
The Design of Whole-Program Analysis Tools∗

Darren C. Atkinson and William G. Griswold
Department of Computer Science & Engineering, 0114

University of California, San Diego
San Diego, CA 92093-0114 USA

{atkinson,wgg}@cs.ucsd.edu

Abstract

Building efficient tools for understanding large software
systems is difficult. Many existing program understand-
ing tools build control-flow and data-flow representations of
the programa priori, and therefore may require prohibitive
space and time when analyzing large systems. Since much
of these representations may be unused during an analysis,
we construct representations on demand, not in advance.
Furthermore, some representations, such as the abstract
syntax tree, may be used infrequently during an analysis.
We discard these representations and recompute them as
needed, reducing the overall space required. Finally, we
permit the user to selectively trade-off time for precision
and to customize the termination of these costly analyses in
order to provide finer user control. We revised the tradi-
tional software architecture for compilers to provide these
features without unnecessarily complicating the analyses
themselves.

These techniques have been successfully applied in the
design of a program slicer for the Comprehensive Health
Care System (CHCS), a million-line hospital management
system written in theMUMPS programming language.

Keywords: interprocedural analysis, software architec-
ture, demand-driven, context-sensitive, compiler, program
understanding, program slicing.

1 Introduction

1.1 Motivation

Software designers and maintainers need to understand
their systems if their successful development and mainte-
nance is to continue. Unfortunately, large software sys-
tems are difficult to understand, in part because of their
age. Some were not implemented using modern program-
ming techniques such as information hiding [19], which can
help reduce the complexity of a system. Additionally, many

∗This work is supported in part by NSF Grant CCR-9211002, a Hell-
man Fellowship, and UC MICRO Grant 94-053 in conjunction with SAIC.
Copyright 1996 IEEE. Published in the Proceedings of the 18th International Confer-
ence on Software Engineering (ICSE-18), March 25-29, 1996, Berlin, Germany. Per-
sonal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the IEEE.

modifications were not anticipated in the original design, re-
sulting in global modifications to incorporate the change. A
global change distributes design information that is prefer-
ably hidden within a single module to ease future changes
dependent on that information. Finally, these large sys-
tems have been evolved in this fashion over several years,
with modification after modification being layered upon the
original implementation by several generations of program-
mers. The resulting complexity may be exponential in the
age of the system [17]. Many of these systems are still in
use today, such as the Comprehensive Health Care System
(CHCS), a 1,000,000 line hospital management system that
we are analyzing in collaboration with Science Applications
International Corporation (SAIC).

Because of their complexity, large systems can greatly
benefit from automated support for program understanding.
Several automated semantic techniques have been devel-
oped for understanding software. For instance, a program
slicer computes the set of statements in a program that may
affect the value of a programmer-specified variable [26]. A
static assertion checker such asASPECTchecks the consis-
tency of a program’s data-flow and control-flow character-
istics against declared computational dependencies [13].

In order to analyze a program, such tools construct
control-flow and data-flow representations of the program,
similar to those used by an optimizing compiler. One such
representation is the program dependence graph (PDG) [7],
in which nodes denote operations and edges denote depen-
dencies between operations. Program slicing using thePDG

is simple and algorithmically efficient, once thePDG has
been constructed [18]. More traditional representations in-
clude the control-flow graph (CFG) and dominator trees [1].

However, program understanding tasks are interactive,
unlike compilation, and an analysis such as slicing is of-
ten applied iteratively to answer a programmer’s question
about the program. Thus, a whole-program analysis tool
must perform analyses quickly in order to effectively an-
swer many of the questions posed by programmers and de-
signers. Two problems arise when applying traditional com-
piler techniques to the construction of whole-program anal-
ysis tools.



representation time (min) space (MB) comment

1. source code N/A 40 1M lines
2. AST (construction for the entire program) 13.1 414 18M nodes
3. AST (construction on a per-routine basis) 6.9 30 25%> CPU util. than above
4. CFG with symbolic labels (preserving routine’sAST after use) unknown ≈800 exceeds virtual memory
5. CFG with symbolic labels (discarding routine’sAST after use) 17.9 397 6.5M 3-addr. statements
6. completeCFG (symbolic labels replaced by graph edges) 27.5 397 39%CPU utilization

Table 1: Statistics for constructing various representations of CHCS.

First, unlike an optimizing compiler, which typically an-
alyzes a few procedures at a time, these tools analyze the
entire program in order to provide the programmer or de-
signer with a global view of the system. Consequently, both
the running time and space required for many traditional
interprocedural compiler algorithms may be prohibitive for
a large program, especially in an interactive context. For
example, the size of aPDG can be quadratic or greater in
the size of the program (depending on the handling of alias-
ing), and therefore aPDG for a large system may exceed the
virtual memory capacity of the machine. Even the cost of
constructing simple linear-space representations such as the
abstract syntax tree (AST) can be prohibitive. As the second
item in Table 1 illustrates,1 although the size of anAST is
linear in the size of the program, the space consumed by an
AST constructed forCHCS, 414 MB, exceeds the capacity
of the main memory of the machine, even though care was
exercised in its design [8]. In such cases, the time required
to first construct the representation and then later retrieve it
from the slower portions of the memory hierarchy for ac-
tual use may be unacceptable. As shown by the fourth item
in Table 1, the space required for both anAST and aCFG

can exceed the virtual memory capacity of the machine.
Furthermore, the additional iteration over the three-address
statements of theCFG that resolves symbolic references to
labels into graph edges (Table 1, item 6) requires an ad-
ditional 9.6 minutes, illustrating poor performance due to
heavy use of the slower portions of the memory hierarchy.
Based on the per-routine cost of constructing theAST (Ta-
ble 1, item 3), we estimate that the actual cost of construct-
ing theCFG is 11 minutes, only 1.4 minutes longer than this
additional iteration.

