
Implementation Techniques for Efficient
Data-Flow Analysis of Large Programs

Darren C. Atkinson
Dept. of Computer Engineering

Santa Clara University
Santa Clara, CA 95053-0566 USA

atkinson@engr.scu.edu

William G. Griswold
Dept. of Computer Science and Engineering

University of California San Diego
La Jolla, CA 92093-0114 USA

wgg@cs.ucsd.edu

Abstract

Many software engineering tools such as program slicers
must perform data-flow analysis in order to extract nec-
essary information from the program source. These tools
typically borrow much of their implementation from opti-
mizing compilers. However, since these tools are expected
to analyze programs in their entirety, rather than functions
in isolation, the time and space performance of the data-
flow analyses are of major concern. We present techniques
that reduce the time and space required to perform data-
flow analysis of large programs. We have used these tech-
niques to implement an efficient program slicing tool for C
programs and have computed slices of programs with more
than 100,000 lines of code.

1. Introduction

1.1. Motivation

A variety of semantic tools have been proposed to assist
the software engineer in understanding a system. Exam-
ple tools include program slicing tools [3, 10, 18], invariant
checkers [16], and static assertion checkers [12]. For exam-
ple, a (forward) program slicer helps determine the effects
of a proposed change by computing the set of statements
that might be affected by the value of a given variable. By
definition, these tools need to understand the semantics of
the system in order to determine the possible values and
states of program variables that are of interest to the soft-
ware engineer. Consequently, most program understand-
ing tools borrow insights, algorithms, and techniques from
compiler technology and in particular from data-flow anal-
ysis [1].

However, the scope, extent, and context of program un-
derstanding tools differs greatly from those of a compiler. A

Copyright 2001 IEEE. Published in the Proceedings of the 2001 International Confer-
ence on Software Maintenance (ICSM-2001), November 6-10, 2001, Florence, Italy.
Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted com-
ponent of this work in other works, must be obtained from the IEEE.

compiler need only examine the functions contained within
a single file and only then examine multiple functions si-
multaneously when advanced optimizations such as inlin-
ing are desired. In contrast, a program understanding tool
needs to perform a global, interprocedural (whole-program)
analysis of the system, for it is understanding the interpro-
cedural flow of data that is most difficult for an engineer.

Unlike compilation, program understanding tasks are in-
teractive, and an analysis such as slicing is often applied
iteratively to answer a programmer’s question about the
program. For example, a programmer may need to per-
form several slices with different slicing criteria, incor-
porating the knowledge gained from previous slices (e.g.,
which functions were included in the slice). Thus, a whole-
program analysis tool must perform analyses quickly in or-
der to answer effectively many of the questions posed by
programmers and designers.

These differences become apparent when whole-
program analysis tools are used on large systems (i.e., sys-
tems with at least 10,000 lines and typically more than
100,000 lines of code). The running time and space re-
quired for many traditional interprocedural compiler algo-
rithms may be prohibitive for a large program, especially
in an interactive context such as software maintenance.
For example, the size of the program dependence graph
(PDG) [7], a common program data-flow representation, can
be quadratic or greater in the size of the program (depending
on the handling of pointers). The cost of constructing the
PDG for a moderately sized program such as the 100,000-
line GNU C compiler (GCC) will exceed the main memory
and often the virtual memory of most desktop machines.

Unfortunately, large systems such asGCC are precisely
the systems that could benefit the most from these auto-
mated program understanding tools. As a system increases
in size, engineers struggle to maintain and improve the
modularity of the system and the cohesiveness of the indi-
vidual modules. In the end, they invariably fail because of

the complexity of the task, and the structure of the system
degrades until design decisions are no longer localized to
a single module. Consequently, global modifications must
now be made to incorporate a single change and the engi-
neer requires global, rather than local, knowledge to suc-
cessfully implement a desired change. The complexity of
future changes may be exponential in the number of past
changes made to the system [14]. Such complexity necessi-
tates the use of automated tools to combat it. Finally, large
systems are also often written in an aggressive program-
ming style and use sophisticated language constructs such
as function pointers. The use of these constructs is typically
necessary to achieve good performance or to ease imple-
mentation. However, their use hinders program understand-
ing. For example, function pointers are commonly used
to implement efficient and simple dispatch tables. Large
systems such asGCC and EMACS [17], as well as smaller
systems likeBURLAP [8], make extensive use of function
pointers.

1.2. Prior solutions

One might argue that simply buying more memory, disk,
and a faster processor could solve these problems, but this
solution is not cost effective. The size of many modern sys-
tems is several times greater than that ofGCC and is always
growing. A project may also have many programmers re-
quiring such resources to perform analyses.

Demand-driven techniques [2, 5, 11] have been proposed
as a solution to the problems of prohibitive time and space.
Unfortunately, these techniques cannot be applied in many
cases. For example, pointer information is inherently global
and cannot be computed easily on demand. In the C pro-
gramming language [13], for example, all files must be an-
alyzed to account for the use of pointers in initializers for
static variables, regardless of whether a file contains a func-
tion that might be reachable during subsequent data-flow
analysis. Data-flow analyses such as program slicing are
not locally separable and therefore cannot be precomputed
and stored efficiently.

