points-to analy-
sis, our aggressive approach at implementing our data-flow equations, and piggybacking
construction of the& FGwith the computation of the points-to sets. We also expected that
the parameterization of the points-to analysis would significantly increase the number
of points-to classes, and thereby also increase the precision of the subsequent data-flow
analysis. By filtering the points-to classes for function pointers based on their com-

puted prototypes, we also expected the average number of functions called by means
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of a function pointer to decrease, improving the precision of the call-graph and hence
the subsequent data-flow analysis. With the exception of distinguishing structure mem-
bers, which is known to take worst-case exponential time and space, we anticipated that
the parameterizations of the points-to analysis would have little effect on its time and
space requirements. Finally, we projected that combining parameters could significantly
magnify the effects of the individual parameters.

The times reported do not include the time required to compute and write the
call-graph to disk, since it is only recomputed when a file of the program to be sliced is
changed (Chapters 2 and 3). Fcs this information is computed in 8.0 minutes on
a SparcStation 10 and occupies Mg of disk space. For our largest C prograBgcC,
the information is computed in only 52 seconds on an UltraSparc 2 and occupies similar

space (see the footnote on Page 5 for details on the gathering of results).

8.2 Demand-Driven Computation and Discarding

Figure 8.1 presents the statistics for a range of slicesHafs. Figure 8.1a
shows that the times and sizes of the slices appear to be related quadratically. Figure 8.1b
shows that the space required appears to be linearly related to the slice size. These results
indicate that we have met our goal of having the cost of the analysis be a function of the
result’s size, rather than the size of the entire program (Chapter 2).

Because the slices did not exhaust real memory—much less virtual memory—
the role of discarding did not come into play. However, a separate set of measurements
of slicing without discarding indicates that the cost of discardingasie was insignif-
icant. Recomputing slices withoasT discarding results in smaller slices being a few
percent faster, and larger slices being a few percent slower.

The results for the largest slices of the C programs that we performed are also
presented in Figure 8.1. The time given in the table is the time necessary to perform
only the slice, not to compute the points-to information, which is given in Table A.5.

We believe that the time and space requirements are acceptable for a large program such
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Figure 8.1: Statistics for different slices: (a) and (b) slicesi€swith a single context
per procedure, (c) and (d) slices of the three C programs usingtiiieg prototypes
option (Chapter 5). The complete measurements are given in Figures A.1 and A.2.

asGcce. For smaller programs, such asRLAP, the slicer performs extremely well.

These results indicate that slicing large programs is feasible using our approach.

8.3 Context-Depth Sensitivity

By allowing the user to control the context-depth of the data-flow analysis, we
allow the user to balance the trade-offs between precision and performance (Chapter 4).

Computing program slices at a high context-depth may yield better results, but at the
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criteria depth| contexts| time | space| size of slice
COMPLY | (COMBLK:14{ERRTYP,) 36 0.030| 0.37 780
74 0.058| 0.43 774
121 | 0.092| 0.55 769
602 | 0.484| 1.42 769
248 5.3| 19.6 14,711
488 10.3| 23.1 14,532
2,553 | 121.0| 53.6 14,530

CHCs | (DIC:38{DUOUT})

WNRYE WN -

Table 8.1: Statistics at different context-depths for the temPs programs. Time
is given in minutes and space in megabytes. The symbab used to indicate an
unbounded context-depth.

cost of an unacceptably long running time. On the other hand, computing slices at a low
context-depth may not be sufficiently precise.

Table 8.1 contains statistics for one slicempLy and one slice oEHcs, at
different context-depths. In each slice, the number of calling contexts increases rapidly
with the context-depth, significantly increasing the time and space required. However,
in the slices ofcomPLY, a low context-depth yields a program slice equivalent to a
program slice obtained at an unbounded context-depth. Although the resulting context-
graphs differ, unbounded context-depth does notimprove the results. The slcesof
show that as the context-depth increases, at first there is an appreciable decrease (1%)
in the number of statements in the slice. However, an additional increase of the context-
depth yields little improvement. These slices suggest that a high context-depth may
be unnecessary to obtain a precise slice. They also support our hypothesis that a low
context-depth slice is usually several times less costly than a higher one, suggesting that
there is little extra cost to the tool user in performing a low context-depth slice first, on
the hope that the result will adequately answer the tool user’s question.