The second problem is that a program understanding tool
must be able to answer a wide variety of questions about
a program. However, because program analysis algorithms
are complex, it is not always feasible for the tool user to pro-
gram a new algorithm to answer a specific question. Con-
sequently, program understanding tools tend to provide a
small set of general analysis algorithms that together can
answer a wide variety of questions. Unfortunately, although

1All statistics in this paper were gathered on a Sparcstation 10 Model
61 with 160MB of main memory and 450MB of swap space using the
mallinfo() and getrusage() functions available in SunOS, also
used by theUNIX time command.

these algorithms are sufficient to answer most queries, their
generality can result in an unacceptably long running time
and extraneous information. For example, if a tool user de-
sires to know only if a procedureP is included in a forward
slice (e.g., if the procedure may be affected by a proposed
change) then the entire slice may not need to be computed.
In particular, a statement inP may appear in the slice during
the first few iterations of the analysis. If so, then computing
the entire slice is unnecessary.

1.2 Approach

One might argue that simply buying more memory, disk
and a faster processor could solve these problems, but this
solution is not cost effective. The size of many modern sys-
tems is several times greater than 1,000,000 lines and is al-
ways growing. A project may also have dozens of program-
mers requiring such resources to perform analyses. The real
problem is waste of computational resources, not lack of re-
sources.

For instance, the per-routine construction of represen-
tations shown in Table 1—which require much less space
and time, and exhibit much betterCPU utilization—suggest
that the prohibitive computation costs are largely due to the
computation and movement of representations for the entire
program, regardless of the analysis algorithm to be subse-
quently applied to the representations. The underlying tool
infrastructurefails to adaptto the nature of the analysis be-
ing performed and the program being analyzed. Our first
goal, then, is that the cost of an analysis be a function of the
size of the relevant portions of the program, rather than of
the size of the entire program. For example, the cost of com-
puting a program slice should be a function of the number
of statements in the slice. To meet this goal, the execution of
the analysis algorithm needs to drive the construction of the
representations that it accesses. In particular, we propose
that a whole-program analysis tool:

• Construct all program representations on demand,
rather thana priori: Demand-driven construction re-
duces the space and time required since portions of the
program that are irrelevant to the analysis are ignored.

• Discard and recompute infrequently used representa-
tions that are large but relatively inexpensive to com-



pute: Many representations such as theAST are in-
frequently used but can exhaust virtual memory. The
recomputation cost for these representations may be
no worse than the cost of moving them to the slower
portions of the memory hierarchy and later retrieving
them.

• Persistently cache frequently used representations that
are small but relatively expensive to compute: Resolv-
ing interprocedural labels in theCFG is expensive and
impractical to demand incrementally, but requires little
space. Time can be saved by saving this information on
disk and only recomputing it when the analyzed soft-
ware is changed.

In general, the properties of a representation such as space
occupied, cost to construct in its entirety, cost to demand in
parts, and frequency of access determine whether it should
be discarded, retained during execution, or retained persis-
tently across uses of the tool.

The second source of waste is performing an analysis
that is more general than the tool user requires because of
lack of flexibility in these tools. Our second goal, then, is
that the tool user should be able to customize the parame-
ters of the analysis—possibly saving computation time—to
better match the tool user’s needs. For example, if the tool
user only wishes to know whether a certain procedure is in
a slice, then the analysis should terminate when this fact
becomes known. In particular, we propose that a whole-
program analysis tool:

• Allow the user to control the precision of the analysis
algorithm: The user can provide additional informa-
tion based on external factors such as the desired pre-
cision of the result, urgency, and system load. For ex-
ample, by reducing precision the tool user can reduce
the time of an iteration of an iterative analysis and thus
receive an answer more quickly.

• Allow the user to customize the termination criterion
for a particular analysis: For example, the number
of iterations required can be substantially reduced be-
cause iterative algorithms tend to have an initial rapid
convergence and so might discover the needed infor-
mation quickly.

Unfortunately, these new features risk complicating
analysis algorithms that are already complicated. Conse-
quently, we have a designed a software architecture that
is event-based and exploits the structure of interprocedu-
ral analysis to support demand-deriving and discarding data
without complicating these algorithms. With careful choice
of abstractions, precision control and customized termina-
tion of analyses can be accommodated within this frame-
work. The result is a system that can perform analyses in-

program
text

code gen.
3-addr.lexer /

parser

AST CFG

construction

representations

flow of data

compiler

for each file filefile

Figure 1: Typical front-end compiler architecture, show-
ing iteration over each file of the program. Boxes indi-
cate modules and arrows indicate calls. Italicized items
designate program components being accessed.

dependent of system size and provide flexible control of the
analysis time.

In the following sections we discuss our design for
achieving good performance in a whole-program analysis
tool. To evaluate our design, we discuss the application of
our design choices to the construction of a program slicer
for CHCS and present statistics gathered from several pro-
gram slices.

2 Design

Since program understanding tools extract detailed infor-
mation from the program source, their designs have tended
to borrow heavily from optimizing compilers. However, the
added requirements of full interprocedural analysis and the
wide range of user queries stress traditional compiler de-
signs. Demand-driven computation, discarding, customiz-
able precision, and user-controlled termination can improve
performance substantially, but these are not accommodated
by standard compiler practice. Because the algorithms used
in compilers are quite complicated, our goal is to introduce
techniques that minimally perturb these algorithms, while
also giving us the performance we desire.

