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ABSTRACT

Poorly structured code is hard to maintain and read. Refactoring can improve the code structure and thus
make it easier to preserve and to discern the underlying design. According to Martin Fowler’s book Refac-
toring, refactoring is “a change made to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behavior.” Refactoring is a difficult and time consuming
process which makes it an unattractive activity for many developers. A tool that could automatically identify
refactorable code sections and make fix suggestions would make refactoring much easier and faster. In my
research I have developed the tool Look# for just this purpose.

The Look# tool uses lightweight detection algorithms based on code metrics to identify refactorable code
sections. Each refactoring technique that Look# can detect has been distilled down into a lightweight algo-
rithm based on thresholds and syntactic keywords. Some refactoring techniques are detected by calculating
code metrics and then evaluating if those code metric counts exceed a certain threshold. Other refactoring
techniques are detected by looking for certain syntactic indicators, like a public access modifier on a field.

Many of the guidelines Martin Fowler provides for determining when to apply certain refactoring methods
are based on “human intuition” and abstract perceptions. This makes it extremely difficult to automatically
identify where many of the refactoring methods should be applied. Therefore the goal of these refactoring
algorithms is not to definitively find all the refactorings in the users code, but to use metrics that look for
common tell-tale signs of refactorings to help point “informed human intuition” in the right direction.

The primary barrier to automatic refactoring detection is that it requires a good understanding of the code.
In the absence of a good human understanding of the code, the best a detection algorithm can do is look for
common tell-tale signs that most likely indicate the presence of refactorable code. This thesis explores using
code metrics to look for these tell-tale signs and how successful this approach is. In most cases, the refactoring
detection algorithms discussed in this thesis had a high success rate. Some of the less successful algorithms
need to be reworked and made smarter.
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Chapter 1

Introduction

1.1 The Importance of Software

Software is becoming an increasingly important part of today’s world. We rely on software to help fly our

planes, connect our phones, control our traffic lights, and run our ATMs. Software has become so prolific that

it affects even the the most basic everyday activities. When you take a shower, the water heater has software

that ensures you have enough water at the right temperature. When you drive to work, software is constantly

monitoring the fuel and air mixture in your engine to ensure smooth operation.

All of these are examples of embedded software, in other words software that does not run on your home

PC but on a chip embedded in a device. This kind of software is typically very thoroughly tested before it is

released because once it is embedded in the device, updating it is very difficult. If there is a bug in your water

heater’s software, you cannot simply download an update from the Internet as you would for a PC program.

For that reason, it is especially important for embedded software to be thoroughly debugged and tested before

being released. This is particularly important for health and safety software like pacemakers and anti-lock

brake systems.

However, the software’s life cycle does not end there. The same software will probably be used for future

products, so the software needs to be maintained and updated. As this process of updating and maintaining

the software continues, it becomes harder and more costly to do so each product cycle. In fact a recent

study estimated that eighty percent of all software development cost is applied toward maintaining software

[National Institute of Standards and Technology, 2002].

Every year software is becoming even more important in all aspects of our lives. Improved software
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engineering techniques are needed to keep up with the software’s increasing demand while still ensuring it

is reliable. One such software engineering technique is refactoring. Refactoring is a form of preventative

maintenance that helps reduce maintenance costs.

1.2 The Software Maintenance Problem

Why does software require maintenance? Hardware systems consist of parts that wear out and need to be

fixed or replaced. However software has no parts that can wear out, “whiledo constructs do not wear out after

10,000 loops, and semicolons do not fall off the ends of statements” [Pfleeger, p. 464]. Software systems

differ from hardware because they are designed to be updateable and flexible. Software maintenance can take

a variety of forms. A programmer may need to incorporate an enhancement requested by the customer. The

software may need to be adapted for a new architecture or platform. Defects in the design or implementation

may need to be corrected. Finally, the engineer may simply wish to restructure the system, improving its

design and organization, to ease incorporation of future changes.

The initial phases of a typical software development process are analysis and design. During these phases

the developers work very hard to create a solid program design that fulfills all the requirements while remain-

ing flexible. Unfortunately, no matter how good the design is, inevitably unexpected problems occur and

workarounds are found. Over time the program’s code is modified and rearranged. The code gradually de-

teriorates in this manner away from the originally conceived design structure. This makes code maintenance

and further development even more difficult. By the time the program is finished and working, the developers

could probably create a much better design in hindsight. “In most projects, the first system built is barely

usable. It may be too slow, too big, awkward to use, or all three” [Brooks, 2003, p. 116].

A program is shipped as soon as it works. “Working” typically means it fulfills the requirements and has

no serious bugs. However “it’s possible to write ugly, obfuscated, horribly convoluted, and undocumented

code that still manages to work” [Ganssle, 2003]. To make matters worse, often the developers assigned to

maintain a program are not the same ones who originally created it. There is always a large learning curve

for a developer who is new to a software system. How large that learning curve is depends on the size of the

system and the clarity of the code. It is not uncommon for a new developer in this situation who does not

completely understand the system to introduce many new bugs for each bug he or she fixes. There is a very

expensive long-term cost for sloppy programming. “As systems gain in complexity, the old hack-and-ship

approaches fail utterly and completely and, occasionally, spectacularly” [Douglass, 2002, p. xxiii].
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To avoid this downward spiral of confusing code and higher maintenance costs, preventative maintenance

is used. Preventative maintenance is the practice of improving a program’s code to prevent future bugs from

appearing and to make future debugging easier. Essentially, preventative maintenance is not fixing bugs

or adding features; it is maintaining the structure of the code itself. Time spent performing preventative

maintenance will often save even more time during debugging and future maintenance.