Table 8.2 presents statistics for one sliceBolRLAP and one slice ofscc,
at different context-depths. These slices exhibit the same behavior as the slices of the
MUMPS programs—increasing the context-depth yields a small decrease in the number

of statements in the slice and a large increase in the time and space required. For all
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criteria depth| time | space| size of slice
BURLAP | (arith.c:145{type errort) 0.20f 2.0 8,849
124, 54 8,824
3.56| 17.5 8,680
0.46| 2.6 9,702
4.20| 12.9 9,574
29.98| 71.0 9,556

GCC (unroll.c:3085{ constQrtx})

WNRFPWNPF-

Table 8.2: Statistics at different context-depths for two C programs. Time is given in
minutes and space in megabytes. The points-to analysis was performed ustigribe
prototypesoption (Chapter 5).

but the smallest slices (i.e., less than 1,000 statements), we were unable to compute a
slice at unbounded context-depth because of the high time and space requirements. For
example, several slices ofcc failed to complete the first iteration after 12 hours. For
other slices performed at a moderate context-depth (e.g., 2 or 3), the space requirements
did not exceed the virtual memory capacity of the machine, but did exceed the main
memory capacity. As a result, the program slicer spent most of its time moving data
within the virtual memory hierarchy. These slices illustrate a disadvantage—poor ref-
erence locality—of the iterative search algorithm that was used (Chapter 7). However,
without the use of this algorithm, data-flow set reclamation is not possible, and without
reclamation, the space requirements would exceed the virtual memory capacity.

For most slices, we were unable to determine the context-depth that would
result in a program slice equivalent to that obtained using an unbounded context-depth,
as we were witltoOMPLY, since the space required exceeds the virtual memory capacity
of the machine—computing a slice at a context-depth of fourraf sexceeded the 600
MB available. The inability to compute slices at high context-depths of large programs
is not unexpected. If the call-graph hasnodes, then the depth-1 context-graph has
O(n) nodes. In the worst case, each increase in context-depth can increase the number
of nodes in the context-graph by a factorrofi.e., a depth-2 context-graph can have

O(n?) nodes, a depth-3 context-graph can héye?) nodes, etc.).
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program, and (d) a single slice BOURLAP at different parameterizations of the points-to
analysis.

8.4 Algorithmic Convergence

Even if a slice is computed at a single context-depth, the running time may
still be unacceptable. For example, some program slicesiasin Figure 8.1 require
more than two hours to complete, which for some uses may be unacceptable. It is our
belief that the tool user should be able to interrupt the program slicer and examine the
intermediate results (Chapter 4).

Our results show that the majority of statements in a slice are obtained after

the first few iterations. Figure 8.2 depicts the convergence properties of our program
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slicing algorithm by plotting the size of the slice at each iteratidrhese figures show

that approximately 80% of the statements in the slice are obtained within the first 20%
of the iterations. Figure 8.2a presents data for two slicesHafs at different context-
depths, illustrating that the rate of convergence appears to be independent of the context-
depth. Figure 8.2b presents data for several sizes of slices@d, illustrating that the
convergence rate also appears to be independent of the slice size. Figure 8.2c shows
data for three large slices of the C programs. Finally, Figure 8.2c shows data for a single
slice of BURLAP with different parameterizations of the points-to analysis. For these
figures, the convergence rate also appears to be independent of both the program sliced
and the choice of parameterization of the points-to analysis. This data seems to confirm
our belief that the tool user can use customized termination of the slicer to substantially
reduce the number of iterations of an analysis, independent of the context-depth and

slice size.

8.5 Points-To Analysis Parameterization

8.5.1 Construction of points-to sets

In Chapter 5, we demonstrated that the ways in which pointers are used in
large systems can hinder the points-to analysis’s ability to perform an analysis that is
sufficiently precise for the subsequent data-flow analysis. Our solution to overcoming
this problem, without adding algorithmic complexity, is to allow the tool user to param-
eterize the points-to analysis.

Figure 8.3 presents statistics for performing a points-to analysis of our three
example programs. When describing the parameterizations of the points-to analysis,
the following titles are usechone—no parameterizationmallocs—private memory al-
locators are specifiedyrrays—array operator is not commutativetructs—structure
members are distinguished, aidéal structs—structure members are distinguished, but

structures are never collapsed. The last parameterization is extremely optimistic, but

!The data are normalized to percentages so that slices of different sizes and iterations can be compared.
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none (52 seconds, 63 MB)
‘ burlap

mallocs gcc
‘ emacs

arrays
arrays, mallocs
(117 seconds, 90 MB)
structs

arrays, structs

arrays, structs, mallocs

parameterizations enabled

ideal structs

1 1 1
0 2,000 4,000 6,000
number of points-to classes

Figure 8.3: Effect of parameterization on points-to classes. The statistics shown in the
graph are foccc. The complete measurements are given in Table A.5.

provides a best-case upper bound on the number of points-to classes. Usprotdhe
typeoption (shown asveakor strong is not included in this table, since the option does

not change how the points-to classes are computed, but rather filters the classes once
they are computed.