2. Approach

Although demand-driven and memoization techniques
can be adapted to work on large systems, the effort is of-
ten insufficient and difficult to implement. Consequently, a
multifaceted approach that aims at improving performance
at all levels of the analysis, both “macro” and “micro”, is
required. Indeed, small improvements at lower levels are
often magnified by an order of magnitude or more when the
total running time of the analysis is considered.

Examining well-known, lower-level techniques such as
data-flow analysis, we find that subtle adjustments can sig-

nificantly improve performance of whole-program analysis
tools. For example, by factoring the data-flow sets accord-
ing to storage class, significant space can be saved, and
thereby significant time can be saved by avoiding use of
the slower portions of the virtual memory hierarchy. As a
case in point,GCC could not be analyzed without such fac-
torization because the data-flow sets alone would require
over 10GB of space. In this paper, we examine several im-
plementation techniques designed to improve performance
without unduly increasing the engineering complexity of
the data-flow analysis:

1. Factoring of the data-flow sets themselves to match the
structure of the analysis can reduce time and space and
improve the understandability of the data-flow algo-
rithm itself.

2. The visitation order of statements during analysis can
significantly impact the running time of the analysis.
In particular, a “for each basic block” approach to
traversing the control-flow graph (CFG) is generally
faster than using a worklist. In addition, we have de-
veloped a hybridized iterative-worklist algorithm that
processes fewer blocks than the traditional algorithm.

3. Selective reclamation of the data-flow sets during the
analysis can dramatically save space without disturb-
ing its correctness or running time. This technique
is dependent only on the properties of the control-
flow graph and not on the particular data-flow analysis
being performed, making it suitable for use in many
tools.

We have used our techniques to implement a slicing
tool for C programs called Sprite, which is part of the
ICARIA andPONDER[9] packages.1 We evaluated our tech-
niques by using Sprite to compute backward program slices
of three large programs. Program slicing was chosen as
the data-flow analysis because it is nontrivial and widely
known. It has become an archetype of program analysis
for software engineering. Because of factorization, slicing
large programs is now possible. Using our other techniques,
program slices of large programs such asGCC can be per-
formed orders of magnitude faster and require 2–3 times
less space. In the following sections, we present a brief
background on the data-flow analysis necessary for back-
ward program slicing, describe each of our implementation
techniques in detail, present our results, and conclude with
ideas for future work.

1Both of these packages are available for download via the Internet at
http://www.cse.scu.edu/˜atkinson.

return from f()

Pexit = Pexit∪Pi (1a)
Dexit = Dexit∪ (Di ∩S) (1b)
Nexit = Nexit∪Ni ∪ (Di −S) (1c)

call to f()

Pi = Pi ∪Pentry (2a)
Di = (Di −S)∪ (Dentry∩S) (2b)

x := y

if x∈ Pi then
Di = Di ∪{y} (3a)

else if x∈ Di then
Di = Di −{x}∪{y} (3b)

x := *p

if x∈ Pi then
Pi = Pi ∪ (∗p−S) (4a)
Di = Di ∪ (∗p∩S)∪{p} (4b)

else if x∈ Di then
Pi = Pi ∪ (∗p−S) (4c)
Di = Di −{x}∪ (∗p∩S)∪{p} (4d)

*p := x

if ∗p∩ (Di ∪Pi ∪Ni) 6= φ then
Di = Di ∪{p,x} (5)

N = nonlocal local (automatic) variables of interest
D = variables of interest with killing definitions
P = local variables of interest with preserving definitions
S = all global (static) variables
∗p = points-to set of variable p

Figure 1. Data-flow equations for slicing in the presence of recursion and pointers to local variables.
Sets are subscripted with the program point to which they refer. Sets that are not subscripted are
the same for all program points. The current statement has program point i. Unless otherwise noted,
a set passes through a program point unchanged.

3. Background

In backward program slicing, a data-flow set represents
the set of variables of interest (i.e., those variables for which
we wish to find definitions). At each program point,D rep-
resents a data-flow set. At each assignment statement, some
set of variables,defs, are defined and another set of vari-
ables,uses, are used. If some variable indefsis also inD
(i.e., of interest), then the killing definitions ofdefsare re-
moved fromD andusesare added toD (and the statement
is included in the slice). Otherwise,D remains unchanged.

In the absence of either recursion or pointers to lo-
cal variables, interprocedural slicing is simple and well-
understood. However, for a language such as C that pro-
vides both of these features, traditional data-flow analyses
may yield unsafe results. To overcome these problems, our
analysis treats definitions of local variables that are refer-
enced through a pointer as preserving definitions [3]. Equa-
tions for the data-flow analysis are shown in Figure 1. Such
local variables are “demoted” and a separate data-flow set
is required to maintain them. For example, a simple assign-
ment statement is handled using two cases, Equations 3a
and 3b. The former handles the case in whichx has been
demoted (because it was referenced previously through a
pointer), and the latter handles the more traditional case.

Furthermore, an additional set,N, is required to model
the transitive closure of the program stack, but only for lo-
cal variables of interest. This set must be checked upon an
assignment through a pointer deference (Equation 5), since
the pointer may refer to a local variable that is currently out
of scope but is on the stack. Therefore, three data-flow sets

per statement (or basic block) are required. Finally, theS
set contains all static (global) variables in the program and
is used to partition a set into its local and global variables.2

This set is used to remove local variables from theD set
across function calls and returns.