1.3 What is Refactoring?

Refactoring is one form of preventative maintenance. Poorly structured code is hard to maintain and read.

Refactoring can improve the code structure and thus make it easier to preserve and to discern the underlying

design. Refactoring is “a change made to the internal structure of software to make it easier to understand

and cheaper to modify without changing its observable behavior” [Fowler, 1999, p. 53].

According to the old adage “If it ain’t broken, don’t fix it,” poorly structured code should not be restruc-

tured as long as it works. However there are many benefits to restructuring code. Refactoring improves the

readability of code and thus improves the ease of code maintenance. Refactoring forces one to carefully

examine code and helps the developer achieve a new understanding of the code, and this better understanding

of the code makes identifying bugs much easier. Once the developer has improved the readability of the code

and has a greater understanding of exactly what it is doing, it is easier for the developer to debug the code and

add features. Ideally, refactoring could decrease the development and maintenance time for programming

projects. If developers took the time to refactor their code as they implement, they could save themselves

much trouble in the long run.

Refactoring is essentially rearranging a program’s code so it makes more sense. Refactoring is best

explained with a few examples. Say you are working on an employee information and billing program. Every

employee is represented by the same class; however, due to how the billing works each type of employee has

a different billing scheme. The first thing one might do to refactor this code is extract a class hierarchy out

of this one large, monolithic employee class. Then you can move the specialized billing code into the sub-

classes. Other specialized attributes can be moved down into the subclasses as well. What we have just done

has not changed the functionality of our code at all. The new code and old code should function in the exact

same manner. The difference is that now the code is much easier to understand. Instead of one large, ungainly

billing function filled with special cases, it is now broken up into many specialized billing functions. Now

attributes that only pertain to certain types of employees are only present on that employee type class, instead
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of being common to all employee classes. This new code structure makes adding and removing features much

easier, enables testers to better isolate bugs, and improves readability.

So why do many developers choose not to refactor their code? Unfortunately, refactoring is also a difficult

and time consuming process which makes it an unattractive option for many developers. While the above

scenario was a simple example, it still would have taken a bit of time to create the class hierarchy, move all

the code and comments around, and test it to make sure it still works exactly as it used to. Unfortunately,

real world problems are never as simple as the examples, and they often take much longer to solve. At the

end of this process, no new features have been added and no new requirements have been met. You have

essentially just spent all your time making the program do something it was already doing correctly, but

through a different means. Therefore, it can be difficult to justify the short term cost of refactoring.

1.4 Refactoring Tools

To encourage refactoring, tools that help identify refactorings and implement them are needed. These tools

would reduce the time it takes to refactor code, making refactoring a much more doable option for developers

on tight schedules.

Many excellent refactoring tools already exist such as IntelliJ IDEA, JRefactory, and RefactorIT. How-

ever, all of these tools are for the Java programming language, which seems to be the language of choice for

refactoring. Microsoft has recently published a new programming language as part of its .NET technology

called C#. C# is “a simple, modern, object oriented, and type-safe programming language derived from C

and C++ ”[Archer and Whitechapel, 2002, p. xix]. C# bears a very close resemblance to Java, so existing

Java refactoring methods can easily be applied to C#. Nevertheless, because C# is a new language, very

few refactoring tools exist for it. Two popular refactoring tools for C# are C# Refactory and C# Refactoring

Tool. These tools allow the user to select a portion of code and perform an automated refactoring technique.

Unfortunately, these tools do not tell the user where these refactoring methods should be applied.

As of this writing, no tool exists that does a very good job of identifying where refactoring techniques

should be applied in C# code. The dotEasy code metric tool comes close to providing this functionality,

however it is more focused on computing code metrics than applying refactoring techniques. Simon et al.

have made an interesting tool that displays the coupling between class elements in a 3D space using a distance

metric (2001). However their tool still leaves it up to the users to draw their own conclusions about what needs

refactoring from the 3D view rather than explicitly identifying locations where refactorings should be applied.
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Their tool also does not scale well for large projects, since it is only designed to compare two or three classes

at a time. Tourwé and Mens made a tool called SOUL that uses logic meta programming to find refactorings

in code (2003). Their tool appears to work quite well, however it can currently only identify two refactoring

techniques. It is also difficult to tell how much testing they have done on their tool. As you can see in Chapter

5 different programs can yield quite different results.

1.5 The Look# Tool

A tool that can identify refactorable code sections and make fix suggestions would be a very valuable aid

to the refactoring process. I believe such a tool could greatly improve one’s code if used properly during

development. This tool would allow developers to identify design structure problems early on and fix them

quickly before they grow into much larger problems. In my research I have developed the tool Look# for just

this purpose.

Tools that analyze source code often use static analysis, also know as data-flow analysis, to get more

detailed information about the code. Data-flow analysis is “a process of collecting information about the way

variables are used in a program”[Aho et al., 1986, p. 586]. Such tools analyze the program source, computing

information about the program such as data and control dependences. However, such tools are not without

their problems. First, they are difficult to build, requiring interprocedural data-flow analyses that go beyond

what a professional optimizing compiler might require. Even building parsers for languages such as C++, C#,

and Java that have a rich set of features can be difficult. Second, the analyses themselves can be quite slow,

often requiring quadratic time in the size of the program. Finally, the results are often less than desirable

because the tools are conservative in the sense that their results are correct for any input and execution path.

