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Abstract

Understanding large software systems is difficult. Traditionally,
automated tools are used to assist program understanding. How-
ever, the representations constructed by these tools often require
prohibitive time and space. Demand-driven techniques can be used
to reduce these requirements. However, the use of pointers in mod-
ern languages introduces additional problems that do not integrate
well with these techniques. We present new techniques for effec-
tively coping with pointers in large software systems written in the
C programming language and use our techniques to implement a
program slicing tool.

First, we use a fast, flow-insensitive, points-to analysis before
traditional data-flow analysis. Second, we allow the user to param-
eterize the points-to analysis so that the resulting program slices
more closely match the actual program behavior. Such informa-
tion cannot easily be obtained by the tool or might otherwise be
deemed unsafe. Finally, we present data-flow equations for dealing
with pointers to local variables in recursive programs. These equa-
tions allow the user to select an arbitrary amount of calling context
in order to better trade performance for precision.

To validate our techniques, we present empirical results using
our program slicer on large programs. The results indicate that
cost-effective analysis of large programs with pointers is feasible
using our techniques.

1 Introduction

1.1 Motivation

Large software systems are difficult to understand. These systems
have typically evolved over several years, and as systems evolve,
their structure degrades [11]. This degenerated structure increases
maintenance costs, since a single change may no longer be local-
ized to a module, but rather is dispersed throughout the code [13].
Consequently, a maintainer needs global, rather than local, knowl-
edge about the system in order to correctly reason about the ef-
fect of a proposed change. For large software systems, gathering
this global knowledge can be a time-consuming activity. Further-
more, large systems typically use sophisticated language constructs
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in their implementation, such as function pointers. Although the
use of these constructs is often necessary to achieve good perfor-
mance or to ease implementation, they can hinder program under-
standing. The combination of degraded structure and use of sophis-
ticated language constructs makes large systems especially difficult
to understand, maintain, and enhance.

Automated semantic tools have been proposed as a solution to
this maintenance problem since they can eliminate some tedious,
error-prone tasks. For example, a program slicer [20] helps deter-
mine the effects of a proposed change by computing the set of state-
ments that might affect the value of a given variable. As another
example, an invariant checker infers facts about the state of the
program and checks those facts against assertions provided by the
programmer [12]. Unfortunately, the use of pointers in modern pro-
gramming languages hinders the construction of whole-program
analysis tools that are both efficient and sufficiently precise.

First, the use of pointers negates the performance benefits of
demand-driven techniques [2, 3, 7] since determining the memory
locations possibly referenced through a pointer typically requires a
global analysis over the program. For example in the C program-
ming language [8], all files must be analyzed to account for the use
of pointers in initializers for static variables, regardless of whether
a file contains a function that might be reachable during subsequent
data-flow analysis.

Second, in a flexible and performance-oriented language such
as C, the way in which pointers are used complicates performing
a points-to analysis that is sufficiently precise for the subsequent
data-flow analysis. For instance, the use of specialized memory al-
locators can reduce precision by hindering the analysis’s ability to
accurately model heap storage. Furthermore, pointer arithmetic on
arrays and structures limits the points-to analysis’s ability to accu-
rately discern distinct memory locations. Because these aggregates
often store pointers to functions, the imprecise analysis can result in
an overly conservative call-graph, degrading both the performance
and precision of interprocedural data-flow analysis.

Finally, pointer usage can complicate performing the subse-
quent data-flow analysis. Pointers to local variables are commonly
used in C programs to emulate passing parameters by reference,
which the language itself does not support. Pointers to local vari-
ables in the presence of recursion require changes to the traditional
bit-vector equations for data-flow analysis [1], since different ac-
tivations of a local variable may be referenced in functions other
than the function in which it is declared. If the equations are not
changed, the data-flow analysis will be in error.

1.2 Approach

Our previous work concentrated on effectively performing whole-
program analysis on systems written in a language without point-
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extern int *p;

main ( ) {
int x;

if (rand ( ))
p = &x;

f ( );
g ( );

}

extern int *p;

f ( ) {
int z;

*p = 3;
z = *p;

}

int y, *p = &y;

g ( ) {
y = 2;

}

x.c y.c z.c

Figure 1: An example C program consisting of three files. The
pointer variablep is referenced in all files.

ers [2, 6]. The approach transparently demand-derives all repre-
sentations. However, representations such as the abstract syntax
tree (AST) that are infrequently used are discarded and recomputed
when needed to reduce memory requirements. Representations
such as the call-graph that are costly to compute, but inexpensive
to store, are persistently retained on disk. Also, by allowing the
user to parameterize the data-flow analysis, we found that signifi-
cant time and space could be saved by avoiding the computation of
unnecessary data-flow information.

Our goal is to adapt this work to effectively cope with pointers
in large systems written in languages that are low-level, flexible,
and performance-oriented. Specifically, we wish to construct an ef-
ficient slicing tool for large C programs. In attempting to integrate
pointers into our approach, three issues arose. First, how should we
integrate points-to analysis with our demand-driven data-flow anal-
ysis framework? Second, how does the use of pointers in large sys-
tems impact the precision of an analysis? Third, how can data-flow
analysis be performed in the presence of pointers to local variables
and recursion?

First, because points-to information cannot be demand-derived,
we use Steensgaard’s near-linear time, context-insensitive, flow-
insensitive, points-to analysis algorithm [18]. To avoid the cost
of an extra pass over the program, the points-to analysis is “pig-
gybacked” with the demand construction of the control-flow graph
(CFG). Since our previous approach saves the call-graph to disk
to speed-up subsequent executions of the tool, the saved call-graph
now includes calls to functions through function pointers (as com-
puted by the points-to analysis).

Second, to increase the precision of pointer analysis without un-
necessarily increasing algorithmic complexity, we allow the user to
parameterize the analysis. Since our tool is designed for interactive
program understanding rather than for batch compilation, we can
take advantage of information provided by the tool user. For ex-
ample, the user might specify that the program being analyzed has
only strictANSI-compliant function prototypes, helping to more ac-
curately determine which functions may be called through a func-
tion pointer. Such information cannot be obtained automatically by
the tool without substantial additional cost, if at all.