4. Data-flow set factorization

If implemented naively, our data-flow equations require
three data-flow sets per basic block (i.e., there is oneD, P,
andN set per block). Given thatGCC has 238,000 symbols
and 120,000 blocks, a bit-set implementation of data-flow
sets would require over 10GB (238,000symbols× 120,000
blocks× 3 sets / block× 1 bit / symbol÷ 8 bits / byte) of
space. A bit-set is implemented by consecutively mapping
the elements of the input set onto the natural numbers. Each
number represents the bit position in a bit-vector, which is
only long enough to contain its highest-numbered bit. An
element is a member of the set if and only if its correspond-
ing bit in the bit-vector is set. A bit-vector representation
allows set operations such as union and intersection to be
implemented efficiently using logical bit-wise operations.
However, such operations can only be performed across bit-
sets with identical mappings (bit-numberings).

SinceN does not change while slicing a function, a sin-
gle N set can be used for all blocks of the function. Using

2We use the termlocal variable to mean anautomatic variablein C.
Similarly, the termglobal variableshould be read asstatic variable. Since
C overloads the use of the “static” keyword, we use the terms local and
global variable instead.

globals

globals

locals

locals

locals

globals

temporaries

temporaries

temporaries

P

N

D

Figure 2. A simple implementation of the data-
flow sets for our equations. The space re-
quired is approximately 6.7 GB for GCC even
if the N set is flow-insensitive.

this implementation, the space requirements forGCCare re-
duced to approximately 6.7GB (10 GB × 2

3), still an unac-
ceptable amount of space. This simple implementation is
shown in Figure 2.

An analysis of the bit-sets revealed that they are typi-
cally very sparse. Examining our equations, we see that
P andN contain only local variables, whileD contains lo-
cal variables, global variables, and generated temporaries.
Also, temporaries cannot usually be the target of a pointer
and therefore cannot be referenced out of scope. There are a
few cases where temporaries can be the target of a pointer,
such as when a structure is returned from a function. For
these cases, we introduce a new type of temporary variable
called aspecial, which is treated as a local variable. The
introduction of specials allows us to treat the vast majority
of temporaries as though they could not be the target of a
pointer. We therefore decided to partition the bit-sets into
three distinct classes: global variables, local variables, and
temporaries for each function, as shown in Figure 3. TheD
set now consists of three bit-sets, but requires space to store
only the global variables, local variables, and themaximum
number of temporariesper function. If we assume for sim-
plicity that the 220,000 temporaries are evenly distributed
amongGCC’s 2,300 functions, the space requirements are
reduced to approximately 60MB, which is acceptable.

The set partitioning also improves algorithmic perfor-
mance and eases implementation. The data-flow equations
of Figure 1 require that theD andP sets be partitioned into
their local and global variables components. Logically, this
partitioning is done using set intersections and differences.
With these components maintained as separate sets, the par-
titioning operations are trivial. For example, rather than
computingD∩S to retrieve the global variables ofD, only
the set of global variables ofD (symbolicallyD.globals)
need be retrieved, thereby changing anO(n) operation into
anO(1) operation.

Examining theP andN sets in even greater detail, we see
that they can contain only local variables that are pointed to
by some pointer variable. Since there are few of thesetarget
locals, the locals of theP andN sets can be further parti-

globals

globals

globals

locals

locals

locals

temporaries

temporaries

temporaries

N

P

D

temporaries for one function

Figure 3. A better implementation of the data-
flow sets for our data-flow equations. The
sets are partitioned into their three distinct
classes. Only the shaded areas of a set are
actually used at any given time.

tioned into two classes to save space, as shown in Figure 4.
However, examining our data-flow equations, we see that
the local variables of thePandN sets must be operated on in
conjunction with those of theD sets (Equations 1c and 5 of
Figure 1). Therefore,explicitly partitioning the local vari-
ables into two classes would complicate these operations.
Such an implementation of the data-flow equations would
be complicated by the need to combine the sets of target and
nontarget locals into one set for any operation involving the
locals from theD set. Given that all data-flow sets are im-
plemented using bit-sets, this process could be complicated
if the various sets have different bit-numberings.

Rather than partitioning the local variables into two dis-
tinct sets, we elected to keep them as one set. However,
since the points-to analysis must be performed prior to data-
flow analysis, we know which local variables are target lo-
cals and which are nontarget locals. We can therefore easily
ensure that the target locals are assigned lower bit-numbers
than the nontarget locals. This numbering ensures that the
target locals are “packed” at the start of the bit-sets. Since a
bit-vector is only long enough to hold its highest-numbered
bit, this implementation gives us the space savings we desire
without the implementation complexities of splitting the lo-
cals into two bit-sets. Because programs often contain few
target locals, the space allocated for theP andN sets is neg-
ligible as a result of our aggressive implementation.