The Look# tool can detect refactorings without performing data-flow analysis. It simply parses a C#

project’s source code and constructs an abstract syntax tree (AST) and symbol table. From there it is able to

scan the AST and symbol table for the information it needs to compute the metrics it needs to determine where

refactoring techniques should be applied. To detect refactorings, I have distilled many refactoring techniques

down to concrete algorithms based on thresholds using code metrics. I found that the principle barrier to

increasing the algorithms’ accuracy was the increasingly complex input the improved algorithms required.

Conceptually, many of the refactoring methods can be translated into a simple high-level algorithm, however

that simple algorithm almost always requires very complex inputs and has many unforeseen exceptions.

The key issue is refactoring requires a good understanding of the code. So to make accurate refactoring
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identification algorithms, inputs that reflect that good understanding are required. However that kind of data

is very difficult to automatically calculate.

Due to the abstract nature of the original refactoring techniques, the accuracy of my algorithms is very

subjective. In my own tests, I have judged my tool to be accurate the majority of the time. I have also found

that some refactorings techniques are so simple they can be detected with one hundred percent accuracy. In

other cases I have found that there are some refactoring techniques that a computer will never be able to

detect with one hundred percent accuracy, but many have tell-tale indicators the Look# tool can look for.

As Look# is designed to aid developers in finding sections of code that can be refactored, Look# has been

designed to minimize false positives, so ideally all the refactorings reported are accurate. The consequence

of this decision is there may be many valid refactorings that are ignored by the tool. In order to maximize

the tool’s effectiveness for the developer, I decided that presenting the developer with only valid refactorings

would increase the tool’s effectiveness since the developer will not have to waste time sifting through false

positives to find a reported refactoring that is valid.
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Chapter 2

Refactoring Background

2.1 Object-Oriented Languages

Refactoring is targeted at object-oriented languages such as Java, C++, C#, and others. Object-oriented

languages have three main principles: data abstraction, inheritance, and dynamic method binding [Sebesta,

2002, p. 22].

Data abstraction or data hiding, is the principle that objects should hide their data from other objects.

Objects can grant access to their data through accessor methods. In this way, objects can control how their

data is manipulated, if it is read only, write only, or read-write. Objects can also make sure their data is never

put in an invalid state, by verifying the data is within bounds.

Inheritance is a mechanism that allows types to form type hierarchies. In such hierarchies, inheritable

attributes in the parent class are inherited by the child class. If the parent class Array declares the method

Count(), then the child class SortedArray will inherit Count(). Most object-oriented languages have

mechanisms known as “access modifiers” that determine whether a type attribute is inheritable. Using access

modifiers, a type can specify which attributes its child classes will inherit. Child classes also can override

(re-define) methods they inherit from their parents, if they need to change the method’s functionality. So

even though both parent and child classes may define the same method, the method’s implementation can be

different.

Object-oriented languages allow instances of a child class to be used anywhere an instance of the parent

class type is expected. This is known as polymorphism. Even though a child class instance can be used where

a parent class type is expected, only the parent class’s interface is visible, so only attributes defined by the
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parent class can be used. However if any parent class attributes are overridden by the child class, then the

child class’s overridden attribute is used instead. This is called dynamic binding.

Most refactoring methods are designed to take advantage of these aspects of object-oriented languages.

There is a whole family of refactoring techniques dedicated to inheritance hierarchies. Many other refac-

torings are based on the principle of data abstraction, that certain data belongs to certain classes and only

those classes should manipulate that data. Some refactorings are independent of object-oriented languages

however, as they focus on algorithms and code fragment problems that are common among most imperative

languages. So refactoring is not exclusively for object-oriented languages, but it is certainly tailored for them.

2.2 The C# Language

In June 2000, Microsoft released a new strongly-typed object-oriented language called C# along with their

new .NET platform. Essentially C# seems to be a hybrid language based on C++ and Java. The C# language

bears an especially close resemblance to Java. It is no surprise that Java and C# are remarkably similar,

they were both created for the same reason, to provide a simpler and more reliable alternative to the C++

language. C# is focused on increasing programming efficiency and reliability by freeing the developer from

the responsibility of performing memory management, type checking, index range checking, etc.

There are several ways in which C# is more developer friendly than previous object-oriented languages.

For one, C# has a rooted class hierarchy where all classes are subclasses of the object class. This means that

any type instance can be used where an Object type is expected since all types inherit from Object. Even the

primitive types in C# inherit from the Object type.

Multiple inheritance in C++ can be the source of much confusion and frustration if used improperly.

Therefore C# follows Java’s lead and only supports single inheritance of classes but allows a type to inherit

from multiple interfaces. An interface is a type that allows you to specify attribute declarations, like meth-

ods, but contains no implementation. This avoids the problem of multiple inheritance where two different

implementations can be inherited.

C# methods are non-virtual by default. To override a method in C# the “virtual” keyword must be used

in the original declaration, and the “override” keyword must be used in the overriding declaration. Also, C#

does not allow global methods, all methods must be declared on a type such as a class or struct. By default

C# passes arguments by value, however C# allows an argument to also be passed by reference through the

use of the “ref” and “out” keywords. While passing by value is much safer, passing by reference allows a
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public class Person
{

public str ing name ;
}

public class Person
{

private str ing name ;
public str ing Name
{

get{return name;}
set{name = value ;}

}
}

. . .
Person person = new Person ( ) ;
person . name = ” Todd ” ;
str ing temp = person . name ;

. . .