Finally, we derive space-efficient data-flow equations for deal-
ing with pointers in the presence of recursion and pointers to lo-
cal variables. In our previous work, we presented a tunable mech-
anism, called context-depth, for selecting an arbitrary amount of
calling context during data-flow analysis. Our new data-flow equa-
tions extend this work for C programs with pointers.

In the following sections, we discuss the effect of pointers on
whole-program analysis, and how we effectively cope with these
problems. We discuss our solution to integrating points-to analy-
sis with demand-driven techniques. We present empirical results
with user-parameterization of the points-to analysis and its effect
on program slicing, and specifically the construction of the call-

graph for a program. We also present an efficient implementation
of our data-flow equations and compare the implementation to a
“naive” implementation.

Our results indicate that our techniques permit slicing 200,000
line programs in seconds or minutes, rather than hours. In par-
ticular, parameterization of the points-to analysis can dramatically
increase the number of points-to classes, often by an order of mag-
nitude or more. For programs that use function pointers heavily,
the precision of the constructed call-graph can be substantially im-
proved. As a result, program slices can be computed an order of
magnitude faster and contain far fewer statements. Otherwise, we
have found that the subsequent data-flow analysis is mostly insen-
sitive to the improvement in precision, typically yielding a 3% de-
crease in the number of statements.

2 Integrating Points-To Analysis with Demand-Driven
Analyses

Demand-driven techniques attempt to save space and time by com-
puting only those data-flow facts and portions of supporting repre-
sentations that are necessary to perform the analysis [2, 3, 7]. In
this way, large programs can be handled more economically since
the amount of information computed and stored is greatly reduced.
Effective demand-driven analysis depends upon quickly identifying
which portions of a representation are required next and efficiently
computing those portions. In backward slicing, for example, it is
necessary to quickly identify all the callers of a procedure and effi-
ciently construct theCFG for those calling procedures [2]. Because
determining the callers of a procedure requires a global analysis of
the program, our demand-driven approach saves the call-graph to
disk for future invocations of the slicing tool.

Depending on the algorithm chosen, points-to analysis for large
programs can require a large, possibly prohibitive, amount of time
and space. Unfortunately, there are problems with either demand-
ing or persistently storing points-to information. We discuss these
problems and then present a hybrid compute-and-store solution.

Points-to information is not efficiently computable on demand
because computing the effects of any particular pointer reference
can require a global analysis of the program. For example, Fig-
ure 1 shows a small C program consisting of three source files. If a
backward program slice is started at the assignment toz in function
f() of file y.c , the points-to set of variablep is needed. There is an
assignment top in functionmain() in file x.c , sox.c must be an-
alyzed. Ignoring pointers, a demand-driven slicer would not need
to examine this file unless the user requested that slicing should
continue into the calling function. Filez.c must be also examined.
Although functiong() is not reachable during a backward data-
flow analysis fromf() , the file contains the initialization forp in a
static initializer.

An alternative to demand-driven analysis is to persistently re-
tain the points-to information in a database, as we do with the
call-graph. This approach is attractive since the call-graph requires
pointer information for computing the effects of calls through func-
tion pointers anyway. However, storing the pointer information
presents several difficulties. First, a representation would be needed
for referencing an arbitrarily nested variable declared within a func-
tion. Second, theCFG’s three-address statements and associated
temporaries would need to be constructed in a reproducible order
from one tool invocation to the next. Finally, the database must
be recomputed if any variable in the program changes, not just if
the call structure changes. Although none of these difficulties is
overwhelming, their net complexity led us to consider a third alter-
native.

Our approach is to demand all the points-to information on in-
vocation of the first slice, employing three techniques to minimize
the impact of the required global analysis.
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• We use Steensgaard’s near-linear time, context-insensitive,
flow-insensitive, points-to analysis, which models storage as
equivalence classes of locations [18].1 Although not as pre-
cise as some techniques, its time–space characteristics are
superior and the difference in precision is often not reflected
in the subsequent data-flow analysis [15].

• To avoid an extra pass over the program to perform the global
analysis, we piggyback the computation of points-to infor-
mation with the construction of the portions of theCFG re-
quired for the subsequent data-flow analysis. The call-graph,
which was formerly used to demand only those portions of
the CFG reachable from the initial slicing criterion, is now
used to determine which portions of theCFGare needed only
for points-to analysis and can therefore be discarded imme-
diately after use.

• To maintain the call-graph’s effectiveness in the demand-
driven analysis, the graph saved to disk includes the effects of
calls through function pointers, as determined by the points-
to analysis. Since the points-to analysis is flow-insensitive—
in particular it does not require a call-graph—performing
points-to analysis in a prior pass to gather function pointer
information adds little complexity to the implementation of
the program slicer.

Using this approach onGCC, our largest program, computing
the points-to information and other supporting data for the call-
graph requires 52 seconds and 63MB of space. Although theCFG
itself would require only 52MB if fully constructed, the total sav-
ings due toCFG discarding can be substantial. For example, if
only half of theCFG needs to be retained for slicing, the savings of
26 MB might be sufficient for the entire analysis to reside in main
memory, eliminating paging and thus improving overall execution
time.

3 Use of Pointers in Large Systems

C provides powerful, albeit low-level, language features like type
casting, pointer arithmetic, and function pointers. Programmers of-
ten use these sophisticated language constructs in order to improve
performance and ease implementation. For example, all of our ex-
ample systems use an array of function pointers to implement a
dispatch table—a table in which the key is an integer value desig-
nating an operation and the corresponding value is the address of
a function that performs that operation. Sometimes this dispatch
table is an array of structures that contain pointers to functions.