Finally, although this discussion has focused on factor-
ization of the data-flow sets for backward program slicing,
the principle of factorization applies to other data-flow anal-
yses as well. For example, live-variable analysis, which
is used by optimizing compilers to determine the lifetime
of variables, has data-flow equations very similar to those
shown in Figure 1. Only the conditional checks of theD set
in the else clauses need be eliminated. Alternative imple-
mentations of our equations are also possible. For example,
reusing temporaries across functions or within a function
would dramatically decrease the number of temporaries and
would therefore change the data-flow set implementation.
However, reuse of temporaries would also increase the size

globals

globals

globals

locals temporaries

temporaries

temporaries

N

P

D

temporaries for one function

nontarget localstarget locals

Figure 4. Our final implementation of the data-
flow sets for our data-flow equations. The
local variables of the P and N sets are fur-
ther separated into target and nontarget lo-
cals. The slicing tool assigns the target locals
lower bit-numbers than the nontarget locals
to ensure “packing” of the bit-sets.

of the points-to sets since temporaries are often used to hold
the results of pointer arithmetic.

5. Block visitation order

5.1. Traditional algorithms

To perform data-flow analysis (e.g., reaching definitions,
program slicing, live-variable analysis), a compiler or pro-
gram understanding tool propagates the computed data-flow
information along the edges of the constructedCFG. The
data-flow facts along the incoming edges of a node are com-
bined into a single set that is then transformed according to
the data-flow properties of the node. The resulting set is
then propagated along all output edges of the node. If the
CFG is reducible (e.g., the program does not contain any un-
structured jump statements) and the data-flow analysis sim-
ple enough (i.e., locally separable), then the data-flow in-
formation can typically be propagated fully in a single pass
over theCFG [1]. Otherwise, an iterative algorithm must
be used that propagates the data-flow information until no
further changes to the data-flow sets occur.

Since the C language allows unstructured control-flow
and slicing is a nontrivial analysis, an iterative algorithm is
required for data-flow analysis. The visitation order of the
nodes does not affect the correctness of the algorithm, so
long as the data-flow information is fully propagated along
all edges until no more changes occur to the data-flow sets.
However, the visitation order can greatly impact the per-
formance of a specific data-flow algorithm. Two common
visitation algorithms are used to perform data-flow analysis,
as shown in Figure 5.

Iterative search algorithm: In the iterative search (i.e.,
“for each basic block”) algorithm (Figure 5a), each block

changed:= true

while changeddo
changed:= false
for each block Bdo

old := out [B]
process(B)
if old 6= out [B] then

changed:= true
end if

end for
end while

worklist := {start}

while worklist 6= φ do
worklist := worklist - {B}
old := out [B]
process(B)
if old 6= out [B] then

for P in pred [B] do
worklist := worklist∪ {P}

end for
end if

end while

(a) (b)

Figure 5. Example pseudocode for visitation
algorithms: (a) the iterative search algorithm,
and (b) the worklist algorithm. The notation
out [B] refers to the output data-flow set of B.

(i.e., CFG node) is visited once. If any changes have oc-
curred, then each block is visited once again. This process
repeats until no further changes occur to the data-flow sets.
Typically, a depth-first or breadth-first search of theCFG is
used to visit all blocks exactly once in an iteration, with
depth-first search usually resulting in fewer iterations [1].

Worklist algorithm: In the worklist algorithm (Fig-
ure 5b), the blocks (i.e., nodes) to be visited are placed on
a worklist, which is typically implemented using a stack or
queue. A block is removed from the worklist and visited.
If any changes occur to the data-flow sets of the block, then
all predecessors of the block (successors for a forward data-
flow analysis) are placed on the worklist. The algorithm
repeats until the worklist is empty.

Figure 6 shows a program fragment and its associated
CFG, annotated with block numbers. Consider starting a
backward data-flow analysis at the return statement located
at blockB6. An example visitation order forone iterationof
the iterative search algorithm would beB6, B2, B1, B5, B4,
andB3. For the worklist algorithm, acomplete visitation
order might beB6, B2, B5, B4, B3, B2, B5, andB1. Unlike
the iterative search algorithm, the worklist algorithm can
visit a block many times before visiting other blocks. For
example, blocksB2 andB5 are visited twice before block
B1 is ever visited.

The worklist algorithm tends to propagate or to “push”
the changed data-flow information immediately to those
blocks that require that changed information. In contrast,
the iterative search algorithm waits until the next iteration
overthe entire programto push the information. Therefore,
we would expect the worklist algorithm to require less block
visits and consequently require less time than the iterative
search algorithm.

i = 0;

while (i < n) {
if (sum > 20)

j = j + 1;

sum = sum + i;
i = i + 1;

}

return sum;

sum = sum + i
i = i + 1

i = 0

sum > 20

i < n

j = j + 1

return sum

B1

B2

B3

B4

B5

B6

Figure 6. A program fragment and its anno-
tated CFG.

However, the eagerness of the worklist algorithm may
in fact yield poorer performance for interprocedural analy-
ses. If the analysis is not fully context-sensitive [6], then
the nodes of a function are shared among the different calls
to the function. The worklist algorithm will converge the
function for each call (depending upon its implementation)
resulting in the nodes of a function being processed multiple
times and an increased running time. Although the worklist
algorithm may be a good choice for context-sensitive anal-
yses, for large programs context-sensitive analyses are not
generally practical, which makes the worklist algorithm a
poor choice in our implementation in which each function
has its own worklist.3

5.2. The hybrid search algorithm

The iterative search algorithm computes data-flow infor-
mation globally on each iteration. The global nature of the
algorithm makes it a good choice when the data-flow in-
formation is changing over a large portion of the program.
However, on each iteration the entire program is analyzed
even if the data-flow changes from the previous iteration are
localized. In contrast, the worklist algorithm computes the
data-flow information locally and does not process a node
unless required.