2.1 Improving adaptability

Figure 1 presents a typical software architecture for the
front-end of a compiler, which iterates over each file in the
program. The general flow of control is from top-to-bottom
and left-to-right. The flow of data is left-to-right. The space
required in a typical optimizing compiler is not prohibitive,
since the program representations for one file are discarded
before processing the next file, as they are no longer needed.
However, if the representations were to be retained for later
use, as required by a whole-program analysis tool, then the
resulting space could be prohibitive.

A demand-driven algorithm [3, 4, 12] can reduce the
space (and time) requirements of an analysis by ignoring
portions of the program that are irrelevant to the analysis.
However, we have found that demand-driven construction



of a single program representation does not sufficiently re-
duce the space requirements, since many program represen-
tations are derived from other representations. Although in
some analyses the intermediate representations may bea
priori discarded, in others many must be retained [9]. Our
slicer, for example, depends upon aCFG, dominance fron-
tiers [5], and anAST for display. Thus, there are many repre-
sentations for each procedure in the program, but large por-
tions of some of these representations are used infrequently
or not at all. In computing a backward slice, for example,
the only needed portions of the program representations are
those that are on the control-flow path from the beginning
of the program to the slicing criterion.

Basic demand-driven computation does not provide all
the savings possible. In particular, our analysis in Table 1
shows that retaining an infrequently used representation can
exhaust the main memory or even the virtual memory re-
sources of the computer. Thus, we choose to discard such
representations—in our case theAST—and recompute them
when they are required. Although this adds time to recom-
pute any discarded data that is later needed, we can still
achieve savings by avoiding the cost of (1) moving out re-
tained data to the slower parts of the memory hierarchy, and
(2) retrieving it later when needed.

Other representations are expensive to compute and are
used frequently, but require little space. For instance, our
slicer needs to compute the callers of a procedure, which
would normally be resolved by the second pass over the
CFG discussed in Section 1.1. Although this information
is demanded like other representations, it is stored on disk
rather than discarded. Subsequent runs of the slicer on the
same program can reuse this information as long as the pro-
gram has not changed.

Many control-flow and data-flow analyses—such as in-
terval analysis [1] or alias analysis [16, 2]—are sufficiently
complicated without the additional burden of requiring the
algorithm to demand-derive additional data structures. It
is desirable to make minimal changes to these algorithms
when addressing the problems encountered when analyz-
ing large systems. We have revised the standard software
architecture for compilers to allow us to make only small
changes to existing analysis algorithms and yet support the
demand-driven construction and subsequent discarding of
the program representations.

The primary problem with the standard architecture is
that the flow of control largely follows the flow of data from
source to sink. This flow is controlled from the top-level
analysis algorithm. However, demand-driven computation
requires that the sink must be able to “demand” data from
the source, reversing the control-flow relation to be not only
right-to-left, but also coming from the bottom of the hi-
erarchy, not the top. One solution to this problem is to
have theCFG module directly call theAST module, and so

program
text

lexer /
parser

AST CFG

3-addr.
code gen.

text-AST
mediator

semantic
analysis

mapping

construction

representations

node statement

flow of data

character

mediator
AST-CFG

Figure 2: Software architecture for a whole-program
analysis tool. Boxes indicate modules, solid arrows in-
dicate calls, and dashed arrows indicate events. Itali-
cized items designate program components being ac-
cessed.

forth. However, this solution significantly reduces the in-
dependence of theCFG module. For instance, it no longer
could be constructed easily from representations other than
the AST. A solution that instead modifies the analysis al-
gorithm would further complicate an already complicated
algorithm. Additionally, each new algorithm would require
essentially the same (complex) modifications. The redun-
dancy distributes the design decisions regarding demand-
driven computation across several system components, po-
tentially complicating future changes related to those deci-
sions.

To accommodate the needed changes in control-flow
without compromising independence, our solution is to
modify the existing architecture to use events and map-
pings. This architecture borrows from our previous expe-
rience with layered and event-based architectures [10, 8],
but these architectures do not accommodate demand-driven
computation or discarding. Figure 2 presents an example of
our architecture containing three program representations—
the program text, theAST, and theCFG—with each rep-
resentation fully encapsulated inside a module. Accessed
data structures, shown italicized, are program components,
rather than the entire program or whole files as in Figure 1.
Unlike in the compiler architecture of Figure 1, the analysis
algorithm does not call the construction modules directly,
since the program representations are demand-derived as
they are accessed through their module abstractions. The
architecture’s underpinnings, described below, take care of
computing the required structures.

Mediator modules: Many semantic tools must maintain
mappings between the various program representations. For
example, in a program slicer, when the user selects a vari-
able in the program text represented by theAST, the cor-
respondingAST node must be mapped to a three-address
statement in theCFG to begin slicing. When the result-



ing slice is displayed, theCFG statements in the slice must
be mapped back to their correspondingAST nodes. These
mappings could be maintained explicitly within each mod-
ule (e.g., by having eachAST node contain a pointer to its
correspondingCFGstatement), but this would reduce the in-
dependence of the individual modules [25]. Instead, we use
separatemediatorsto maintain mappings between the mod-
ules [24, 25]. However, since the representations need to be
constructed on demand, each mediator may call the required
construction module for the representation, as shown in Fig-
ure 2. For example, theAST-CFG mediator module, which
maintains a mapping betweenAST nodes and three-address
statements in theCFG, calls the code generator if there is a
need to map anAST node to its correspondingCFG state-
ment, but that statement has either never been constructed
or has been discarded.