The way that such aggregates are allocated and manipulated of-
ten causes their points-to classes to be merged, yielding imprecise
resolution of pointer references during analysis. The use of type
casting, pointer arithmetic, and custom memory allocators are es-
pecially problematic. The resulting merges often cascade, yielding
unacceptably conservative results. For example, if two separate
dispatch tables become merged by the analysis, then the structures
they contain become merged, and finally the fields within the struc-
tures are merged. Such collapsing of points-to classes not only re-
sults in overly conservative resolution of pointer references during
data-flow analysis, but also during the computation of the program
call-graph. As a result, the subsequent data-flow analysis can be
both very inefficient and imprecise, since the analysis will traverse
a large number of function calls that cannot actually occur during
program execution.

Although some of these problems with points-to class merging
can be overcome by using a context-sensitive points-to analysis, the

1Our implementation treats relational operators differently from arithmetic oper-
ators since the former do not yield a pointer value. This fact is mentioned in the
reference but not included in its equations.

void (*p) ( );
int (*q) ( ), y;

int main ( ) {
(*p) (1);
(*q) (2, "a");
(*q) (3, &y);

}

void f (int x) {
y = x;

}

int g (int x) {
return x;

}

int h (int x, void *p) {
return x + *(int *) p;

}

int i (int x, char *p) {
return *p + x;

}

Figure 2: A program fragment using function pointers.

analysis may then become too expensive [2]. Furthermore, the in-
crease in precision may be small [14] or may not yield substantially
better data-flow information [16].

One way to improve precision without unacceptable cost is to
permit the tool user to provide additional, easily specified infor-
mation to improve the precision of the points-to analysis. Our ap-
proach is to allow the user to parameterize several aspects of the
analysis in terms of the language syntax. For example, the user
might specify that the function named “xmalloc” should be treated
as a memory allocator. Alternatively, if the cost of distinguishing
structure members is judged to be too high for the expected benefit,
the user can choose to have them not be distinguished.

Since our tool is designed for program understanding, we allow
the user to provide both optimistic (i.e., “unsafe”) and conservative
information. In tasks such as compilation or automatic paralleliza-
tion, the meaning of the program must be preserved. However in
program understanding, the tool user is attempting to gain knowl-
edge about the system or provide reassurance of an assumption
made about the system. As long as the tool user is readily aware
that certain parameters may yield unsafe information, we feel the
ability to provide optimistic information is justified.

We have developed several options for parameterizing the anal-
ysis that the user of our program slicer may enable. Each has its
own effect on the points-to analysis.

Function prototype filtering: In many cases we found it too
costly in time and space to compute sufficiently precise points-to
sets for function pointers. Consequently, we turned to using type
information to achieve better results. In particular, the user may
specify whether the program uses weakly (old-style “K&R” C) or
stronglyANSI-compliant function prototypes. Function prototypes
provide additional typing information for static semantic checking
by ensuring that the type and number of formal and actual argu-
ments agree. After retrieving the points-to set for a function pointer
reference, the prototypes of the resultant set of function definitions
are compared against the prototype implied by the function call.
The prototypes are computed from the actual function definition
and the function call since the program may beANSI-compliant,
but not be written usingANSI-style prototypes. Enabling this op-
tion does not affect the construction of the points-to classes, but
rather filters the classes based on the calling statement, reducing
the number of functions that may be called for a given function call
expression.

For example, Figure 2 presents a small program using function
pointers. Let us assume that the four functions,f() , g() , h() , and
i() , have all been merged into the same points-to class and that
both p andq point to this class. By filtering on the prototypes of
the function call and definition, the first function call inmain()
can only refer to functionf() since the other three functions return
an int andp is declared to returnvoid . The second call can refer
to either functionh() or functioni() since they both require two
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return from f()

Dexit = Dexit ∪ (Di ∩ S) (3.1)

call to f()

Di = (Di − S) ∪ (Dentry ∩ S) (3.2)

x := y

if x ∈ Di then
Di = Di − {x} ∪ {y} (3.3)

x := *p

if x ∈ Di then
Di = Di − {x} ∪ ∗p ∪ {p} (3.4)

*p := x

if ∗p ∩Di 6= φ then
Di = Di ∪ {p, x} (3.5)

D = variables of interest
S = all global (static) variables
∗p= points-to set of variable p

entry

call to

return from

exit

f ( )main ( )

Figure 3: Traditional data-flow equations for slicing in the presence of recursion without pointers to local variables. Sets are subscripted with
the program point to which they refer. Sets that are not subscripted are the same for all program points. The current statement has program
point i. Unless otherwise noted, a set passes through a program point unchanged. The exampleCFG shows the nodes relevant to function
calls.

arguments and a string is assignable to thevoid pointer argument
in functionh() . The third call can only refer to functionh() since
a pointer toint is assignable to avoid pointer, but not to achar
pointer.

Private memory allocators: Because large programs typically
process lots of information, they can dynamically allocate several
thousand objects. Since calling the standard Cmalloc() function
for each object incurs an overhead, many large systems employ
their own memory allocator. Implementing a private memory allo-
cator is not difficult since C’s own memory allocator,malloc() ,
is itself implemented in C. Typically, a private memory allocator
is just a “wrapper” around calls to the underlying memory alloca-
tor such asmalloc() that allocates larger blocks of memory and
then doles them out in appropriately sized pieces. Another type of
simple allocator, such as thexmalloc() function in our example
programs, is one that merely callsmalloc() and then checks the
return value to see if virtual memory has been exhausted.

The use of private memory allocators can reduce the precision
of points-to analysis. One method of modeling dynamically cre-
ated storage is to treat each static call tomalloc() as though it
has its own heap, which is modeled as if it were a single large ar-
ray of bytes from which objects are allocated. As a consequence,
all pointers that are associated with a particularmalloc() call site
are treated as referencing the same memory address (assuming ar-
ray indices are ignored). This approach, which we use, is simple
to implement and often yields adequate precision [18]. For a pro-
gram using thexmalloc() function described above, the program
will contain several distinct calls toxmalloc() , but only one static
call to malloc() (by xmalloc() itself). Thus, usingxmalloc()
rather thanmalloc() results in modeling memory as a single large,
shared array, rather than several separate ones. All pointers to dy-
namically allocated memory are treated as referencing the same
memory location. In effect, the points-to analysis is penalizing the
programmer for writing efficient and modular code.