Ideally, we could like the iterative search algorithm to
process only those nodes that are required to be processed
on each iteration, rather than processing all nodes. To do so,
we need to determine the necessary condition for processing
a node. Fortunately, the worklist algorithm provides such a
condition. If the output set of a node has changed, then
the predecessors of that node need to be processed. We can
therefore easily modify the iterative search algorithm so that
a node is processed only when necessary. Figure 7 shows

3Such an implementation matches the natural call-and-return structure
of the program and eases implementation. One alternative implementation
is to have a single worklist for all nodes, regardless of function.

function dfs(B)
visited:= visited∪ {B}

if B∈ pendingthen
old := out [B]
process(B)
pending:= pending- {B}

if old 6= out [B] then
changed:= true
for P in pred [B] do

pending:= pending∪ {P}
end for

end if
end if

for P in pred [B] do
if P /∈ visitedthen

dfs(P)
end if

end for
end function

Figure 7. Example pseudocode for the hybrid
search algorithm. A block is processed only
if it is pending.

the resulting hybrid search algorithm implemented using a
depth-first search.

In the hybrid search algorithm, a node isprocessed(i.e.,
the data-flow information computed) only if the data-flow
information of any of its successors (predecessors in a for-
ward analysis) has changed, as indicated by thepending
set.4 However, each node is stillvisited exactly once on
each iteration. Therefore, the hybrid algorithm retains the
“fairness” of the original iterative search algorithm. That
is, a block is not processed again before any other pending
block is processed eliminating the problem of multiple con-
vergence in the worklist algorithm. Although still requiring
the same number of iterations and block visits as the itera-
tive search algorithm, the hybrid search algorithm requires
that less blocks be processed. Since processing the blocks
(i.e., processing the statements within the blocks) consumes
the majority of the computation time, the hybrid algorithm
runs faster than the traditional algorithm.

6. Data-flow set reclamation

The iterative search algorithm guarantees that each block
in the program is visited exactly once before any block is re-
visited. Recall that the input data-flow set of a block is the
confluence of the data-flow sets on all incoming edges. In

4In practice, it may be necessary always to process certain nodes such
as function calls or entry and exit nodes, or to process all nodes on the
initial iteration.

a backward data-flow analysis, once all predecessors (suc-
cessors for a forward analysis) of a block have been visited,
then the data-flow set for the block itself will no longer be
needed by other blocks. Consequently, the data-flow set can
be deallocated.

However, the data-flow sets are typically used to deter-
mine whether the data-flow analysis should continue. For
example, in Figure 5a, the output set is used to determine
if another iteration of the iterative search algorithm is nec-
essary. We would therefore expect that we would be re-
quired to save the data-flow set. However, most data-flow
analyses are monotonic: the size of the data-flow sets is
either monotonically nondecreasing or nonincreasing. For
example, program slicing and reaching definitions are non-
decreasing analyses (the data-flow sets never decrease in
size); computation of available expressions is a nonincreas-
ing analysis. Therefore, it is sufficient to compare thesize
of the data-flow sets rather than the actual sets themselves.
The size of a data-flow set can be preserved even if the set
is reclaimed.

If a depth-first search is used to visit all blocks, then the
maximum number of data-flow sets that need to be allocated
at any one time is proportional to the width of theCFG, re-
sulting in substantial savings in space.5 By saving space, the
time required to perform the analysis will also be reduced
by avoiding the slower portions of the virtual memory hier-
archy.

Iterative search: In our first implementation of this recla-
mation approach, we found that it was cumbersome to keep
a reference count on each block to keep track of the number
of its predecessors that had been visited. Consequently, we
chose a simpler implementation without reference counts:
once the depth-first search of a called function is complete
and all blocks have been visited, the data-flow set of each
block (other than the entry and exit blocks) is deallocated
if all predecessors of the block were visited after the block
itself was visited. Therefore, data-flow analysis with recla-
mation can easily be done as a two-step process, in which
the first step visits each block and also stores the visitation
order (Figure 8a), and the second step reclaims the data-
flow sets of those blocks that meet the given criteria (Fig-
ure 8b). Slightly more data-flow sets remain active at any
time than are minimally needed, but the implementation is
much simpler since reference counting is not needed.

Hybrid search: Performing reclamation with the hybrid
search algorithm is slightly more difficult. Reclamation is
based on the knowledge of which blocks will beprocessed
before other blocks. In the iterative search algorithm, all
blocks are processed on each iteration as they are visited.

5Although worst-case flowgraphs (e.g., grids) exist in which reclama-
tion is impossible, they do not occur in practice.

function dfs(B)
ordered:= ordered· [B]
visited:= visited∪ {B}
process(B)

if size[B] 6= |out [B]| then
size[B] := |out [B]|
changed:= true

end if

for P in pred [B] do
if P /∈ visitedthen

dfs(P)
end if

end for
end function

for B in ordereddo
before:= before∪ {B}
if B 6= entryand B 6= exit then

reclaimable:= true

for P in pred [B] do
if P∈ beforethen

reclaimable:= false
end if

end for

if reclaimablethen
delete(out [B])

end if
end if

end for

(a) (b)

Figure 8. Example of data-flow set reclama-
tion: (a) a depth-first search algorithm that
also stores the visitation order, and (b) a
reclamation algorithm that uses the visitation
order to safely reclaim unneeded data-flow
sets. The notation a · [x] indicates the con-
catenation of the list a with the single-element
list containing x.