. . .
Person person = new Person ( ) ;
person .Name = ” Todd ” ;
str ing temp = person .Name;

. . .

(a) (b)

Figure 2.1: (a) public field usage, (b) public property usage.

method call the return multiple objects by changing the values of its arguments.

One of the goals of C# was to provide a safer and more reliable alternative to C++. C# did this by remov-

ing all of the unsafe features of C++ by default, such as pass by reference, pointers, and unchecked bounds.

For example, C# demands that a variable be initialized before it is used. However C# allows programmers to

still use some of these unsafe features but only through the use of special keywords that confirm the developer

knows what he or she is doing.

C# has a specialized mechanism for accessing data called “properties”. A property, also known as a “smart

field”, allows accessors to be used the same way you would use a public field [Archer and Whitechapel, 2002,

p. 143]. Syntactically there is no difference between accessing a public field and a public property. This is

extremely convenient because it allows a developer to use the property exactly as one would use a public

field as you can see in figure 2.1. This has the added benefit of allowing a developer to switch from a public

field to a public property without changing everywhere the field was accessed. The reason for providing

data accessors in the first place is so data checking can be performed to make sure the data is never given

an invalid value, or accessed while it is in an inconsistent state. Also properties do not have to be read and

write. A property can also be read only or write only by only defining a get or set. Now that C# provides

this property mechanism, there is no reason for developers not to practice good data abstraction by providing

indirect access to fields through properties.

9



public class Data {
private double oxygenRatio ;
public double OxygenRatio
{

get{return oxygenRatio ;}
set{

i f ( value >=0.00 && value <=1.00)
oxygenRatio = value ;

}
}
. . .

}

public class Expression
{

private str ing i npu t ;
public str ing I npu t
{

set{ i npu t = value ;}
}
private double r e s u l t ;
public double Resul t ;
{

get{return r e s u l t ;}
}
. . .

}
(a) (b)

Figure 2.2: Part (a) is an example of how properties can check input values. Part (b) is an example of how
properties can be read-only or write-only.

2.3 Refactoring Techniques

2.3.1 Encapsulate Field

The object-oriented programming style dictates that fields should not be public. “One of the principal tenets

of object orientation is encapsulation, or data hiding” [Fowler, 1999, p. 206]. When an object’s data is

exposed foreign objects can modify the data in illegal ways. Therefore, public fields should always be made

non-public. Objects can provide accessor and modifier methods so foreign objects can still access the data

indirectly. Of all the languages where this principle should be followed, none are better suited than C#. C#’s

property attribute makes applying encapsulate field extremely painless. Since a C# property can be treated

just like a public field, to apply encapsulate field you simply make a public property with the same name as

the public field, rename the field slightly (so the object does not have two attributes with the same name), and

make the field non-public.

2.3.2 Remove Empty Method

If a method has nothing in its body, then it most likely serves no purpose. Something like this might happen

if a developer declares a method and intends to implement it, but ends up not needing to and forgetting about

it. Useless methods such as these clutter the object’s interface and source code. Empty methods should be

removed unless they do somehow serve a purpose.
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public class Name
{

public str ing FirstName ;
public str ing LastName ;

}

public class Name
{

private str ing f i rs tName ;
private str ing lastName ;
public str ing FirstName
{

get{return f i rs tName ;}
set{ f i rs tName = value ;}

}
public str ing LastName
{

get{return lastName ;}
set{ lastName = value ;}

}
}

(a) (b)

Figure 2.3: Before (a) and after (b) Encapsulate Field is applied.

public void DoNothing ( )
{}

Figure 2.4: Example of an empty method that should be removed.

2.3.3 Remove Unused Field

If a field is never used, then it is probably dead code. This often happens when a field is replaced with a

different one, but the developer forgets to remove the original field. If the field is indeed never used, and it

serves no purpose or will not be used in the future, then it should be removed.

2.3.4 Remove Unused Method

If a method is never called, then it is probably dead code. This often happens when a method is replaced with

a different one, but the developer forgets to remove the original method. If the method is indeed never used,

and it serves no purpose or will not be used in the future, then it should be removed.

2.3.5 Hide Method

If a public method is only called within its own class, then that method should be made non-public. An ob-

ject’s public interface should only contain methods that foreign classes actually want to use. Public methods

that are only used by the declaring object needlessly clutter its public interface.
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2.3.6 Extract Class

Extract class is used to break up a large class that is trying to do too many different tasks. Reducing a large

class down into multiple smaller, more modular classes improves readability and reusability. Classes that

should be broken up typically have many data fields, methods, and responsibilities. To split such a class,

identify and extract subsets of data and methods that logically go together into a new class.