When comparing the various options, it is important to realize that they affect
the points-to analysis in different ways. For example,gtractsand mallocsoptions
actually introduce additional locations to the points-to analysis, and with the exception
of collapsing structures, do not affect how the points-to classes are merged. In contrast,
thearraysoption does not add any locations, but merely prevents unnecessary merging
of the classes. However, the options are not necessarily orthogonal. Should two or more
options be combined, the number of resulting additional classes may in fact be less than
the sum of the number of additional classes introduced by using the options separately.

The results of thestructsandideal structsoptions cannot be compared di-
rectly with those of the other options. When structure fields are distinguished by the

points-to analysis, an extended version of the analysis is actually being performed over
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adifferentrepresentation of the program. In particular, unless structure members are be-
ing distinguished by the points-to analysis and slicing algorithm, references to structure
members are excluded from tleeG for performance reasons. Also, titeal structs
option is extremely optimistic, which explains how the number of classes can actually
decrease when it is combined with other options. Finally, the ordering of statements in
the program can greatly impact the performance of the points-to analysis if members are
distinguished. For example, if all members of a structure are first referenced, and later
pointer arithmetic is performed on the structure, then the structure must be collapsed
and the points-to classes for all members must be recursively merged. In contrast, if the
pointer arithmetic is done first, then the structure is first collapsed, requiring little time,
and all later references to the structure members refer to the same points-to class, since
the structure is now treated as a whole. Howeversthectsandideal structsoptions do
provide insight into whether distinguishing structure members has an beneficial effect
on the analysis, given the more complex implementation and additional running time
required.

As expected, enabling theallocsandarraysoptions do not have an apprecia-
ble effect on the performance of the analysis. Yet, these options do increase the number
of points-to classes, making them generally beneficial options. However, the degree of
effectiveness varies significantly. Tlaerays option improves the results significantly
for ccc (by 76%) andBURLAP (by 35%), but only slightly foeMACS (by 6%), proba-
bly because it has few occurrences of the array operator. In contrastatloEsoption
improves the results slightly for bothcc (by 4%) andemAcCs (by 2%), but not at all
for BURLAP, because it contains few references to private memory allocators.

Using thestructsoption increases both the number of points-to classes and
the running time, making it a good choice for some programs, but not for others such
asGcc. For botheEMAcs andBURLAP, the number of points-to classes increased by an
order of magnitude while the running time increased by only 30% .déar, use of the
structsoption did not yield a significant increase in the number of points-to classes and

doubled the running time of the analysis. As we can see from Figure 8.3, this is due to
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the fact that a greater number of structures were collapsedt aithan inEMACS and
BURLAP. The greater number of collapses also accounts for the increased running time.
Figure 8.3 also shows the results for combining various parameterizations of
the points-to analysis. F@®URLAP, use of themallocsoption does not increase the
number of points-to classes, and therefore combining the option with the other options
is not worthwhile. Forccc, however, thenallocsoption does increase the number of
points-to classes, and combining timallocsandarraysoptions shows a magnification
in the number of points-to classes. By themselvesptaocsoption introduces an ad-
ditional 10 classes and tlagraysoption introduces an additional 205 classes. When the
options are combined, the result is an increase of 226 classes. The results are magnified
even more when combined with additional parameters. A similar result holds true for
EMACS. However, the results are not always magnified when options are combined. In
Gcg, for example, the combination of tiséructsandarraysoptions yields fewer classes
than their sum. This failure to magnify can be explained by recalling that the options

are not orthogonal to one another.

8.5.2 Function calls through pointers

Figure 8.4 shows the number of functions called at each call site using a func-
tion pointer—anindirect call. Use of thearrays option reduces the average number of
functions called for bottscc andBURLAP, but not forEMACS, sinceEMACS has few
arrays of function pointers. However, theototypesoption works well for all three pro-
grams. Strong prototype filtering works extremely well, so much so that the results do
not improve further even if tharraysoption is enabled. Since one of the co-authors is
the author oBURLAP [Gobat and Atkinson, 1994], we verified the results from using
strong prototype filtering by hand and found them to be near-perfect. The only cases
where the strong prototype filter fails to separate functions of differing intent are when
one of the two merged functions requires a pointer to some type and the other requires
a pointer tovoid . These cases are not surprising since pointersitb are explicitly

defined by the language as generic pointers.
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Figure 8.4: Effect of parameterization on function pointers. The graph shows the aver-
age number of functions called per call site using a function pointem@@irect call)

for various parameterizations of the points-to analysis. The complete measurements are
given in Table A.6.