The hybrid search algorithm reduces the number of blocks
that need to be processed during an iteration. Therefore, we
would expect that the number of blocks that can be safely
reclaimed must also be reduced. A block can be reclaimed
during the hybrid search algorithm if, in addition to being
reclaimable during the traditional iterative search algorithm,
the block will be processed on the next iteration. Requir-
ing that the block be processed on the next iteration ensures
that the data-flow set will be available (i.e., computed) when
needed.

Worklist: Whereas the iterative and hybrid algorithms are
driven strictly by the control-flow properties of the program
and have the inherent property that all blocks will be visited
exactly once during each iteration, the worklist algorithm
is driven more by the data-flow properties of the program.
Therefore, it can be difficult to predict when a data-flow set
will no longer be needed. In order to safely reclaim the
data-flow set of a given block, we need to ensure that the
block will always be visited (and processed) before any of
its predecessors. This would guarantee that the data-flow
set of the block would always be available when it is re-
quired by a predecessor. Therefore, we require that a block
(reverse) dominate its predecessors in order to be reclaimed.
Although not optimal (i.e., some data-flow sets will not be
reclaimed when in fact they can be), this solution is sim-
ple, and efficient algorithms for computing dominators in a
flowgraph are widely available [15].

Lines of code CFG

BeforeCPP After CPP Time Space
WC 2,692 6,756 1.0 1.3
DIFF 9,836 21,844 2.1 4.2
BURLAP 40,363 112,301 11.1 22.2
EMACS 111,714 244,328 30.2 47.1
GCC 189,043 244,723 36.5 69.0

Table 1. Statistics for the programs used in
the experiments. Time is given in seconds
and space in megabytes. All blank lines of
code have been removed. The measurements
for the CFG include the symbol table, pointer
information, and other necessary data struc-
tures.

As discussed, the algorithm for data-flow set reclama-
tion is based almost entirely on the visitation order of nodes
in the graph. The only requirement on the data-flow anal-
ysis itself is that it be monotonic. Therefore, reclamation
should be possible for any monotonic data-flow algorithm
(e.g., reaching definitions) that traverses theCFG in order to
compute a maximum fixed point solution.

7. Results

We expect that reclamation of the data-flow sets would
result in a significant reduction in the amount of space re-
quired to perform an analysis. We also expect that the hy-
brid search algorithm would be faster than the traditional
iterative search algorithm and that the hybrid algorithm
would therefore be the algorithm of choice. The worklist
algorithm would most likely not be practical on large pro-
grams using our implementation, as discussed in Section 5.

To validate our hypotheses, we implemented a slicing
tool for C programs called Sprite based on our ideas. We
chose five readily available, mature programs of varying
sizes and complexities, whose sizes are given in Table 1.
In particular,WC refers to thewc program from theGNU

textutils package, version 2.0;DIFF refers to thediff
program from theGNU diffutils package, version 2.0;
BURLAP refers to theburlap program from the FElt finite
element analysis system, version 3.05;EMACS refers to the
temacs program of theGNU Emacs editor, version 20.7;
GCC refers to thecc1 program of theGNU C compiler, ver-
sion 2.7.2 for Solaris 2.8.

Sprite correctly handles functions with a variable num-
ber of arguments and the effects due to library functions. Li-
brary functions are handled by providing a skeleton for each
function that correctly summarizes its effects. Signal han-
dlers and thelongjmp andsetjmp functions are not han-
dled. All experiments were performed on an idle 440 MHz

Sun UltraSparc 10 running Solaris 2.8 with 256MB of
physical memory and 1.6GB of swap space. All slices
were computed using data-flow set factorization and with
strong prototype filtering enabled. Section 4 presents statis-
tics supporting the use of factorization. Although Sprite
supports computing context-sensitive slices, all slices per-
formed were context-insensitive for maximum performance
and since context-sensitivity has not been found to yield
substantially better slices [2, 4].

Table 2 presents statistics for performing several slices
of our test programs. The slicing criteria are based on those
used in other papers [3, 4] and to yield a variety of differ-
ent sized slices. For all slices, we tried to choose variables
that might be selected by a programmer during debugging.
As expected, flow-set reclamation reduces the amount of
space required to perform the data-flow analysis. On av-
erage, reclamation reduces the space by 40%. The aver-
ages for the iterative, hybrid, and worklist algorithms are
approximately 60%, 17%, and 30%, respectively. The time
overhead due to reclamation is small for the iterative and
hybrid searches, but can be much greater for the worklist
algorithm, probably because of the need to compute and
store dominator information. For example, the worklist al-
gorithm runs approximately 33% slower using reclamation
for Slice 5. However, the space savings can result in sub-
stantial net time savings of an order of magnitude or more
for large slices. For example, using reclamation, Slice 7
is computed sixteen times faster using the iterative search
algorithm because the data-flow analysis now fits in main
memory, eliminating paging overhead. Unfortunately, be-
cause fewer blocks can be reclaimed using the hybrid search
algorithm, the same analysis performed using the hybrid al-
gorithm does not fit in main memory. As a result, the it-
erative search algorithm with reclamation outperforms the
hybrid search algorithm with reclamation for this slice. In
fact, the hybrid algorithm actually runs much slower with
reclamation. We suspect the additional memory references
used in determining if a block should be processed result
in a greater number of page faults. Even Slice 6, which is
much smaller in size, is computed faster with the iterative
search algorithm with reclamation, although the hybrid al-
gorithm does not perform as poorly in this case.