With the private memory allocator option, the user specifies the
names of those functions that should be treated as if they were calls
to malloc() . Each call site of the memory allocator is treated as if
it returned the address of a temporary static variable, rather than all
calls returning the address of the same variable.2 This information
may be optimistic if the user is unsure which functions serve as
memory allocators. The effect of using this option is to introduce
more addresses to the points-to analysis, resulting in more points-to
locations.

Commutativity of array operator: In C, the array operator is
commutative because array references are semantically equivalent

2Memory deallocators such asfree() need to be treated similarly to avoid merg-
ing classes due to parameter passing.

to pointer addition, which itself is commutative. The expressions
a[i] and i[a] are identical. However, the second form in which
the pointer value appears within the brackets is generally not used.
Normally, the points-to analysis must assume that this second form
can be used. Thus, if the indexi is used to index two distinct
locationsa and b, they become indistinguishable to the analysis
since it assumes thata andb may be the indices and thati is the
pointer value. (Use of the cast operator in C to override the type
system makes this possible.) By enabling the array option, the user
precludes this possibility, resulting in the two locations not being
merged. Using this option may yield unsafe information unless the
tool user is sure that the second form of array indexing is never
used. However, a special case exists ifa is declared as an array
rather than a pointer. Since an array variable is constant and cannot
be assigned, we can be sure thati is the index and thata is always
the pointer value.

Structure members: A typical C program uses structures quite
heavily to model objects. A structure may contain pointers to other
objects of different types. Since these objects are of different types,
they are likely distinct. Although distinguishing structure members
in points-to analysis can increase precision, sometimes the benefit
is small and is not justified by the higher cost. In the worst case the
analysis may require exponential time when structure members are
distinguished [17].

To permit managing the time and space complexity of the anal-
ysis, our analysis distinguishes structure members only when cho-
sen as an option by the user. Thus, references toa.x anda.y are
normally treated as a reference toa. As a result, any objects pointed
to by thex andy members are merged into a single points-to class.

When the user enables the structure members option, two such
locations are not merged.3 A structure assignment is treated as as-
signing the individual members. If pointer arithmetic is performed
on a structure pointer, then the members are “collapsed” (i.e., the
points-to sets for all members are merged and the structure is there-
after treated as a single location) since a dereference through the
generated pointer value may assign to any member or possibly mul-
tiple members. A variant structure or “union” type in C is consid-
ered to be a structure whose fields are already collapsed.

Although each parameter can individually improve the preci-
sion of the points-to analysis, when combined the results are mag-
nified. For example inGCC, the array commutativity parameter
prevents merging of separate arrays of structures, and the structure
and prototype parameters distinguish the individual structure com-
ponents. However, in some cases, the effects of one parameter will

3The points-to analysis is similar to that described in [17], but assumes that adja-
cent structure members are infinitely far apart and thus does not take into account the
size of an access during the analysis.
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subsume the effects of another. In particular, for function point-
ers we have found that filtering the points-to classes using strong
prototypes is the most beneficial (Section 5).

4 Performing Data-Flow Analysis in the Presence of
Pointers to Locals

In the absence of either recursion or pointers to local variables, in-
terprocedural slicing is simple and well-understood. However, for a
language such as C that provides both of these features, traditional
data-flow analyses may yield unsafe results. We first present the
traditional data-flow equations and then describe how the analysis
may be in error.

Figure 3 presents traditional data-flow equations for backward
slicing. At each program point,D represents a data-flow set. At
each assignment statement (Equations 3.3–3.5), some set of vari-
ables,defs, are defined and another set of variables,uses, are used.
If some variable indefs is also inD, then the killing definitions of
defs are removed fromD anduses are added toD. Otherwise,
D remains unchanged. In Equation 3.5, we assume that all as-
signments through a pointer dereference are preserving, since the
points-to set may contain more than one variable, but only one vari-
able is in fact updated. The remaining two equations (Equations 3.1
and 3.2) show how theD set is manipulated across function calls
using theCFG shown. TheS set contains all static (global) vari-
ables in the program and is used to partition a set into its local and
global variables.4

Figure 4 shows a small C program with a recursive function
f() . Consider performing a backward program slice at the assign-
ment toy in f() . Consequently, we are looking for an assignment
to x , which is a local variable tof() . Proceeding backward through
the function, the next statement examined is the recursive call to
f() . When slicing into the recursive call, we need to remove local
variables from the data-flow sets (Equations 3.1 and 3.2) [9]. This
step is necessary to avoid finding a definition of the same local vari-
able but with adifferent activationin the recursive call. Continuing
our example, the data-flow sets become empty after removingx ,
resulting in no further information being added to the slice by the
recursive call. However, we have now erroneously excluded the
last assignment inf() from the slice. This statement is clearly an
assignment tox , although which activation ofx we do not know.
This is amissing definitionof x . On the other hand, if we do not
removex from the data-flow set, then we can find false definitions
of x because these definitions may in fact refer to other activations
of x . If any of these definitions is a killing definition, then we have
a false killof x and our analysis is also in error.

The main difficulty with incorporating both recursion and point-
ers to local variables is that the two features require that local vari-
ables be treated in contradictory ways when slicing into a function
call. To ensure correctness, local variables must be removed for the
data-flow sets in the presence of recursion, but must remain in the
data-flow sets in the presence of pointers to local variables. We in-
troduce two new data-flow sets,N andP , in our equations, shown
in Figure 5. TheN set is used to solve the problem of a missing
definition, and theP set it used to solve the problem of a false kill.