8.6 Effect of Parameterization on Program Slicing

Figure 8.5 shows the effects of user-parameterization of the points-to analysis
on program slicing. The improvements due to #meys structs andmallocsparam-
eters are small (at most 3%), which suggests that the precision of the slicing algorithm
is relatively insensitive to changes in the points-to classes. This is in contrast to our
original expectations, since we saw significant improvements in the number of points-to
classes using these parameters.

For the tool user, the quality of a slice is measured in terms of the number
of statements included in the slice, as we have done, and not in terms of the number
of data-flow facts or dependencies. The improvements of the points-to analysis can
be “washed-out” by the transitive nature of the data-flow analysis being performed, as
discussed in [Shapiro and Horwitz, 1997a]. For example, Figure 8.6 shows a program

fragment containing calls to the private memory allocatoalloc() . If the allocator
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Figure 8.5: Effect of parameterization on program slicing. The statistics shown in the
graph are foccc. The complete measurements are given in Table A.7.

is not recognized by the points-to analysis, then a slice of either varabtey will
include the assignment statementptandq. However, if the allocator is recognized,
then a slice of variable will not include the assignment tg but the slice of variablg
will still include both assignment statementsgtandq.

The slices performed using thpeototypesoption show a dramatic improve-
ment. The number of statements in the slice decreases several fold, as does the number
of statements examined during slicing (shown as the outlined bar in Figure 8.5). This
reduction is due to the more precise information for function pointers in both programs.
Without use of the strong prototype filter, the computed call-graph is highly imprecise
(i.e., containing a large number of false calls) resulting in a far greater number of state-
ments being examined and subsequently included in the slice than is necessary. This
implies that the filtering of function pointers based on their prototypes would be benefi-
cial to many interprocedural data-flow analyses. We had expected to see similar results
from use of thearraysoption onccc due to its dramatic reduction in the average num-

ber of calls made through a function pointer. However, this option fails to remove key
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p = xmalloc (10);
g = xmalloc (10);
*p - 1’

*q - 2,

X = *p;

y = + *q;

Figure 8.6: A program fragment showing the negation of improvements in the points-
to sets by program slicing. Even ximalloc() is recognized as a private memory
allocator, a slice of the variablewill still include both assignments f@andg.

functions from certain call sites, leading to false recursion between major subsystems
(the code generator and declaration manager).

We were unable to find a parameterization of the points-to analysis that pro-
duced any substantial improvement famAacs. We were disappointed that the use of
the prototypesoption did not yield an improvement as it had fecc and BURLAP.

After examining the source code fBMACS, we believe that the points-to sets for func-
tion pointers are fairly precise. Rather, it is the natur&mfcs that is the source of

the problem. In particular, it appears that the subsystems @GNS interpreter are

in fact recursively dependent due to the implementation of dynamically scoped error
handling. For this situation, it may be useful for the tool user to provide other kinds of
information, such as explicitly selecting which edges in the call-graph should be ignored

and which should be traversed.

8.7 Conclusion

To test our hypotheses about demand-driven computation, discarding, flexibil-
ity, and parameterization of the points-to analysis, we computed several program slices
of our examplevumps and C programs. We were able to compute slices that were a

function of the result’s size, rather than of the entire program. We showed that increasing
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context-depth yields little increase in precision, but increases the time and space require-
ments dramatically. Even if the machine has sufficient virtual memory to perform the
subsequent analysis, the resulting paging overhead is detrimental.

By parameterizing the points-to analysis, the number of points-to classes in-
creased and the number of functions called through a function pointer decreased, as
expected. For some slices, parameterization substantially reduced the running time of
the program slicer. However, the improvements were mainly due to the more precise
information for function pointers, rather than to any increase in the number of points-to
classes.

Examining our results, we believe that we have met our goal of developing
practical (i.e., efficient) and task-oriented whole-program analysis tools. However, each
aspect of our approach is critical to its success. For example, without customized termi-
nation, the larger slices afHcsandGcc may require too much time to answer a tool

user’s question about the program.