Events: Giving mediators the ability to construct rep-
resentations on demand does not allow the program rep-
resentations to demand-deriveeach other. For example,
the called routine operation on aCFG call state-
ment may need to access a three-address statement that has
not been constructed yet, which may in turn require con-
struction of theAST nodes from which it is to be derived.
Rather than have theCFG module call theAST-CFG media-
tor, which would require a modification to theCFG module
and consequently reduce its independence, our solution is
to use events [25], shown in Figure 2 as dashes. TheCFG

module can send an event “announcing” that it is about to
execute thecalled routine operation. The mediator
module “hears” this announcement, and thus responds to
the event by calling the code generator, if necessary. For
the mediator to hear the announcement, the event handler
of the mediator module must be registered with theCFG

module by an initialization module (not shown).
If an event were announced for every exportedCFG op-

eration, the resulting overhead could be prohibitive. This
cost can be reduced by having a highgranularity for event
announcements: theCFGmodule announces an event for ac-
cesses to major program components such as a procedure,
and as a result theCFG for an entire procedure may be con-
structed. This concept of processing granularity for events
and the construction of program representations unifies the
entire architecture, since it naturally exploits the structure
of the problem [15], namely interprocedural analysis. The
intraprocedural algorithms are unaffected. If theCFG was
constructed incrementally for each statement and theAST

constructed incrementally for each file, the resulting archi-
tecture would be more complicated.

Address-independent mappings: If a representation
may be discarded, the mapping module must support
address-independent mappings. These are in essence a
pointer abstraction similar to that provided by virtual mem-

ory, but resulting in the rederivation of data, rather than
the movement of data. Since theAST may be discarded,
the AST-CFG mediator must support this type of mapping.
Address-independent mappings can be implemented, for
example, by assigning eachAST node a unique index num-
ber that can be reassigned to a reconstructed node, or by
using the file name and character position as a key for each
AST node.

2.2 Improving flexibility

Reducing the space requirements of an algorithm will
also reduce its running time by avoiding the slower portions
of the memory hierarchy. However, because an algorithm
can require between polynomial and exponential time, de-
pending on its precision, it is also necessary to control the
time complexity of the algorithm itself in order to obtain
acceptable performance of a whole-program analysis tool.
Since many data-flow analyses are iterative [1], significant
improvements can be achieved by either reducing the run-
ning time of each iteration or by reducing the number of
iterations performed.

Controlling precision: As with demand-driven compu-
tation, providing the tool user with control over the pre-
cision of an analysis should require only minor modifica-
tions to the original iterative algorithm. One approach is to
allow the tool user to specify the interproceduralcontext-
sensitivityof the algorithm. Before we describe our support
for this feature, we present some background on precision
and context-sensitivity.

Recent work has focused on the trade-offs between
context-sensitive and context-insensitive analyses [27,
21]. Many approaches such as the slicing algorithm of
Weiser [26] use only a single calling context for each
procedure—that is, there is no accounting of the calling
sequence that led to the call in order to precisely estimate
the calling sequence’s influence—and therefore arecontext-
insensitive. In contrast, the invocation graph approach [6]
is fully context-sensitivesince each procedure has a distinct
calling context for each possible call sequence starting from
the main procedure of the program.2 The invocation graph
can be understood as treating all the procedures as inlined at
their call sites. Figure 3 presents the call graph of a simple
program, withM representing the main procedure, along
with variouscontext-graphs.

The nodes of a context-graph represent a calling con-
text of a procedure and the edges represent procedure calls.
Each context-graph has an associatedcontext-depth. Fig-
ure 3b shows the context-graph using Weiser’s approach.
Since each procedure has only a single context, this graph
is identical to the call graph of Figure 3a. This is thedepth-1

2Recursion is handled by following the recursive call once and then
using the resulting data-flow set of the recursive call as an approximation
for subsequent calls.



C A C B C A C B

DCA
DCB

M

A B

D

M

A B

(c) (d)

(b)

M

A B

C

D

(a)

M

A B

C

D

Figure 3: A sample program with (a) its call graph, (b)
its depth-1 context-graph, (c) its depth-2 context-graph,
and (d) its unbounded-depth context-graph. A proce-
dure with multiple contexts is annotated with its call
path.

context-graph, since the context of a procedure is deter-
mined by searching asingleprocedure down the call stack.
For example, the call stacksM A C and M B C (shown
growing from left to right) are equivalent since only the top-
most procedure,C, is examined in tracing the call stack.
Figure 3d shows a context-graph equivalent to the invoca-
tion graph for the program, with procedures having multi-
ple contexts annotated by their call path. This graph has
effectiveunbounded-depth, since the context of a procedure
is determined by searching back through the call stack as
many procedures as necessary to reach the main procedure.

To control precision, our approach allows a variable de-
gree of context-sensitivity. For example, Figure 3c shows
thedepth-2context-graph for the program. The call stacks
M A C andM B C are not defined to be equivalent since the
depth-2 call stacksA C and B C are unequal, resulting in
two contexts forC. However,D still has only a single call-
ing context since the call stacksM A C D andM B C D are
equivalent, as both have a depth-2 call stack ofC D. This
approach is similar to the approach of Shivers [22] for ana-
lyzing control-flow in languages with functions as first-class
objects.

A depth-1 context-graph has an equal number of proce-
dures and contexts, resulting in a high degree of impreci-
sion but an efficient analysis. An iterative algorithm us-

ing a depth-1 context-graph withn procedures andm data-
flow facts will requireO(n) space andO(mn) time in the
worst case. An iterative algorithm using an unbounded-
depth context-graph will produce a precise result but will
require exponential space and time in the worst case. As
the context-depth increases the analysis becomes more pre-
cise, but requires more time and space. The tool user may
first perform the analysis at a low context-depth and exam-
ine the results. If the user’s query has not been satisfactorily
answered then the context-depth is increased until either a
satisfactory answer is produced or the running time of the
analysis becomes unacceptable.