Missing definition: In the presence of recursion, a local variable
must be removed fromD in order to avoid finding a killing defini-
tion of the same variable but with a different activation. However,
the local variable may be referenced through a pointer in a called
function. In our approach, local variables are removed fromD and

4We use the termlocal variableto mean anautomatic variablein C. Similarly, the
term global variableshould be read asstatic variable. Since C overloads the use of
the “static” keyword, we use the terms local and global variable instead.

f ( ) {
int x = 1;

if (g ( ))
p = &x;

if (g ( )) {
x = 2;
f ( );

}

y = x;
*p = 3;

}

int y, *p;

main ( ) {
f ( );
printf ("%d\n", y);

}

g ( ) {
int z;

scanf ("%d", &z);
return z;

}

Figure 4: Example program showing pointers to local variables in
the presence of recursion.

placed intoN of the called function (Equation 5.1.c). This pro-
cess is similar to the mapping and unmapping of nonvisible vari-
ables [4, 10]. Consider an assignment made by dereferencing a
pointer variablep (Equation 5.5). If the points-to set ofp overlaps
with N , then a local variable declared in another function has been
defined. However, which activation of the variable that has been de-
fined is unknown, and therefore the assignment must be treated as
a preserving definition. The assignment statement should be added
to the slice and the variables used at that statement added toD, but
the variables defined are not removed.

TheN set models the transitive closure of the program stack,
but only for local variables of interest. When a function is called,
the local variables of interest to the caller are added toN of the
called function along with the caller’sN set (Equation 5.1.c). Since
N only containsnonlocal local variables of interest, it need only
be examined in statements containing an assignment by means of a
pointer dereference (Equation 5.5).

False kill: If a local variable is referenced out of scope by means
of a pointer dereference, we cannot be certain which activation of
the variable is actually used. To be safe, we must therefore assume
that all possible activations are referenced. The activations of a lo-
cal variable can be thought of as an array, with the stack pointer
referring to the last element of the array. If a local variable is refer-
enced out of scope, we do not know the array “index” and so must
assume all activations are referenced. Thus, a local variable refer-
enced out of scope is treated just like an array—any definition is
always a preserving definition. In our approach, theP set keeps
track of these variables. Using theS set, the variables referenced
by means of a pointer dereference are partitioned into its local and
global variables (Equations 5.4.a–5.4.d). The local variables are
added toP , and the global variables are added toD. At an assign-
ment statement, if the variable being defined is present inP , then
the statement is included in the slice and the corresponding vari-
ables used are added toD, but the variable is not removed. Conse-
quently, Equation 3.3 now requires two cases (Equations 5.3.a and
5.3.b), as does Equation 3.4 (Equations 5.4.a-b and 5.4.c-d).

The P set contains those local variables that have been “de-
moted” to have only preserving definitions. The demotion occurs
only if the variable is referenced out of scope by means of a pointer
dereference. Once a local variable is added toP , it is never re-
moved. Finally, the demotion propagates through all (backward)
reachable program points—P is propagated into a called function
(Equation 5.1.a) and also into any calling function (Equation 5.2.a).

Discussion: To provide insight into the correctness of our equa-
tions, we can examine how the equations are transformed if point-
ers to local variables are not allowed. In this case, the points-to
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return from f()

Pexit = Pexit ∪ Pi (5.1.a)
Dexit = Dexit ∪ (Di ∩ S) (5.1.b)
Nexit = Nexit ∪Ni ∪ (Di − S) (5.1.c)

call to f()

Pi = Pi ∪ Pentry (5.2.a)
Di = (Di − S) ∪ (Dentry ∩ S) (5.2.b)

x := y

if x ∈ Pi then
Di = Di ∪ {y} (5.3.a)

else if x ∈ Di then
Di = Di − {x} ∪ {y} (5.3.b)

x := *p

if x ∈ Pi then
Pi = Pi ∪ (∗p− S) (5.4.a)
Di = Di ∪ (∗p ∩ S) ∪ {p} (5.4.b)

else if x ∈ Di then
Pi = Pi ∪ (∗p− S) (5.4.c)
Di = Di − {x} ∪ (∗p ∩ S) ∪ {p} (5.4.d)

*p := x

if ∗p ∩ (Di ∪ Pi ∪Ni) 6= φ then
Di = Di ∪ {p, x} (5.5)

N = nonlocal local (automatic) variables of interest
D = variables of interest with killing definitions
P = local variables of interest with preserving definitions
S = all global (static) variables
∗p= points-to set of variable p

Figure 5: Data-flow equations for slicing in the presence of recursion and pointers to local variables. Sets are subscripted with the program
point to which they refer. Sets that are not subscripted are the same for all program points. The current statement has program pointi. Unless
otherwise noted, a set passes through a program point unchanged.

set of a variablep contains only global variables. Consequently,
no variables are added to theP set in Equations 5.4.a and 5.4.c.
Since these are the only equations in which individual variables
are added toP , the P set is therefore always empty and Equa-
tions 5.1.a, 5.2.a, 5.3.a, 5.4.a, 5.4.b, and 5.4.c can be eliminated.
Also, since theN set contains only local variables and theP set
is always empty, both theN andP sets can be eliminated in the
conditional test for Equation 5.5. Therefore, without pointers to
local variables, the equations reduce to the more familiar data-flow
equations for backward program slicing given in Figure 3.

Implementation: If implemented naively, our data-flow equa-
tions would require three data-flow sets per block. SinceGCC has
238,000 symbols and 120,000 blocks, this would require over 10
GB, assuming bit-sets are used to represent the data-flow sets. How-
ever, sinceN does not change while slicing a function, a single
N set can be used for all blocks of the function. Examining the
P set, we see that it is nondecreasing in size, since variables are
only added to the set and never removed, unlike theD set. This
fact suggests thatP can be made flow-insensitive with little loss in
precision. Consequently, we choose to also use a singleP set for
all blocks of a function. This decision sacrifices precision slightly
in favor of performance. Using this implementation, the space re-
quirements are reduced to approximately 3.4GB, still an unaccept-
able amount of space.