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation
author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this chapter.



Chapter 9

Conclusion

Because a large software system is difficult for its programmers and designers
to understand, they could greatly benefit from automated support for program under-
standing. Tools supporting such analyses need to construct representations similar to
those used by an optimizing compiler. However, unlike an compilation, program un-
derstanding tasks may require analyzing large portions of the program simultaneously.
Consequently, to minimize time and space requirements, the tool infrastructure must
adapt to the requirements of the analysis being performed, and the tool must provide
flexible control of the analysis to the user.

Performing an effective whole-program analysis is difficult in the presence of
pointers. Points-to analysis requires a global analysis over the program, making it diffi-
cult to integrate with demand-driven techniques, which are a necessity when analyzing
large systems. The use of pointers in large programs, specifically function pointers and
pointers to local variables, complicates performing an effective data-flow analysis.

To overcome these problems, we designed an event-driven software architec-
ture for transparently demand-deriving and discarding program representations such as
theAST andCFG. In our approach, we examine how a representation will be used, how
long it takes to construct, and how much space it requires in order to determine how a
representation should be constructed. Infrequently used representations sucksas the

are discarded in order to save space and also time, by avoiding the use of the slower
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portions of the virtual memory hierarchy. We also persistently retain representations
that require a global analysis over the program, but which are inexpensive to store and
reload, such as the program’s call graph.

By allowing the user to parameterize the data-flow analysis—in our case back-
ward program slicing—we have found that significant time and space could be saved by
avoiding the computation of unnecessary data-flow information. Customizable context-
depth allows the tool user to select the amount of context-sensitivity and thereby achieve
a balance between good performance and precision. Our results show that increasing the
context-depth results in a large increase in the time and space required by the data-flow
analysis, but tends to improve precision only slightly. Allowing the user to control the
termination of the analysis and increasing interactivity can avoid the computation of
unnecessary data-flow information, saving time.

To effectively deal with the problems posed by pointer usage in large systems,
we presented a solution for integrating points-to analysis with demand-driven analy-
ses, along with techniques for parameterizing the analysis to achieve better points-to
results. We also presented data-flow equations for computing an interprocedural back-
ward program slice in the presence of both recursion and pointers to local variables, and
described an efficient implementation of our equations.

To validate our techniques, we constructed tools for slicsingups and C
programs. We performed several sliceceics, a 1,000,000 line hospital management
system written inMuMPS, and three large C programss€c, EMACS, andBURLAP.

Using our program slicer fomumMPs, we were able to compute slices ©HCSin an
economical amount of space, requiring just minutes or hours, rather than days. Using
our program slicer for C, we were able to compute sliceBURLAP in a few seconds

or minutes and o&ccin a few minutes or hours, without requiring use of the slower
portions of the virtual memory hierarchy.

By parameterizing the points-to analysis, the number of points-to classes could
be increased with little performance cost. Also, the number of functions called through

a function pointer could be substantially decreased. Most notably, filtering the points-
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to classes based on their prototypes greatly reduces the number of calls. For program
slicing, the improved points-to information for functions resulted in more accurate and
faster program slices, due to the increased precision of the computed call-graph, which
suggests that our techniques would be applicable to many interprocedural data-flow
analyses. For the largest slices that we performed, the time and space requirements
are acceptable for today’s desktop computers, indicating that practical whole-program

analysis of large programs is feasible using our techniques.

9.1 Open Issues

Although we have discussed how to design practical and task-oriented whole-
program analysis tools and have implemented such tools for two programming lan-

guages, a number of open questions remain.

e Can it be cost effective to share program representations among multiple tool

users? How would sharing affect the way representations should be managed?

e Is it possible to design a heuristic for determining the progress of an analysis with
respect to convergence? Since all of the convergence curves in Figure 8.2 are very

similar, a curve-fitting heuristic might allow predicting the progress of a slice.

e Can the optimal context-depth be heuristically determined? Can the context-depth
be increased or the context-graph modified during slicing to provide better preci-

sion where needed?

e How does the structure of the program being sliced affect the slicing algorithm?
Do slices over well-structured modules of the system require fewer iterations and
converge faster? Does the structure impact the recomputation time or the perfor-

mance of the memory hierarchy?

e Is it beneficial to discard procedures of thec that have not yet contributed to
the analysis? Is there a way to conservatively summarize information about a

procedure to avoid re-examining it?
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e How well do our techniques apply to data-flow analyses other than slicing?

e What do our results say about the viability of program slicing? Most slices that we
performed are quite large and typically include 80% of the statements examined.