The context-graph approach integrates easily with our
demand-driven software architecture. In order to isolate the
analysis algorithm from our additions, we introduce a con-
text module that encapsulates the control of context sensi-
tivity. When a data-flow algorithm traverses a call edge of
the CFG, a new context is demanded for the called proce-
dure. The context module (not shown in Figure 2) either
creates a new context for the procedure or returns a pre-
existing context. As a consequence, the analysis algorithm
is impervious to the changes in context-sensitivity. The only
real difference is the context-graph that is implicitly tra-
versed. Contexts are demanded with a standard procedure
call to the context module, not an event, since an analysis
algorithm is not logically independent of precision.

Customizable termination: If an iterative analysis ini-
tially converges towards the ultimate answer quickly, but
does not complete for some time, then customizable termi-
nation can substantially reduce the analysis time required.
One way to provide user controlled termination of an anal-
ysis is to permit the user to suspend an analysis, examine
the intermediate results, and decide if the analysis has suffi-
ciently answered the tool user’s question. Another way is to
allow the user to provide a termination test procedure that is
periodically applied to the current result of the analysis. A
simpler but less flexible approach is for the tool to provide
a fixed set of parameterized termination tests.

Supporting customized termination requires a minor
modification to the analysis algorithm. Events can be used
to announce that a certain slicing milestone is met—such
as the end of an iteration—giving the tool’s user interface
an opportunity to update the display and apply the user’s
termination test to the current results of the analysis.

3 Implementation

We have implemented a program slicer forCHCS using
our techniques.CHCS is implemented in theMUMPS pro-
gramming language, which is an interpreted programming
language with aBASIC-like syntax, reference parameters,
and dynamic scoping. Our slicing algorithm correctly han-
dles dynamic scoping by treating each variable reference as



program
text

AST CFG

code gen.
3-addr.lexer /

parser

tags
site

table
index

protocol
AST

protocol
text

algorithm
slicing

protocol
CFG

representations

construction

mapping

protocols

nodecharacter statement

Figure 4: Implementation of the program slicer for CHCS,
adapted from Figure 2 with the addition of a protocol
layer. Boxes indicate modules, solid arrows indicate
calls, and dashed arrows indicate protocols. Italicized
items designate program components being accessed.

a pointer dereference to any of the reaching variable decla-
rations.

Our program slicer, shown in Figure 4, uses three pri-
mary representations—the program text, theAST, and the
CFG—and is written in the C programming language. The
site-tagsmodule maintains mappings between the program
text and theAST. Efficient demand-driven computation of
the AST depends upon the (possibly cached) caller infor-
mation, which maps a routine to a file, line number, and
list of callers. Theindex-tablemodule maintains mappings
between theAST and theCFG.

3.1 Architectural modifications

Because C does not directly support events, we modi-
fied the event-based software architecture described in Sec-
tion 2 in order to simulate events. One possible approach is
to implement an event mechanism, instrument theAST and
CFGmodule operations with event announcements, and reg-
ister the mediators with the appropriate operations. To avoid
this effort and minimally perturb the underlying tool infras-
tructure, we added aprotocol layer, as shown in Figure 4.
The modules of the protocol layer are virtual in that they do
not manifest themselves as functions, but rather as require-
ments. If the slicer wishes to call thecalled routine
function of theCFG module, it must first obey the proto-
col that requires it to first “announce” an event to the index
module. Rather than events flowing from a lower layer to a
higher layer, the protocol requests flow from a higher layer
to a lower layer. The protocol layer requires no modifica-
tions in the lower layers, but instead places a burden on the
client (i.e., the slicer) of these layers. However, to both min-
imize additions to the client and increase performance, the
protocol uses the same high level of granularity between re-

zy

*x

+

a b c

/-

+

1

2

3

4

5

6

7

8

9

10

11

:

:

:

:

:

:

:

6"bar"

1"foo"

routine start

t1 := x + t0 1

3t0 := y * z

t14 := b / c 9

t15 := t13 + t14 6

7t13 := - a

index
table

"bar"

ASTs three-address statements

code index

"foo"

Figure 5: The index-table module maintaining mappings
between the ASTs for two routines and the associated
three-address statements.

quests as proposed for events (i.e., procedure granularity).

3.2 Address-independent mappings

The index-table module functions as a mediator, main-
taining mappings betweenAST nodes and three-address
statements in theCFG, as shown in Figure 5. The address-
independent mappings are maintained usingindex numbers.
When theAST for a routine is constructed, each node is as-
signed an increasing index number during a preorder traver-
sal of theAST. The index numbers of each root node are also
stored in a small auxiliary table for later use. The index-
table itself contains bidirectional mappings fromAST nodes
to three-address statements using hash-tables. Each three-
address statement also contains an index number represent-
ing its associatedAST node.3 If the AST for a routine is
destroyed, its corresponding entries in the index-table are
removed. If theAST needs to be reconstructed for a given
three-address statement (i.e., a miss occurs in accessing the
hash-table), theAST for the entire routine containing the
statement is reconstructed. The routine name and its start-
ing index number are determined by searching the auxiliary
table using the index number of the three-address statement,
and a preorder traversal of theAST is performed to update
the index-table.