However, an analysis of the bit-sets shows that they are very
sparse. Examining our equations, we see thatP andN contain only
local variables, whileD contains local variables, global variables,
and generated temporaries. Also, temporaries cannot be pointed
to and therefore cannot be referenced out of scope. We therefore
decide to partition the bit-sets into three distinct classes: global
variables, local variables, and function-specific temporaries. The
D set now consists of three bit-sets, but requires space to store only
all the global variables, local variables, and themaximumnumber
of temporaries per function. If we assume for simplicity that the
220,000 temporaries are evenly distributed among the 2,300 func-
tions, the space requirements are reduced to approximately 60MB,
which is acceptable.

5 Results

To evaluate the time, space, and precision characteristics of our
approach, we implemented a program slicer for C based on our

lines of code AST CFG

beforeCPP afterCPP6 time space time space
GCC 217,675 224,776 24.0 55.3 42.4 51.6
EMACS 99,439 113,596 16.9 39.3 22.1 29.3
BURLAP 49,601 88,057 10.0 23.3 14.8 16.3

Table 1: Statistics for constructing representations of three pro-
grams. Time is given in seconds and space in megabytes.

ideas and measured its performance on three programs, whose ba-
sic statistics are shown in Table 1.GCCrefers to thecc1 program of
theGNU C compiler, version 2.7.2 for SunOS 4.1.3;EMACS refers
to the temacs program of theGNU Emacs editor, version 19.34b
for SunOS 4.1.3 without window system support;BURLAP refers
to theburlap program of the FElt finite element analysis system,
version 3.02.5

Our slicer correctly handles functions with a variable number
of arguments and the effects due to library functions. Library func-
tions are handled by providing a skeleton for each function that
correctly summarizes its effects. Our current implementation does
not inline library functions, which is a common technique for in-
creasing precision by adding one level of context-sensitivity. Signal
handlers and thelongjmp andsetjmp functions are not handled.

It was our expectation that the time and space requirements
would be acceptable, given our use of a near-linear time points-
to analysis, our aggressive approach at implementing our data-flow
equations, and piggybacking construction of theCFGwith the com-
putation of the points-to sets. We also expected that the parame-
terization of the points-to analysis would significantly increase the
number of points-to classes, and thereby also increase the preci-
sion of the subsequent data-flow analysis. By filtering the points-to
classes for function pointers based on their computed prototypes,
we also expected the average number of functions called by means
of a function pointer to decrease, improving the precision of the
call-graph and hence the subsequent data-flow analysis. With the
exception of distinguishing structure members, which is known to
take worst-case exponential time and space, we anticipated that the
parameterizations of the points-to analysis would have little effect
on its time and space requirements. Finally, we projected that com-
bining parameters would significantly magnify the effects of the
individual parameters.

5All statistics in this paper were gathered on an idle 200 MHz Sun UltraSparc 2
running Solaris 2.5 with 192MB of physical memory and 1GB of swap space.

6After expansion ofinclude files with CPP, all blank lines were removed.
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basic mallocs arrays arrays, mallocs structs

time space classes time space classes time space classes time space classes time space classes
GCC 51.5 62.8 267 53.6 62.8 277 51.0 63.2 472 51.3 63.6 493 117.3 89.5 543
EMACS 26.9 38.8 159 26.4 38.8 162 26.5 38.8 169 26.6 38.8 174 40.2 51.5 5638
BURLAP 15.4 22.7 207 15.3 22.7 207 15.2 22.7 279 15.2 22.7 279 21.3 29.0 1360

arrays, structs arrays, structs, mallocs no collapses arrays, no collapses arrays, mallocs, no collapses

time space classes time space classes time space classes time space classes time space classes
GCC 116.4 90.0 746 125.0 90.1 1013 457.1 88.4 1835 192.7 89.0 1826 175.1 88.2 2028
EMACS 39.8 51.5 5648 40.4 51.5 5654 135.4 51.2 6710 97.9 51.1 6671 102.7 51.1 6624
BURLAP 21.4 29.0 1430 21.3 29.0 1430 24.8 28.4 1787 25.1 28.4 1805 25.0 28.4 1805

Table 2: Performance of the points-to analysis for various parameterizations of the analysis. The time is given in seconds and space in
megabytes. Also shown is the number of points-to classes.

weak arrays w/ weak strong arrays w/ strong
basic structs arrays prototypes prototypes prototypes prototypes

GCC (113) 237.3 237.3 78.1 160.1 54.1 29.2 29.2
EMACS (70) 277.7 277.7 277.7 240.0 240.0 78.8 78.8
BURLAP (16) 183.8 118.2 97.8 111.1 85.5 24.9 24.9

Table 3: Average number of functions called per call site using a function pointer (anindirect call) for various parameterizations of the
points-to analysis. The number in parentheses indicates the number of indirect call sites in each program.

5.1 Points-To Analysis Parameterization

Table 2 presents statistics for performing a points-to analysis of our
three example programs. When describing the parameterizations
of the points-to analysis, the following titles are used:basic—no
parameterization,mallocs—private memory allocators are speci-
fied,arrays—array operator is not commutative,structs—structure
members are distinguished, andno collapses—structure members
are distinguished, but structures are never collapsed. The last pa-
rameterization is extremely optimistic, but provides a best-case up-
per bound on the number of points-to classes. The space measure-
ments include all necessary data structures including symbol tables.
Use of theprototypeoption is not included in this table, since the
option does not change how the points-to classes are computed, but
rather filters the classes once they are computed.

When comparing the various options, it is important to real-
ize that they affect the points-to analysis in different ways. For
example, thestructsandmallocsoptions actually introduce addi-
tional locations to the points-to analysis, and with the exception of
collapsing structures, do not affect how the points-to classes are
merged. In contrast, thearraysoption does not add any locations,
but merely prevents unnecessary merging of the classes. However,
the options are not orthogonal. Should two or more options be
combined, the number of resulting additional classes may in fact
be less than the sum of the number of additional classes introduced
by using the options separately.