The hybrid algorithm results in approximately 20%
fewer block visits than the traditional iterative algorithm.
Unfortunately, on large slices where the savings would be
most beneficial, the smaller number of reclaimable blocks is
a serious disadvantage. Finally, the worklist algorithm per-
forms extremely poorly on large slices and is therefore not
suitable except on small programs. The (possibly) nested
convergence of the algorithm results in a substantially in-
creased running time and number of block visits. For ex-
ample, the worklist algorithm requires nine times as many
block visits as the iterative search algorithm for Slice 7. In-

Program and Slice size Reclaim Iterative Search Hybrid Search Worklist
Slicing criterion sets? Blocks Time Space Blocks Time Space Blocks Time Space

1. WC 437 lines no 3,576 0.22 0.34 2,963 0.19 0.34 3,736 0.21 0.31
wc.c:364:total lines yes 3,576 0.27 0.25 2,963 0.22 0.30 3,736 0.33 0.29

2. DIFF 1,976 lines no 31,740 2.17 2.54 25,199 1.82 2.54 52,326 3.46 2.45
diff.c:1071:val yes 31,740 2.68 1.55 25,199 2.09 2.29 52,326 4.93 1.92

3. GCC 2,617 lines no 30,821 11.13 8.33 24,285 10.36 8.33 28,576 17.76 8.12
unroll.c:3085:const0 rtx yes 30,821 11.18 2.88 24,285 10.40 6.87 28,576 19.33 5.31

4. BURLAP 2,709 lines no 43,038 6.48 6.04 31,301 5.58 6.02 185,451 18.33 5.92
matrixfunc.c:767:status yes 43,038 6.70 2.94 31,301 6.13 5.11 185,451 23.93 4.40

5. BURLAP 12,336 lines no 162,070 34.83 23.78 135,729 32.47 23.78 629,063 67.96 22.80
apply.c:243:result yes 162,070 30.71 10.40 135,729 36.75 18.85 629,063 90.12 14.73

6. EMACS 34,386 lines no 661,640 1793.68 208.42 564,149 1703.42 208.42 7,657,037 2596.02 188.71
alloc.c:1936:gc cons threshold yes 661,640 347.39 64.69 564,149 815.66 163.37 7,657,037 1886.61 115.89

7. GCC 57,004 lines no 1,155,077 10103.60 316.04 870.448 6657.77 316.04 9,438,892 10625.77 299.40
sched.c:4964:reg n calls crossed yes 1,155,077 622.50 84.70 870,448 8679.52 253.68 9,438,892 14933.10 181.25

Table 2. Statistics for various slices of the example programs using the different algorithms. The
number of blocks given refers to the number of blocks processed. Time is given in seconds and
space in megabytes, both of which are for the computation of the slice itself. Build time for the CFG
is given in Table 1.

terestingly, the time for the slice does not increase substan-
tially, which we believe may be due to the worklist algo-
rithm exhibiting better reference locality since it converges
locally, rather than globally.

An unexpected result, not shown in Table 2, is that the
worklist algorithm computed slightly more precise (i.e.,
smaller) slices in six of the seven slices shown. (The slice
size reported in Table 2 is for the iterative and hybrid algo-
rithms, which always compute identical slices.) On aver-
age, the worklist algorithm computed slices that contained
1% fewer lines. We attribute this decrease to the fact that
the worklist algorithm converges locally, rather than glob-
ally, and hence can be slightly more precise with regard to
interprocedural calling context.

For example, consider aCFG in which two functions,A()
andB(), call functionC(). During analysis,A() will place
data-flow information at the exit statement ofC() and will
collect information from the entry statement ofC(). Later,
B() will perform a similar set of operations and, in the ab-
sence of context-sensitivity, will therefore collect informa-
tion relevant from not only its own call toC() but fromA()’s
call to C() as well. On the next iteration of the iterative
search algorithm,A() will collect information relevant to its
own call toC(), but also fromB()’s call to C() on thepre-
vious iteration. However, using the worklist algorithm, the
data-flow sets ofC() are fully converged uponA()’s initial
call. Consequently,A() will not need to collect information
from C() on the “next iteration” (in fact, the worklist algo-
rithm has no explicit iterations) and will therefore not see
the effects ofB()’s call to C(). Therefore, an increase in
precision may result.

8. Conclusions and future work

Although a variety of semantic tools have been proposed
to aid the software engineer in understanding a system, few
are practical to use on large systems, especially in an in-
teractive context such as software maintenance. Demand-
driven techniques solve some, but not all, of the efficiency
concerns and can be difficult to implement, possibly requir-
ing too many changes to the tool to be worthwhile.