3.3 Context creation

As discussed in Section 2.2, when a data-flow algorithm
traverses a call edge of theCFG, a new calling context must
be demanded for the called procedure. The context module
either creates a new context for the procedure or returns a
pre-existing context. Our backward slicing algorithm per-
forms the following operations when acall statement is
encountered:

3An index number is explicitly stored within a three-address statement
for simplicity. A design with more separation would be to use another
hash-table for mapping statements to index numbers.



routine line no. variable contexts time (min) space (MB) size of slice (stmts)

NSUN 26 NSORD 253 6.1 17.3 14660
FHDRSTR 52 FHQUIT 256 5.0 15.0 14700
DGBED 84 DGW 254 5.3 18.1 14829
MSAKP 62 MSAEFFDT 267 4.6 15.3 15645
CHPLI 33 LRPTN 394 9.0 17.3 20852
PSNST 25 IN 596 22.9 22.3 32351
LRPRACT 10 LRALL 611 24.1 22.6 33156
CPENRFRM 21 CPRBUF 647 29.8 23.8 33935
ORSETN 42 ORACTIN 1255 141.9 60.5 73707
ORSIGN 32 ORLPKFG 1321 154.9 71.8 73907
ORENTRY 68 LRORPTNZ 1432 179.9 74.1 79319

Table 2: Statistics for different slices of CHCS with a single context per procedure.

1. Demand-derive a context for the called procedure,Q,
using the context of the calling procedureP.

2. Using the current slicing criterion, create new slicing
criteria at thereturn statements of the context forQ.
The new slicing criteria are merged with any already
existing criteria using aunion operation.

3. Compute the slice ofQ during a backward depth-first
search ofQ from eachreturn statement.

4. Use the updated criterion at the first statement ofQ as
the new slicing criterion for thecall statement and
resume slicingP.

In the depth-1 context-graph of Figure 3b, firstM slices
into A, andA calls C by demand-deriving a context forC
and updating the slicing criteria at thereturn statements
of C. After a depth-first search ofC, the criteria at the first
statement ofC is used to continue slicingA. Next,M calls
B, andB follows the same steps asA. However, sinceC
has only one context, the criteria fromA andB are merged
in C. The depth-first search returns immediately, since all
blocks inC have been marked as visited byA, andB uses
the (approximate) criterion at the first statement ofC to con-
tinue slicing. Thus, data placed inC by A flows back intoB,
and on the next iteration the data fromB will flow back into
A, resulting in imprecision. If the depth-2 context-graph of
Figure 3c is used, this imprecision will not occur; however,
some imprecision may still occur sinceD has only a single
context. Using a depth-3 context-graph, which is equiva-
lent to the unbounded-depth context-graph for our sample
program, will result in a precise analysis.

Unless an unbounded-depth context-graph is used, data
may be propagated alongunrealizable paths[12, 11]. For
example, data merged at thereturn statements ofC,
which is the source of the imprecision, is propagated along
unrealizable paths (e.g., the data ofA is propagated through
C to B). Our slicing algorithm tries to avoid unrealizable
paths. Since the call toC from A returns toA and not to

B, should the slicing algorithm terminate beforeB is called
from M then no imprecision will result.4

3.4 Customizable termination

Currently the tool provides suspension of an analysis for
inspection of the current results. The user can unintrusively
monitor the progress of the analysis by means of an on-the-
fly display. Our program slicer forCHCSallows viewing the
number of statements analyzed, size of the slice, and other
criteria interactively.

4 Performance results

To test our claims about the value of demand-driven
computation, discarding, precision control, and customiz-
able termination, we performed several backward slices of
CHCSusing our program slicer.

When examining these preliminary results, conclusions
should not be drawn about slicing itself, but only about our
techniques. For one, only one large program was sliced.
Two, the slicing criteria were chosen to produce a reason-
able distribution of slice sizes, not to be representative of
typical slices. Also, the slices computed do not slice into
the callers of the routine in which the slice is initiated; con-
sequently the slices are akin to slicing on statements in the
main procedure, which has no callers.

The times reported below do not include the time re-
quired to compute and write the caller information for each
routine, since it is only recomputed when a file of the pro-
gram to be sliced is changed. ForCHCS this information is
computed in 8.0 minutes and occupies 1.1MB of disk space.

4.1 Demand-driven computation and discarding

Table 2 presents the statistics for a range of slices of
CHCS. Our analysis of the times and sizes of the slices sug-
gests that they are linearly related. The space required also

4The algorithm may terminate if the slicing criterion becomes empty or
if the algorithm is interrupted by the tool user. Additionally,B may not be
called fromM if the call paths are constrained, as in chopping. [14, 20]

Correction:At the beginning of Section 4.1, the paper states “Our analysis of the times
and sizes of the slices suggests that they are linearly related.” However, Table 2 on the
the same page clearly shows a quadratic relationship; “linearly” should be replaced by
“quadratic” in the above statement.



routine line no. variable procedures depth contexts time (min) space (MB) size of slice (stmts)

COMARG 15 ERRTYP 26 1 26 0.017 0.29 488
2 49 0.033 0.37 483

unbounded 363 0.217 0.97 483
COMBLK 14 ERRTYP 36 1 36 0.030 0.37 780

2 74 0.058 0.43 774
3 121 0.092 0.55 769

unbounded 602 0.484 1.42 769

Table 3: Statistics at different context-depths for a 1,000 line compliance checker for CHCS.

routine line no. variable procedures depth contexts time (min) space (MB) size of slice (stmts)

PSPA 46 PSDT 248 1 248 4.9 14.9 14630
2 488 11.1 18.5 14448
3 2586 127.6 49.1 14446

DIC 38 DUOUT 248 1 248 5.3 19.6 14711
2 488 10.3 23.1 14532
3 2553 121.0 53.6 14530

Table 4: Statistics at different context-depths for two slices of CHCS.

appears to be linearly related to the slice size. These results
indicate that we have met our goal of having the cost of the
analysis be a function of the result’s size, rather than the
size of the entire program.

Because the slices did not exhaust real memory—much
less virtual memory—the role of discarding did not come
into play. However, a separate set of measurements of slic-
ing without discarding indicated that the cost of discarding
theAST was insignificant.