Are these slices of any practical use to the programmer?

9.2 Extending Our Approach

Since prototype filtering works so well on improving the precision of the com-
puted call-graph, one might wish to extend the technique to ordinary program variables.
By using the type system of the language, similar filters can be constructed for variables.
For example, if the points-to set for a variabl@oints to both an integer variabheand
areal variable, butp is declared to be a pointer to integer, thecan be removed from
the points-to set. Since distinguishing structure members in the points-to analysis has
poor time and space characteristics for some larger programs, filtering based on struc-
ture member types could be an inexpensive alternative. For languages like C, however,
such filtering is almost certainly unsafe in the general case because the programmer can
violate the type system. For languages with strong typing, on the other hand, type vio-
lations are not supported by the language and filtering can be safely applied. We have
found that filtering based on function prototypes is worthwhile given its benefits and the
infrequent violation of the type system for function pointers in C programs (i.e., casting
function pointers is rare in C).

One question that remains is whether our techniques can be applied to other
programming languages. Since points-to analysis requires a global analysis over the
system for any programming language, our approach to integrating the analysis with
demand-driven analyses applies generally. Although parameterizations of the points-to
analysis such as array commutativity are specific to the C language, the general ideas can
be applied to any programming language that is flexible and performance-oriented—any
sufficiently powerful language will have pointer constructs whose use complicates effec-

tive points-to and data-flow analysis. For example, although private memory allocators
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may not be used for performance reasons, they are often used for reasons of encapsula-
tion and code reuse. The constructor and destructor functions in C++ [Stroustrup, 1991]
are obvious examples. Distinguishing structure members and filtering points-to classes
based on their computed prototypes are also necessary in C++, since its classes are little
more than structures composed of many function pointers and some data. Finally, an ag-
gressive implementation of the data-flow sets such as ours is necessary to achieve good
performance when analyzing large programs, even if the generalization for pointers to

locals is not required.

9.3 Contributions

9.3.1 Identification of key problems

We have identified several problems with designing and implementing effi-
cient, task-oriented whole-program analysis tools. We addressed how program repre-
sentations should be handled in order to provide space-efficient analyses, and we de-
signed a software architecture to transparent implement our technigues. We examined
how user parameterization of analyses can reduce time and space requirements and im-
prove precision. We looked at how pointers can impact the accuracy and efficiency of a
data-flow analysis and derived data-flow equations to overcome these problems. Finally,
we implemented program slicing tools for two programming languages and used them

to analyze several large, well-known systems.

9.3.2 Empirical evaluation

We computed several slices of our example systems. From our results we
can infer some things about how programming style plays a role in program analysis.
Programs that use pointers aggressively are hard to analyze because the style hinders
the accuracy of the points-to analysis. Programs that use function pointers heavily are

significantly impacted. Our results also reveal that program slicing may not be as useful
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call-graph CAWK MAWK compliance
generator | ! ! ! checker
{\\ TAWK program slicer
program dlicer - ICARIA | . peRICLES & ¢c@l-graph
1 | ! ! generator
f \ ; ; code instrumentor
| "™~ PONDER - |
C language 3 C language 3 language independent 3 MUMPS langauge 3 MUMPS language
applications : libraries : libraries : libraries : applications

Figure 9.1: Family of tools developed for analyzing large programs.

as the program understanding community first thought. Our program slices are quite

large, with typically 80% of the statements examined being included in the slice.

9.3.3 Family of program understanding tools

Because no single tool is appropriate for all tasks, we need support for devel-
oping new program understanding tools. Therefore, we have designed support for a fam-
ily of tools, as shown in Figure 9.1. Our generic tool infrastructure is caledDER
The PONDERIibrary provides support for a genersT along with high-performance
memory allocators and flexible abstract data types useful for manipulating computed
program information such as data-flow sets (Chapter 7) and index-tables (Chapter 2).
An extension of theeoONDERibrary is theTAwk library, which provides a high-level
guery language for matchimgsTs [Griswold et al., 1996].

ThePERICLESIibrary provides the implementation of thsT for themumPSs
programming language. In addition to containing a parser and lexical analyzer for
MUMPS, it provides an abstract interface for manipulating and searchingsme The

MAWK tool is high-level pattern matcher forumps built from the TAwk and PERK-
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CLES libraries. In addition to a program slicing tool, we have also built a compliance
checker, code instrumentation tool, and call-graph generatondosrPS. TheICARIA

library provides the same services as #ERICLESlibrary, but for the C programming
language. Similarly, theawk tool is the equivalent of th&iawk tool, but for C pro-
grams. These tools and the supporting libraries are publicly available via the Internet at

http://www-cse.ucsd.edu/users/atkinson

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation
author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this chapter.