As expected, enabling themallocsandarrays options do not
have an appreciable effect on the performance of the analysis. Yet,
these options do increase the number of points-to classes, making
them generally beneficial options. However, the degree of effec-
tiveness varies significantly. Thearraysoption improves the results
significantly for GCC and BURLAP, but only slightly forEMACS,
probably because it uses few static arrays. In contrast, themallocs
option improves the results slightly for bothGCC andEMACS, but
not at all forBURLAP, because it contains few references to private
memory allocators.

Using thestructsoption increases both the number of points-
to classes and the running time making it a good choice for some
programs, but not for others such asGCC. For bothEMACS and
BURLAP, the number of points-to classes increased by an order of
magnitude and the analysis only required approximately 30% more

time. ForGCC, use of thestructsoption did not yield a significant
increase in the number of points-to classes and doubled the running
time of the analysis. As we can see from Table 2, this is due to
the fact that a larger number of structures were collapsed inGCC
than inEMACS andBURLAP. The greater number of collapses also
accounts for the increased running time.

Table 2 also shows the results for combining various parameter-
izations of the points-to analysis. ForBURLAP, use of themallocs
option does not increase the number of points-to classes, and there-
fore combining the option with the other options is not worthwhile.
For GCC, however, themallocsoption does increase the number
of points-to classes, and combining themallocsandarraysoptions
shows a magnification in the number of points-to classes. By them-
selves, themallocsoption introduces an additional 10 classes and
the arrays option introduces an additional 205 classes. When the
options are combined, the result is an increase of 226 classes. The
results are magnified even more when combined with additional pa-
rameters. A similar result holds true forEMACS. However, the re-
sults are not always magnified when options are combined. InGCC,
for example, the combination of thestructsandarraysoptions ac-
tually yields a decrease in the number of classes. The decrease can
be explained by recalling that the options are not orthogonal to one
another.

The results of thestructsandno collapsesoptions cannot be
compared directly with those of the other options. When structure
fields are distinguished by the points-to analysis, an extended ver-
sion of the analysis is actually being performed over adifferentrep-
resentation of the program. In particular, unless structure members
are being distinguished by the points-to analysis and slicing algo-
rithm, references to structure members are excluded from theCFG
for performance reasons. Also, theno collapsesoption is extremely
optimistic, which explains how the number of classes can actually
decrease when it is combined with other options. Finally, the or-
dering of statements in the program can greatly impact the perfor-
mance of the points-to analysis if members are distinguished. For
example, if all members of a structure are first referenced, and later
pointer arithmetic is performed on the structure, then the structure
must be collapsed and the points-to classes for all members must
be recursively merged. In contrast, if the pointer arithmetic is done
first, then the structure is first collapsed, requiring little time, and all
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criteria time space size of slice
GCC (sched.c:4964,{reg n calls crossed}) 34.2 74.8 229,378
EMACS (alloc.c:1610,{gc consthreshold}) 5.3 31.2 128,434
BURLAP (apply.c:243,{result}) 1.1 8.3 40,232

Table 4: Statistics for the largest slices performed on the three ex-
ample programs. Time is given in minutes and space in megabytes.
The size of the slice is given as the number of three-address state-
ments in the slice. The slicing criterion is a pair consisting of the
statement, specified as a filename and line number, and a set of
variables.

later references to the structure members refer to the same points-
to class, since the structure is now treated as a whole. However,
thestructsandno collapsesoption do provide insight into whether
distinguishing structure members has an appreciable effect on the
analysis, given the more complex implementation and additional
running time required.

Table 3 shows the number of functions called at each call site
using a function pointer—anindirect call. Use of thearraysoption
reduces the average number of functions called for bothGCC and
BURLAP, but not forEMACS, sinceEMACS has few arrays of func-
tion pointers. However, theprototypesoption works well for all
three programs. Strong prototype filtering works extremely well,
so much so that the results do not improve further even if thear-
raysoption is enabled. Since one of the co-authors is the author of
BURLAP [5], we verified its results by hand and found them to be
near-perfect.

5.2 Program Slicing

To evaluate the effectiveness of our approach in data-flow analy-
sis, we have performed several program slices of our example pro-
grams. For all slices, we tried to choose variables that might be
selected by a programmer during debugging.

The results for the largest slices that we performed are pre-
sented in Table 4. The time given in the table is the time necessary
to perform only the slice, not to compute the points-to information,
which is given in Table 2. We believe that the time and space re-
quirements are acceptable for a large program such asGCC. For
smaller programs, such asBURLAP, the slicer performs extremely
well. These results indicate that slicing large programs is feasible
using our approach.

Table 5 shows the effects of user-parameterization of the points-
to analysis on program slicing. The improvements due to thear-
rays, structs, andmallocsparameters are small (at most 3%), which
suggests that the precision of the slicing algorithm is relatively in-
sensitive to changes in the points-to classes [15]. This is in contrast
to our original expectations, since we saw significant improvements
in the number of points-to classes using these parameters.

However, the slices performed using theprototypesoption show
a dramatic improvement. The number of statements in the slice de-
creases several fold, as does the number of statements examined
during slicing. This reduction is due to the better analysis of func-
tion pointers in both programs. Without use of the strong prototype
filter, the computed call-graph is highly imprecise (i.e., containing
a large number of false calls) resulting in a far greater number of
statements being examined and subsequently included in the slice
than is necessary. This implies that the filtering of function pointers
based on their prototypes would be beneficial to many interproce-
dural data-flow analyses. We had expected to see similar results
from use of thearraysoption onGCC due to its dramatic reduction
in the average number of calls made through a function pointer.
However, this option fails to remove key functions from certain
call sites, leading to false recursion between major subsystems.

points-to size of statements
options time slice examined

GCC basic 49.44 236,366 282,192
(c-decl.c:2298,{b}) arrays 39.11 230,306 282,192

prototypes 43.66 235,037 235,037
GCC basic 42.32 236,354 282,192
(unroll.c:3085,{const0rtx}) mallocs 48.20 236,351 282,192

arrays 32.41 230,305 282,192
prototypes 0.46 9,702 13,281
combined 0.42 9,702 13,281