Employee

-firstname: String

-middlename: String

-lastname: String

-office_areacode: int

-office_number: int

-office_ext: int

-home_areacode: int

-home_number: int

-cell_areacode: int

-cell_number: int

-departmentID: int

-employeeID: int

+GetFirstName(): String

+GetMiddleName(): String

+GetLastName(): String

+GetInitials(): String

+GetFullName(): String

+GetName_ListFormat(): String

+GetOfficePhoneNumber(): int

+PrintOfficePhoneNumber(): String

+GetHomePhoneNumber(): int

+PrintHomePhoneNumber(): String

+GetCellPhoneNumber(): int

+PrintCellPhoneNumber(): String

+GetDepartmentID(): int

+GetDepartmentName(): String

+GetEmployeeID(): int

Employee

-departmentID: int

-employeeID: int

-name: Name

-office_number: PhoneNumber

-home_number: PhoneNumber

-cell_number: PhoneNumber

+GetDepartmentID(): int

+GetDepartmentName(): String

+GetEmployeeID(): int

+GetName(): Name

+GetOfficeNumber(): PhoneNumber

+GetHomeNumber(): PhoneNumber

+GetCellNumber(): PhoneNumber

Name

-firstname: String

-middlename: String

-lastname: String

+GetFirstName(): String

+GetMiddleName(): String

+GetLastName(): String

+GetInitials(): String

+GetFullName(): String

+GetName_ListFormat(): String

PhoneNumber

-areacode: int

-number: int

-extension: int

+GetPhoneNumber(): int

+PrintPhoneNumber(): String

(a) (b)

Figure 2.5: Before (a) and after (b) Extract Class is applied.

2.3.7 Extract Method

Extract method is used to break up a large and or confusing methods into smaller methods to increase read-

ability and reusability. The idea behind extract method is that objects with many small, well-named methods

are much clearer and easier to understand than objects with a small number of very large methods. Often,

large methods will have reoccurring code fragments or very cohesive and independent code fragments that

could be moved outside of the large method. That is what extract method is all about, moving those reoc-
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private bool CompareObjects ( object obj1 , object obj2 , CompareOp compOp){
switch (compOp){

case CompareOp . Equal :
i f ( obj1 is str ing && obj2 is str ing )

return obj1 . Equals ( obj2 ) ;
else i f ( obj1 is bool && obj2 is bool )

return obj1 . Equals ( obj2 ) ;
else i f ( obj1 is i n t && obj2 is i n t )

return obj1 . Equals ( obj2 ) ;
else i f ( obj1 is i n t && obj2 is double )

return ( Convert . ToDouble ( obj1 ) ) . Equals ( obj2 ) ;
else i f ( obj1 is double && obj2 is double )

return obj1 . Equals ( obj2 ) ;
else i f ( obj1 is double && obj2 is i n t )

return obj1 . Equals ( Convert . ToDouble ( obj2 ) ) ;
else

throw new App l i ca t i onExcep t ion ( ” ob jec ts not comparable ! ” ) ;

case CompareOp . NotEqual :
i f ( obj1 is str ing && obj2 is str ing )

return ! obj1 . Equals ( obj2 ) ;
else i f ( obj1 is bool && obj2 is bool )

return ! obj1 . Equals ( obj2 ) ;
else i f ( obj1 is i n t && obj2 is i n t )

return ! obj1 . Equals ( obj2 ) ;
else i f ( obj1 is i n t && obj2 is double )

return ! ( Convert . ToDouble ( obj1 ) ) . Equals ( obj2 ) ;
else i f ( obj1 is double && obj2 is double )

return ! obj1 . Equals ( obj2 ) ;
else i f ( obj1 is double && obj2 is i n t )

return ! obj1 . Equals ( Convert . ToDouble ( obj2 ) ) ;
else

throw new App l i ca t i onExcep t ion ( ” ob jec ts not comparable ! ” ) ;
}
return fa lse ;

}

Figure 2.6: Before Extract Method is applied.

curring and or independent code fragments into their own methods. Doing this makes the original method

clearer since some of its code fragments have been replaced with well named method calls. See figure 2.6

and 2.7.

2.3.8 Decompose Conditional

Large complicated conditional statements are often times hard to read and understand. Sometimes these

confusing conditionals are accompanied by comments explaining them, however making the conditional

simple and readable is an even better solution. To perform decompose conditional, extract the condition in

the conditional statement into its own well-named method, and simply evaluate the result of that well-named

method in the conditional statement.

13



public bool CompareObjects ( object obj1 , object obj2 , CompareOp compOp){
switch (compOp){

case CompareOp . Equal :
return AreEqual ( obj1 , obj2 ) ;

case CompareOp . NotEqual :
return ! AreEqual ( obj1 , obj2 ) ;

}
return fa lse ;

}

Figure 2.7: After Extract Method is applied.

i f ( angle > 6.4 && angle < 15.7 &&
v e l o c i t y < 200.2 &&
v e l o c i t y > 176.34 &&
heading > 160 && heading < 200)

{ . . . }

i f ( IsReEntrySafe ( ) )
{ . . . }

(a) (b)

Figure 2.8: Before (a) and after (b) Decompose Conditional is applied.

2.3.9 Replace Magic Number

A magic number is a number with a special value that is usually not obvious [Fowler, 1999, p. 204]. A

good example of a magic number is the gravity constant (9.81) or π (3.14). Universal mathematical constants

are not the only magic numbers, any number with a special significance is a magic number. Other common

examples are numeric thresholds as seen in figure 2.8. In that figure the angle, velocity, and heading all must

fall within certain thresholds. Those thresholds are magic numbers with special significance that should be

made into symbolic constants. Array size values are another common source of magic numbers.