Appendix A

Experimental Data

This appendix presents more experimental data than that presented in Chap-
ter 8. The additional data is given for the sake of completeness. The data in the Chapter 8
is a representative subset of the data presented here.

For all of the tables in this appendix, the size of the slice is given as the number
of three-address statements in the slice, space is given in megabytes, and the slicing
criterion is a pair consisting of the statement and a set of variables. The statement is
specified as a routine and line number for thempPs programs and as a filename and
line number for the C programs. Unless otherwise stated, time is given in minutes. Also,
each table contains a reference to the table or figure in the body chapter that contains a

subset of its data.

The text of this chapter, in part, is a reprint of the material as it appears in
[Atkinson and Griswold, 1998] and [Atkinson and Griswold, 1996]. The dissertation
author was the primary researcher and author and the co-author of these publications

directed and supervised the research that forms the basis for this chapter.
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criteria contexts| time | space| size of slice
(NSUN:26{NSORD}) 253 6.1 17.3 | 14,660
(FHDRSTR:52{ FHQUITY}) 256 5.0/ 15.0 14,700
(DGBED:84{DGW}) 254 5.3| 18.1 14,829
(MSAKP:62{ MSAEFFDT}) 267 46| 15.3 15,645
(CHPLI:33{LRPTN}) 394 9.0| 17.3| 20,852
(PSNST:25,IN}) 596 22.9| 22.3 32,351
(LRPRACT:10{LRALL?}) 611 24.1| 22.6 33,156
(CPENRFRM:2%,CPRBUR) 647 29.8| 23.8 33,935
(ORSETN:42{ORACTIN}) 1,255 | 141.9| 60.5 73,707
(ORSIGN:32{ORLPKFG}) 1,321 | 154.9| 71.8 | 73,907
(ORENTRY:68{LRORPTNZ) | 1,432 | 179.9| 74.1| 79,319

Table A.1:Abbreviated in Figure 8.1 on Page 78tatistics for different slices afHCS
with a single context per procedure.

criteria time | space| size of slice
BURLAP | (arithmetic.c:245,type erron}) 0.20f 2.0 8,849
(apply.c:646 statu$) 0.23| 2.0 9,107
(matrixfunc.c:243;status) 022 21 9,332
(apply.c:243{ result) 1.12| 8.1 40,161
EMACS | (alloc.c:1610{gc consthreshold) 5.38| 314 129,292
(buffer.c:447{ buf}) 6.15| 31.3 | 129,292
(frame.c:630,frame) 6.75| 31.6 129,292
GCC (cse.c:877%,in_libcall}) 0.02| 0.2 824
(unroll.c:2085{ constQrtx}) 046 2.6 9,702
(sched.c:4964reg n_calls crossedl) | 40.04| 75.4 235,030
(c-decl.c:2298,b}) 40.99| 76.1 235,037

Table A.2: Abbreviated in Figure 8.1 on Page 7&tatistics for different slices of the
three C programs. The points-to analysis was performed usingtitieg prototypes
option (Chapter 5).



91

criteria depth| contexts| time | space| size of slice
COMPLY | (COMARG:15{ERRTYPR) 26 0.017| 0.29 488
49 | 0.033| 0.37 483
363 | 0.217| 0.97 483
36 | 0.030| 0.37 780
74 | 0.058| 0.43 774
121 | 0.092| 0.55 769
602 |0.484| 1.42 769
248 49| 149 14,630
488 11.1| 185 14,448
2,586 | 127.6| 49.1 14,446
248 5.3| 19.6 14,711
488 10.3| 23.1 14,532
2,553 | 121.0| 53.6 14,530

COMPLY | (COMBLK:14{ERRTYR)

CHCS | (PSPA46{PSDT)

CHCS | (DIC:38{DUOUT})

WNRWNRYE WNRYE NP

Table A.3: Abbreviated in Table 8.1 on Page 7$tatistics at different context-depths
for the twoMuMPS programs.