BURLAP basic 1.29 40,135 51,863
(arith.c:145,{type error}) arrays 1.04 40,204 51,863

structs 1.72 40,883 53,535
prototypes 0.20 8,849 12,195
combined 0.23 8,661 12,319

BURLAP basic 1.29 40,135 51,863
(matrixfunc.c:767,{status}) arrays 1.07 40,204 51,863

structs 1.62 40,858 53,535
prototypes 0.22 9,332 12,764
combined 0.25 9,144 12,890

Table 5: Statistics for various slices of the example programs with
different parameterizations (basic, arrays, structs, and strong pro-
totypes) of the points-to analysis.8 For GCC, thearraysandproto-
typesoptions were combined; forBURLAP, thestructsandproto-
typeswere combined. Time is given in minutes.

We were unable to find a parameterization of the points-to anal-
ysis that produced any substantial improvement forEMACS. We
were disappointed that the use ofprototypesoption did not yield an
improvement as it had forGCC andBURLAP. After examining the
source code forEMACS, we believe that the points-to sets for func-
tion pointers are fairly precise. Rather, it is the nature ofEMACS
that is the source of the problem. In particular, it appears that the
subsystems of theEMACS interpreter are in fact recursive due to the
implementation of dynamically scoped error handling.

Table 5 also shows the effects of combining pairs of parame-
ters. Although benefits are typically seen from the combination, the
improvements tend to be small (at most 2%). The more dramatic
results of combining more than two parameters on the points-to
analysis suggests that we should see better but not dramatic results
in slicing.

6 Conclusion and Future Work

Performing effective whole-program analysis is difficult in the pres-
ence of pointers. Points-to analysis requires a global analysis over
the program, making it difficult to integrate with demand-driven
techniques, which are a necessity when analyzing large systems.
The use of pointers in large programs, specifically function pointers
and pointers to local variables, complicates performing an effective
data-flow analysis.

To overcome these problems, we presented a solution for inte-
grating points-to analysis with demand-driven analyses, along with
techniques for parameterizing the analysis to achieve better points-
to results. We also presented data-flow equations for computing
an interprocedural backward program slice in the presence of both
recursion and pointers to local variables, and described an efficient
implementation of our equations. Each aspect of our approach con-
tributes to its effectiveness.

• Piggybacking the construction of theCFG with the compu-
tation of the points-to sets eliminates an extra pass over the
program, saving time.

8Some of the additional three-address statements generated for structure member
accesses have been removed for comparison with the other parameterizations. How-
ever, not all additionally generated statements could be easily removed.
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• Persistently retaining the call-graph on disk allows only the
reachable portions of theCFG to be retained, saving space
and also time by avoiding the use of virtual memory.

• Parameterization of the points-to analysis increases the effec-
tiveness of the subsequent data-flow analysis. In the absence
of function pointers, the increase in the number of points-to
sets does not result in a substantial increase in precision, due
to the transitive effects of the data-flow analysis. However, in
the presence of function pointers, the computed call-graph is
substantially more precise, which greatly increases the pre-
cision of the data-flow analysis with respect to function calls
and realizable paths.

• Through an aggressive implementation of the data-flow sets,
significant space can be saved, making whole-program anal-
ysis practical in the presence of pointers to local variables in
recursive programs.

To validate our techniques, we constructed a program slicer for
C programs and performed several slices of three large programs.
By parameterizing the points-to analysis, the number of points-
to classes could be increased with little performance cost. Also,
the number of functions called through a function pointer could be
substantially decreased. In particular, filtering the points-to classes
based on their prototypes greatly reduces the number of calls. For
program slicing, the improved points-to information for functions
resulted in more accurate and faster program slices, due to the in-
creased precision of the computed call-graph, which suggests that
our techniques would be applicable to many interprocedural data-
flow analyses. For the largest slices that we performed, the time
and space requirements were acceptable for today’s desktop com-
puters, indicating that practical whole-program analysis of large C
programs is feasible using our techniques.

Since prototype filtering works so well on improving the pre-
cision of the computed call-graph, one might wish to extend the
technique to ordinary program variables. By using the type system
of the language, similar filters can be constructed for variables. For
example, if the points-to set for a variablep points to both an integer
variablen and a real variablex , butp is declared to be a pointer to
integer, thenx can be removed from the points-to set. Since distin-
guishing structure members in the points-to analysis has poor time
and space characteristics for some larger programs, filtering based
on structure member types could be an inexpensive alternative. For
languages like C, however, such filtering is almost certainly unsafe
in the general case because the programmer can violate the type
system. For languages with strong typing, on the other hand, type
violations are not supported by the language, so filtering can be
safely applied. We have found that filtering based on function pro-
totypes is worthwhile given its benefits and the infrequent violation
of the type system for function pointers in C programs (i.e., casting
function pointers is rare in C).

One question that remains is whether our techniques can be ap-
plied to other programming languages. Since points-to analysis
requires a global analysis over the system for any programming
language, our approach to integrating the analysis with demand-
driven analyses applies generally. Although parameterizations of
the points-to analysis such as array commutativity are specific to
the C language, the general ideas can be applied to any program-
ming language that is flexible and performance-oriented—any suf-
ficiently powerful language will have pointer constructs whose use
complicates effective points-to and data-flow analysis. For exam-
ple, although private memory allocators may not be used for perfor-
mance reasons, they are often used for reasons of encapsulation and
code reuse. The constructor and destructor functions in C++ [19]
are obvious examples. Distinguishing structure members and filter-
ing points-to classes based on their computed prototypes are also

necessary in C++, since its classes are little more than structures
composed of many function pointers and some data. Finally, an ag-
gressive implementation of the data-flow sets such as ours is neces-
sary to achieve good performance when analyzing large programs,
even if the generalization for pointers to locals is not required.
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