2.3.10 Move Field

A field should be moved to a foreign class when the foreign class uses that field more than the class that

declares it. This situation is particularly common with data classes. A class that simply stores data for other

classes and does not make use of its own data is a data class. Move field is also frequently used when applying

extract class to help move fields around to the class they belong in.

i f ( s i ze >= 5 && s ize <= 54)
{ . . . }

i f ( s i ze >= MINSIZE && s ize <= MAXSIZE)
{ . . . }

i n t [ ] sca le = new i n t [ 4 3 ] ;
for ( i n t i =0; i <43; i ++)

scale [ i ] = 0 ;

i n t [ ] sca le = new i n t [ SCALESIZE ] ;
for ( i n t i =0; i<SCALESIZE ; i ++)

scale [ i ] = 0 ;

(a) (b)

Figure 2.9: Before (a) and after (b) Replace Magic Number is applied.
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public void in i tNumArray ( i n t [ ] nums ,
i n t s ize )

{
for ( i n t i =0; i<nums . Length ; i ++)

nums [ i ] = 0 ;
}

public void in i tNumArray ( i n t [ ] nums)
{

for ( i n t i =0; i<nums . Length ; i ++)
nums [ i ] = 0 ;

}

(a) (b)

Figure 2.10: In this example the parameter size is no longer used so it should be removed. Before (a) and
after (b) Remove Parameter is applied.

2.3.11 Move Method

A method should be moved to a foreign class when the foreign class uses that method more than the class

that declares it, or the method uses more resources from the foreign class than the method’s defining class.

Extract method is often used with move method if a method is using many foreign resources but the whole

method can not be moved. In that case, it is often possible to extract the code fragments making use of those

foreign resources into a separate method and then move that method to the foreign class.

2.3.12 Remove Parameter

If a method is no longer using a parameter, then that parameter should be removed. Developers are sometimes

hesitant to remove parameters because they fear they may need them again. This is a bad idea because

everyone who calls that method must make the extra effort to provide the data for that extra parameter [Fowler,

1999, p. 277]. It is also in a developer’s best interest to remove useless parameters quickly so they have fewer

method calls to correct. There are some exceptions to this rule, such as when the method is implementing an

interface and therefore can not change the method signature, or if the method is overridden in a subclass that

actually does use the parameter.

2.3.13 Pull Up Field

If all or most of a class’s subclasses have the same field, then it should be pulled up into the parent class.

This way it is only defined once in a central location instead of being defined multiple times. If many of the

subclasses have the same field but it should not be pulled up into the parent class, then extract superclass can

be used. See figure 2.11.
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Parent

Child1

#ID: int

Child2

#ID: int

Child3

#ID: int

Parent

#ID: int

Child1 Child2 Child3

(a) (b)

Figure 2.11: Before (a) and after (b) Pull Up Field is applied.

Parent

#ID: int

Child1

+GetID(): int

Child2

+GetID(): int

Child3

+GetID(): int

Parent

#ID: int

+GetID(): int

Child1 Child2 Child3

(a) (b)

Figure 2.12: Before (a) and after (b) Pull Up Method is applied.

2.3.14 Pull Up Method

If all or most of a class’s subclasses declare the same method, then it should be pulled up into the parent class.

This way it is only defined once in a central location instead of being defined multiple times. If many of the

subclasses have the same method but it should not be pulled up into the parent class, then extract superclass

can be used. See figure 2.12.

2.3.15 Extract Superclass

If multiple classes share some similar attributes, such as fields and methods, then those common attributes

should be pulled up into a common superclass. This refactoring can be applied to classes that do or do not

share a common class hierarchy. If all the classes share a common superclass already, then pull up field or

pull up method should probably be used.

2.3.16 Push Down Field

When an inheritable field is used by very few of the subclasses that inherit it, and the class that defines the

field does not use it, that field should be pushed down into the subclasses that use it. If very few subclasses
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Parent

Child1 Child2 Child3

#ID: int

Parent

#ID: int

Child1 Child2 Child3

(a) (b)

Figure 2.13: Before (a) and after (b) Push Down Field is applied.

need a particular field, then there is no sense in forcing all the other subclasses to be larger than they need to

be by inheriting this field. The field should be moved out of the superclass, and down into the subclasses that

need it. See figure 2.13.

2.3.17 Push Down Method

If an inheritable method is used by very few of the subclasses that inherit it, and the class that defines the

method does not use it, that method should be pushed down into the subclasses that use it. Rarely used

methods like this clutter the interface of the entire class hierarchy. The method should be moved out of the

superclass, and down into the subclasses that actually make use of it.

2.3.18 Extract Subclass

When a subset of a superclass’s inheritable attributes are only used by a minority of the superclass’s child

classes, a subclass should be extracted with that subset of attributes and made the parent of all the child classes

that use that subset of attributes. Extract subclass can also be applied when a subset of a class’s features are

only used by some of its instances [Fowler, 1999, p. 330]. If only one subclass uses an inherited parent class

attribute, then push down field or push down method should probably be used.

2.3.19 Substitute Algorithm

Whenever possible, large and confusing algorithms should be replaced with clearer ones. There is always

more than one way to get from point A to point B. If at some point you find an easier more direct path, then

you should take it. Even if the old confusing algorithm already works properly, simpler is always better. You
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i f ( showal ias && name . Equals ( ” Mikey ” ) )
return ” Master ” + name ;

else i f ( showal ias &&
name . Equals ( ” Andre ” ) )

return ” Big ” + name ;
else i f ( showal ias &&

name . Equals ( ” Jimmy ” ) )
return ” Quick ” + name ;

else
return name ;

Hashtable nicknames ;
nicknames = MakeNicknamesTable ( ) ;
i f ( showal ias &&

nicknames . Contains (name ) )
{

return nicknames [ name ] + name ;
}
else

return name ;

(a) (b)

Figure 2.14: Before (a) and after (b) Substitute Algorithm is applied.