4.2 Context-depth sensitivity

Tables 3 and 4 present statistics for four slices at varying
context-depths. Table 3 presents two slices from a 1,000
line compliance checker forCHCS, and Table 4 presents two
slices fromCHCS itself. In each slice, the number of calling
contexts increases rapidly with the context-depth, signifi-
cantly impacting the time and space required. However, in
the two slices from the compliance checker, a low context-
depth yields a program slice equivalent to a program slice
obtained at an unbounded context-depth. Although the re-
sulting context-graphs differ, unbounded context-depth is
unnecessary to obtain a precise slice. The two larger slices
from CHCSshow that as the context-depth increases, at first
there is a considerable decrease in the number of statements
in the slice. However, an additional increase of the context-
depth yields little improvement.5 The four slices together
suggest that a high context-depth may be unnecessary to
obtain a precise slice. They also support our hypothesis that
a low context-depth slice is usually several times less costly

5We were unable to determine the context-depth that would result in
a program slice equivalent to that obtained using an unbounded context-
depth, since the space required exceeds the virtual memory capacity of the
machine.

than a higher one, suggesting that there is little extra cost to
the tool user in performing a low context-depth slice first,
on the hope that the result will adequately answer the tool
user’s question.

4.3 Algorithmic convergence

Some program slices in Table 2 require more than two
hours to complete, which for some uses may be unaccept-
able. However, our results show that the majority of state-
ments in a slice are obtained after the first few iterations.
Figures 6a and 6b depict the convergence properties of our
program slicing algorithm by plotting the size of the slice at
each iteration.6 These figures show that 90% of the state-
ments in the slice are obtained within the first 20% of the
iterations. Figure 6a presents data for two slices ofCHCS

at different context-depths, illustrating that the rate of con-
vergence appears to be independent of the context-depth.
Figure 6b presents data for several sizes of slices ofCHCS,
illustrating that the convergence rate also appears to be in-
dependent of the slice size. This data seems to confirm our
belief that the tool user can use customized termination of
the slicer to substantially reduce the number of iterations of
an analysis, independent of the context-depth and slice size.

5 Conclusion

Because a large software system is difficult for its pro-
grammers and designers to understand, they could greatly
benefit from automated support for program understanding.
Tools supporting such analyses need to construct represen-
tations similar to those used by an optimizing compiler.

6The data are normalized to percentages so that slices of different sizes
and iterations can be compared.



0
�

20 40 60 80 100
�

percentage of iterations complete�

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f s
lic

e 
co

m
pl

et
e

context-depth = 1
context-depth = 2
context-depth = 3

(a) varying context-depth

0
�

20 40 60 80 100
�

percentage of iterations complete�

0

20

40

60

80

100

pe
rc

en
ta

ge
 o

f s
lic

e 
co

m
pl

et
e

14660 statements
20854 statements
33156 statements
79319 statements

(b) varying size of slice
Figure 6: Algorithmic convergence.

However, unlike an optimizing compiler, program under-
standing may require analyzing large portions of the pro-
gram simultaneously for an arbitrary task. Consequently, to
minimize time and space requirements, the tool infrastruc-
ture must be able to adapt to the requirements of the analysis
being performed, and the tool provide flexible control of the
analysis to the user.

Although it may seem overly aggressive to simultane-
ously apply the demanding of all data, the discarding of in-
frequently used data, the retention of costly data, tunable
precision, and customizable termination, omitting any tech-
nique can unacceptably compromise performance:

• Without demand-driven computation, the space and
time required to perform analyses is necessarily a func-
tion of the size of the overall system, and is likely to
exhaust the memory resources of most computers.

• Without discarding, virtual memory can be exhausted
by sizable representations that are not currently in-
volved in the computation. Additional time is also ex-
pended in moving these representations out to disk.

• Without persistent storage, deriving data that is costly
to construct, albeit compact, can increase the start-up
time of an analysis substantially.

• Without providing control of precision, an analysis can
take unnecessarily long if a high degree of precision is
not required. On the other hand, providing only a low
degree of precision may be ineffective in answering
sensitive queries.

• Finally, without the ability to control the termination
of an analysis, it may run unnecessarily long to answer
the question at hand.

In addition, to support these features without unnecessarily
complicating the analysis algorithms, the architecture tra-
ditionally supporting these algorithms must be adapted to
include events and mappings.

Work remains to be done to determine the feasibility of
economical whole-program analysis tools. These results
are for only a single analysis algorithm on a single sys-
tem. Also, despite the positive implications of Section 4, we
are disappointed by the time required to compute the larger
slices ofCHCS, interruptability notwithstanding. On these
larger slices, the slicer examined approximately 5% of the
statements inCHCS indicating that despite our aggressive
design, program slicing of large systems may still be very
costly. We need to look more closely at our design, im-
plementation, and the slices computed to better understand
what is determining the overall performance. Our initial ex-
periments suggest several interesting questions:



• Is there a practical framework for deciding how a rep-
resentation should be treated with respect to construc-
tion on demand, discarding, persistent storage, etc.?
We have informally identified the following properties
as influential: relative sizes of the source and target
data structures, the time required to construct the tar-
get, the cost of constructing portions of the target on
demand, and the frequency of access of the target.

• Can it be cost effective to share program representa-
tions among multiple tool users? How would sharing
affect the way representations should be managed?

• Is it possible to design a heuristic for determining the
progress of an analysis with respect to convergence?
Since all of the convergence curves in Figure 6 are very
similar, a curve-fitting heuristic might allow predicting
the progress of a slice.

• Can the optimal context-depth be heuristically deter-
mined? Can the context-depth be increased or the
context-graph modified during slicing to provide bet-
ter precision where needed?

• How does context-depth affect iteration time? Does
added precision lead to convergence in fewer itera-
tions?