criteria depth| time | space| size of slice

4.20| 12.9 9,574
29.98| 71.0 9,556

BURLAP | (arith.c:145{type error}) 1 0.20 2.0 8,849
2 124 5.4 8,824
3 3.56| 17.5 8,680
BURLAP | (apply.c:253result) 1 1.12 8.1 40,161
2 7.30| 32.1| 39,952
3 [30.94]| 101.3] 39,937
BURLAP | (apply.c:646{status) 1 0.23 2.0 9,107
2 1.23| 54 9,086
3 3.76| 17.5 8,942
BURLAP | (matrixfunc.c:7674statug) 1 0.22 2.1 9,332
2 1.19| 57 9,296
3 3.90| 183 9,152
GCC (cse.c:877%,in_libcall}) 1 0.02 0.2 824
2 0.04| 0.6 824
3 031 34 824
GCC (unroll.c:3085{ constQrtx}) 1 0.46 2.6 9,702
2
3

Table A.4: Abbreviated in Table 8.2 on Page 73tatistics at different context-depths
for two C programs. The points-to analysis was performed usingttbag prototypes
option (Chapter 5).
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none mallocs arrays

time space classestime space classestime space classes
GCC 515 62.8 267 | 53.6 62.8 277 | 51.0 63.2 472
EMACS 26.9 38.8 159 | 26.4 38.8 162 | 265 38.8 169
BURLAP | 154 227 207 | 153 227 207 | 152 227 279

arrays, mallocs structs arrays, structs

time space classestime space classestime space classes
GCC 51.3 63.6 493 | 117.3 89.5 543| 116.4 90.0 746
EMACS 26.6 38.8 174 | 40.2 515 5638| 39.8 515 5648
BURLAP | 15.2 22.7 279 | 21.3 29.0 1360| 21.4 29.0 1430

arrays, structs, mallocs ideal structs arrays, ideal structs

time space classestime space classestime space classes
GCC 125.0 90.1 1013|457.1 88.4 1835|192.7 89.0 1826
EMACS 404 515 5654|1354 51.2 6710 979 51.1 6671
BURLAP | 21.3 29.0 1430| 24.8 284 1787| 25.1 28.4 1805

Table A.5:Abbreviated in Figure 8.3 on Page 7kffect of parameterization on points-to
analysis. The table shows the performance of the points-to analysis for various parame-
terizations of the analysis. The space measurements include all necessary data structures
including symbol tables. Also shown is the number of points-to classes. Time is given

in seconds rather than minutes.

weak w/ strong w/
basic | structs| arrays| weak | arrays | strong| arrays
Gcc  (113)| 237.3| 237.3| 78.1|160.1| 54.1 | 29.2 29.2
EMACS (70)| 277.7| 277.7 | 277.7| 240.0| 240.0 | 78.8 78.8
BURLAP (16)| 183.8| 118.2| 97.8| 111.1| 855 | 249 24.9

Table A.6:Abbreviated in Figure 8.4 on Page 7Bffect of parameterization on function
pointers. The table shows the average number of functions called per call site using a
function pointer (aindirect call) for various parameterizations of the points-to analysis.
The number in parentheses indicates the number of indirect call sites in each program.
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points-to size of | statements
options | time slice | examined
GCC basic | 49.44| 236,366/ 282,192
(c-decl.c:2294,b}) arrays | 39.11| 230,306| 282,192
prototypes| 43.66| 235,037 235,037
GCC basic | 42.32| 236,354 282,192

(unroll.c:3085{constartx}) | mallocs | 48.20| 236,351| 282,192
arrays | 32.41| 230,305| 282,192
prototypes| 0.46 9,702 13,281
combined| 0.42 9,702 13,281
BURLAP basic 1.29| 40,135 51,863
(arith.c:145{type error}) arrays 1.04| 40,204, 51,863
structs 1.72| 40,883 53,535
prototypes| 0.20 8,849 12,195
combined| 0.23 8,661 12,319
BURLAP basic 1.29| 40,135/ 51,863
(matrixfunc.c:767,status) arrays 1.07| 40,204 51,863
structs 1.62| 40,858 53,535
prototypes| 0.22 9,332 12,764
combined| 0.25 9,144 12,890

Table A.7:Abbreviated in Figure 8.5 on Page 7Bffect of parameterization on program
slicing. The table shows the statistics for various slices of the example programs with
different parameterization®4sic arrays, structs and strong prototypes) of the points-

to analysis. (Some of the additional three-address statements generated for structure
member accesses have been removed for comparison with the other parameterizations.
However, not all additionally generated statements could be easily removedcEpr

the arrays and prototypesoptions were combined; f@URLAP, the structsand proto-
typeswere combined.
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