(a)

str ing r e s u l t ;
double temp = 2 ∗ PI ∗ rad ius ∗ he igh t ;
r e s u l t = temp . ToStr ing ( ) + ” , ” ;
temp = PI ∗ rad ius ˆ2 ∗ he igh t ;
r e s u l t += temp . ToStr ing ( ) ;
return r e s u l t ;

(b)

str ing r e s u l t ;
double sur face area = 2 ∗ PI ∗ rad ius ∗ he igh t ;
r e s u l t = sur face area . ToStr ing ( ) + ” , ” ;
double volume = PI ∗ rad ius ˆ2 ∗ he igh t ;
r e s u l t += volume . ToStr ing ( ) ;
return r e s u l t ;

Figure 2.15: Before (a) and after (b) Split Temporary Variable is applied.

will save everyone else who has to work with that code the time and effort it takes to comprehend what that

old algorithm was doing. See figure 2.14.

2.3.20 Split Temporary Variable

If you have a temporary variable that is not a loop variable, is assigned multiple values, and each of those

values are unrelated, then that temporary variable should be split into multiple variables with names that more

accurately reflect what they are being used for. Modern compiler optimization techniques have made it so that

using many well-named temporary variables has almost no affect on performance versus code that attempts

to reuse the same temporary variables over and over again for different purposes. Therefore, it makes much

more sense to improve the readability of your code by using as many well named temporary variables as you

need instead of trying to reuse your temporary variables for different tasks. See figure 2.15.
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Chapter 3

Look# Architecture

3.1 Overview

Look# has a fairly simple high level control flow. First Look# parses a C# project and builds an AST. Then

it scans the AST and generates a symbol table. Then the refactoring algorithms use the data in the AST and

symbol table to find refactorings. Finally, the list of discovered refactorings is displayed for the user with

additional information on how to apply the suggested refactorings. Figure 3.1 shows the Look# architecture

from a pipe and filter view [Clements et al., 2004, p. 126].

In figure 3.2 you can see a very high-level class view of the Look# architecture. There are two major

packages, the LookCS package contains the backend of the tool where all the work is done. The LookCSGUI

package contains the Windows GUI for the tool. The GUI and backend were separated to ease adapting

Look# to a different GUI, for example as a plug-in for Microsoft Visual Studio instead of a stand-alone

application. Coupling between the GUI and the backend is minimized because a GUI only needs to know

about AnalysisController to operate the Look# backend. AnalysisController provides the methods

StartAnalysis() and StopAnalysis() to start and stop the analysis and the property RefactoringItems

that returns the refactorings found when the analysis is done. Those three members are all a GUI needs to use

the Look# backend. AnalysisController manages all of the analysis. It first passes ParserController the

pathname of the file to be parsed, ParserController then returns the AST. Then SymbolTableController

is passed the AST and it returns the symbol table. Lastly, RefactorController is passed the AST and

symbol table and produces a list of refactorings. MainForm can then retrieve that list of refactorings from

AnalysisController and display them for the user.
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Figure 3.1: Pipe & filter style overview of Look# architecture.
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Figure 3.2: High level class view of the Look# architecture.
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3.2 AST Construction

Look# uses ANTLR (ANother Tool for Language Recognition), formerly known as PCCTS, to generate the

parser. ANTLR was chosen as the parser for Look# because it automatically generates an AST. CommonAST

is the default node class ANTLR uses in its AST. Each CommonAST node knows its right sibling and the node

directly under it, In addition, the CommonAST node also stores the name and type of each node.

This setup only allows downward tree traversal. Some refactorings require that more information be

recorded, so Look#’s AST nodes are a subtype of the CommonAST, called BaseNode, which includes a parent

field that references the node’s parent node. This allows the AST to be traversed upwards as well.

Many refactorings also make use of code metrics such as the lines of code (LOC) metric. Therefore

BaseNode also includes a line field that records the line number of the token that produced the AST node.

Not all AST nodes are associated with a lexical token and therefore do not have line number values. Such

nodes are always high level nodes such as class or expression. In those cases, the node performs a left-to-

right depth-first search of its child nodes until it finds a node that has a line number and uses that line number

as its own. In a similar fashion the last line contained by a node can also be found using a right-to-left

depth-first search instead. This allows us to calculate the line number range of a class or method. In order

to preserve this line number data, Look#’s AST preserves more tokens than would be normally found in an

AST. For example, all opening and closing braces are given AST nodes so the line number range calculations

for classes and methods are more accurate.

Since the AST is kept in memory the entire time, the AST nodes also store symbol information instead

of creating separate symbol objects. Most of the nodes in the AST do not represent symbols, so it would be

inefficient to make each node in the AST a symbol node. A symbol node is any node that inherits from the

ISymbolNode interface. Therefore the AST is a heterogeneous tree with many different classes of nodes, all

of them inheriting from BaseNode. Figure 3.3 shows the AST node class hierarchy.