• How does the structure of the program being sliced
affect the slicing algorithm? Do slices over well-
structured modules of the system require fewer iter-
ations and converge faster? Does the structure im-
pact the recomputation time or the performance of the
memory hierarchy?

• Is it beneficial to discard procedures of theCFG that
have not yet contributed to the analysis? Is there a way
to conservatively cache information about a procedure
to avoid re-examining it?

As part of our attempt to answer these and other ques-
tions about whole-program analysis, we are planning to use
our techniques in the design of a slicer for C programs. Al-
though C has aliasing through pointers, our implementation
for MUMPS handles dynamic scoping as pointer aliasing.
Also, some of the newer results in points-to analysis [23]
should make it possible to inexpensively compute alias re-
lations on a demand basis. Our intuition is that the perfor-
mance results for analyzing C programs should be similar.

Acknowledgments: Thanks to David Notkin and Jeanne
Ferrante for their help on improving the organization of this
paper. Mark Wegman of IBM Research suggested the ques-
tion regarding modifying the context-graph during slicing.
We thank the anonymous reviewers for their helpful com-
ments.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Princi-

ples, Techniques, and Tools. Addison-Wesley, Reading, MA,
1986.

[2] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. InProceedings of the 20th ACM Symposium
on Principles of Programming Languages, pages 232–245,
Charleston, SC, Jan. 1993.

[3] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construc-
tion of sparse data flow evaluation graphs. InProceedings
of the 18th ACM Symposium on Principles of Programming
Languages, pages 55–66, Orlando, FL, Jan. 1991.

[4] J.-D. Choi, R. Cytron, and J. Ferrante. On the efficient engi-
neering of ambitious program analysis.IEEE Trans. Softw.
Eng., 20(2):105–114, Feb. 1994.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph.ACM Trans. Prog.
Lang. Syst., 13(4):451–490, Oct. 1991.

[6] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. InProceedings of the ACM ’94 SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, pages 20–24, Orlando, FL, June 1994.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans.
Prog. Lang. Syst., 9(3):319–349, July 1987.

[8] W. G. Griswold and D. C. Atkinson. Managing the design
trade-offs for a program understanding and transformation
tool. J. Syst. Softw., 30(1–2):99–116, July–Aug. 1995.

[9] W. G. Griswold and D. Notkin. Automated assistance
for program restructuring.ACM Trans. Softw. Eng. Meth.,
2(3):228–269, July 1993.

[10] W. G. Griswold and D. Notkin. Architectural tradeoffs for a
meaning-preserving program restructuring tool.IEEE Trans.
Softw. Eng., 21(4):275–287, Apr. 1995.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Trans. Prog. Lang. Syst.,
12(1):26–60, Jan. 1990.

[12] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedu-
ral dataflow analysis. InProceedings of the 3rd ACM Sym-
posium on the Foundations of Software Engineering, pages
104–115, Washington, DC, Oct. 1995.

[13] D. Jackson. ASPECT: An economical bug-detector. InPro-
ceedings of the 13th International Conference on Software
Engineering, pages 13–22, Austin, TX, May 1991.

[14] D. Jackson and E. J. Rollins. A new model of program de-
pendences for reverse engineering. InProceedings of the 2nd
ACM Symposium on the Foundations of Software Engineer-
ing, pages 2–10, New Orleans, LA, Dec. 1994.

[15] S. C. Johnson. A portable compiler: Theory and practice.
In Proceedings of the 5th ACM Symposium on Principles of



Programming Languages, pages 97–104, Tucson, AZ, Jan.
1978.

[16] W. Landi and B. G. Ryder. A safe approximate algorithm
for interprocedural pointer aliasing. InProceedings of the
ACM ’92 SIGPLAN Conference on Programming Language
Design and Implementation, pages 235–248, San Francisco,
CA, June 1992.

[17] M. M. Lehman and L. A. Belady, editors.Program Evolu-
tion: Processes of Software Change. Academic Press, Or-
lando, FL, 1985.

[18] K. J. Ottenstein and L. M. Ottenstein. The program depen-
dence graph in a software development environment. InPro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development En-
vironments, pages 23–25, Pittsburgh, PA, Apr. 1984.

[19] D. L. Parnas. On the criteria to be used in decomposing sys-
tems into modules.Commun. ACM, 15(12):1053–1058, Dec.
1972.

[20] T. Reps and G. Rosay. Precise interprocedural chopping.
In Proceedings of the 3rd ACM Symposium on the Foun-
dations of Software Engineering, pages 41–52, Washington,
DC, Oct. 1995.

[21] E. Ruf. Context-insensitive alias analysis reconsidered. In
Proceedings of the ACM SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation, pages 13–
22, La Jolla, CA, June 1995.

[22] O. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. Ph.D. dissertation, Carnegie Mellon University,
School of Computer Science, May 1991.

[23] B. Steensgaard. Points-to analysis in almost linear time.
In Proceedings of the 23rd ACM Symposium on Principles
of Programming Languages, pages 32–41, St. Petersburg
Beach, FL, Jan. 1996.

[24] K. J. Sullivan. Mediators: Easing the Design and Evolu-
tion of Integrated Systems. Ph.D. dissertation, University of
Washington, Department of Computer Science & Engineer-
ing, Aug. 1994.

[25] K. J. Sullivan and D. Notkin. Reconciling environment in-
tegration and component independence.ACM Trans. Softw.
Eng. Meth., 1(3):229–268, July 1992.

[26] M. Weiser. Program slicing.IEEE Trans. Softw. Eng., SE-
10(4):352–357, July 1984.

[27] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. InProceedings of the ACM
SIGPLAN ’95 Conference on Programming Language De-
sign and Implementation, pages 1–12, La Jolla, CA, June
1995.