We proposed modifications to the underlying data-flow
analyses that are easy to implement and can yield a sub-
stantial improvement in performance. In particular, recla-
mation of the data-flow sets during data-flow analysis and
factorization of the data-flow sets themselves can result in
substantial savings in space and therefore also result in sub-
stantial savings in time by avoiding the slower portions of
the memory hierarchy.

To validate our hypotheses, we constructed a program
slicing tool for C programs and performed several slices of
well-known programs. Factorization of the data-flow sets
makes it possible to compute slices of large programs. Our
results indicate that flow-set reclamation can yield a signif-
icant reduction in the space required to perform the data-
flow analysis. As a result, many analyses now can be con-
tained in main memory, thus avoiding use of the virtual
memory system. Consequently, these analyses run an or-
der of magnitude or more faster than analyses ran without
flow-set reclamation.

We also presented a new algorithm for visiting the nodes
of a flowgraph, called the hybrid search algorithm. Al-
though the hybrid algorithm results in 20% fewer block
visits, much less reclamation can be performed during the

analysis. Consequently, the traditional iterative algorithm
with reclamation is a better choice than the hybrid algorithm
with reclamation for large programs. More investigation is
needed to determine why the worklist algorithm performed
poorly. One possible area would be to change the imple-
mentation of the worklist algorithm so a single worklist over
all nodes was used, rather than one worklist per function,
thereby possibly eliminating the nested convergence behav-
ior.

An interesting direction for future work would be for the
slicing tool to heuristically determine the best algorithm to
use. The tool could use the size (e.g., number of symbols
and functions) and structure (e.g., nesting depth of func-
tion calls) of a program in such a determination. Extend-
ing this idea, the slicing tool could dynamically switch al-
gorithms based on the space characteristics of the machine
and the analysis. For example, the tool could initially use
the hybrid search algorithm in order to visit fewer blocks,
but could switch to the traditional iterative algorithm if too
much space is required in order to reclaim more data-flow
sets. Given the different natures of the search and worklist
algorithms, switching between them would most likely be
problematic however.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
MA, 1986.

[2] D. C. Atkinson and W. G. Griswold. The design of whole-
program analysis tools. InProceedings of the 18th Interna-
tional Conference on Software Engineering, pages 16–27,
Berlin, Germany, Mar. 1996.

[3] D. C. Atkinson and W. G. Griswold. Effective whole-
program analysis in the presence of pointers. InProceed-
ings of the 6th ACM International Symposium on the Foun-
dations of Software Engineering, pages 46–55, Lake Buena
Vista, FL, Nov. 1998.

[4] L. Bent, D. C. Atkinson, and W. G. Griswold. A compara-
tive study of two whole programs slicers for C. Computer
Science Technical Report CS2000-0643, University of Cal-
ifornia, San Diego, Department of Computer Science & En-
gineering, 2000.

[5] E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven
computation of interprocedural data flow. InProceedings
of the 22nd ACM Symposium on Principles of Programming
Languages, pages 37–48, San Francisco, CA, Jan. 1995.

[6] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. InProceedings of the ACM ’94 SIGPLAN ACM
Conference on Programming Language Design and Imple-
mentation, pages 20–24, Orlando, FL, June 1994.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans.
Prog. Lang. Syst., 9(3):319–349, July 1987.

[8] J. I. Gobat and D. C. Atkinson. The FElt system: User’s
guide and reference manual. Computer Science Technical
Report CS94-376, University of California, San Diego, De-
partment of Computer Science & Engineering, 1994.

[9] W. G. Griswold and D. C. Atkinson. A syntax-directed tool
for program understanding and transformation. InProceed-
ings of the 4th Systems Reengineering Technology Work-
shop, pages 274–282, Monterey, CA, Feb. 1994.

[10] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Trans. Prog. Lang. Syst.,
12(1):26–60, Jan. 1990.

[11] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedu-
ral dataflow analysis. InProceedings of the 3rd ACM Sym-
posium on the Foundations of Software Engineering, pages
104–115, Washington, DC, Oct. 1995.

[12] D. Jackson. ASPECT: An economical bug-detector. InPro-
ceedings of the 13th International Conference on Software
Engineering, pages 13–22, Austin, TX, May 1991.

[13] B. W. Kernighan and D. M. Ritchie.The C Programming
Language. Prentice Hall, Englewood Cliffs, NJ, 2nd edition,
1988.

[14] M. M. Lehman and L. A. Belady, editors.Program Evolu-
tion: Processes of Software Change. Academic Press, Or-
lando, FL, 1985.

[15] T. Lengauer and R. E. Tarjan. A fast algorithm for finding
dominators in a flowgraph.ACM Trans. Prog. Lang. Syst.,
1(1):121–141, July 1979.

[16] G. N. Naumovich, L. A. Clarke, and L. J. Osterweil. Veri-
fication of communication protocols using data flow analy-
sis. InProceedings of the 4th ACM Symposium on the Foun-
dations of Software Engineering, pages 93–105, San Fran-
cisco, CA, Nov. 1996.

[17] R. M. Stallman.GNU EMACS Manual. Free Software Foun-
dation, Cambridge, MA, 1993.

[18] M. Weiser. Program slicing.IEEE Trans. Softw. Eng., SE-
10(4):352–357, July 1984.