The DeclNode is a child of BaseNode that is used to represent variables. This node is used for all AST

nodes that define or declare a variable. It has a symType field that stores the variable’s type, such as int or

string. DeclNode also has a references field that is an array of all the other BaseNodes that reference this

variable. As you can see in figure 3.4, line one is where myvar is declared, so that node is a DeclNode. Line

two and three are the places where myvar is used so they are referencing the myvar declaration on line one.

The myvars on lines two and three are just represented by BaseNodes because they are just references; they

do not declare anything.
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MethodNode

-argSyms: BaseNode[]

-numArgsUnique: boolean

MemberNode

-baseMembers: BaseNode[]

-derivedMembers: BaseNode[]

-proxyLink: MemberNode

VarDeclNode

-references: BaseNode[]

-symType: BaseNode

CommonAST

-type: int

-name: string

-rightSibling: CommonAST

-down: CommonAST

<<Interface>>

IScopeNode

ScopeNode

TypeNode

-references: BaseNode[]

-baseTypes: BaseNode[]

-derivedTypes: BaseNode[]

-userDefined: boolean

BaseNode

-line: int

-parent: BaseNode

Figure 3.3: The AST node hierarchy.
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1 public i n t MyMethod ( ){
2 i n t myvar ;
3 myvar = 4 ;
4 return myvar ;
5 }

Figure 3.4: Reference example. Line 2 declares myvar, and line 3 & 4 reference it.

The MemberNode class is a subclass of the DeclNode class. MemberNode is used for all member attributes

of a type, such as a field, method. Many member attributes like methods and properties can be overrid-

den by subclasses, so each MemberNode has an array of immediate derivedMembers and baseMembers.

MemberNode also has a proxyLink field that points to another MemberNode that uses this one as a proxy.

Right now this is only used for properties that act as data accessors for private fields, so any reference to that

property also adds an indirect reference to that field through the proxy link.

MethodNode is a subclass of the MemberNode class. It is used for methods, constructors, indexers, and

operators. Because methods can be overloaded in C#, identifying which method is being called can be

difficult. argSyms is an array of BaseNodes that contains an in-order list of argument types the method

takes to help identify it. Even though methods can be overloaded, sometimes the number of arguments a

method takes is still unique. To indicate when an overloaded method’s number of arguments is unique, the

MethodNode class has the numArgsUnique boolean flag. MethodNode also inherits from the IScopeNode

interface. The IScopeNode interface is simply an empty interface that serves as a flag to indicate that the

node creates its own new scope.

The ScopeNode is an empty class that inherits from the BaseNode class. It implements the IScopeNode

interface so it is recognized as a scope delimiter by the symbol table generator. This node type is just used

for indicating when a non symbol node creates a new scope, such as an if statement or while statement.

TypeNode is a subclass of the ScopeNode class. The TypeNode class is used for all the AST nodes that

represent a type such as a class, struct, interface, delegate, or enum. Most types can inherit from parent types,

so each TypeNode has an array of derivedTypes and baseTypes. Types can also be referenced so they also

have an array of references.

To fully understand a user’s code, the external libraries and user references must also be parsed. However

those external libraries should not be considered for refactorings. For that reason, each TypeNode has a

boolean flag userDefined, so the refactoring engine can differentiate between the user’s code and external

code. Ideally I would not need this flag, sadly it is necessary due to my symbol table’s design. This flag was

placed on the TypeNode class because it is the least frequent node. Any other node that needs to know if it is
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user defined can simply walk up the tree until it finds a type node to check the value of the user defined flag.

3.3 Symbol Table Construction

The symbol table uses a scoped hierarchy approach where each scope gets its own symbol table. Each scope

node has a name, unique id number, and a hash table of symbols. Since the symbol table takes the form of a

scope tree, each scope node also knows its parent, child, and right sibling scope nodes. To save memory, the

nodes in the AST also serve as symbols in the symbol table. Once the AST is constructed, four passes are

then made over the tree, with each pass requiring linear time in the size of the program.

The first pass constructs the scope tree and inserts all the symbols. This is a very straightforward process

since all the work has already been done by the parser when it classified the different AST node types. This

process traverses the tree from the root down, each time it encounters a node that implements the IScopeNode

interface it creates a new scope and inserts it in the scope tree. Each time a DeclNode, MemberNode,

MethodNode, or TypeNode is encountered, that node is inserted into the current scope’s hash table. By

the end of this AST traversal, all the scope tree has been built and all the symbols have been inserted. Now

all those symbols need their data fields filled in.

The second pass focuses on filling in each DeclNode’s symType field. This operation requires looking

up that symbol’s type, thus it must be done on the second pass once all the symbols are in the symbol table.

Each time this pass encounters a DeclNode during its AST traversal, it looks up that DeclNode’s symType in

the symbol table. By the end of this pass each symType node points to its type through the symType field.

The second pass also sets up each TypeNode’s baseTypes array. During the second pass’s traversal of

the AST, it looks up all the immediate inherited types and implemented interfaces for each TypeNode and

adds them to its baseTypes array. The derivedTypes array is also populated at the same time. Each time

a TypeNode Child adds another TypeNode Parent, to its baseTypes array, Child is automatically added to

Parent’s derivedTypes array. Once the second pass is complete, each type node knows who its parents and

children are.

The third pass sets up each MemberNode’s base and derived types, and also sets up each MethodNode’s

argument symbols. This third pass is different from the rest because instead of traversing the AST, this pass

traverses the scope tree. As it does so, it searches each scope for type symbols. For each TypeNode found,

all of its derived and base types are checked to see if they contain definitions of any of that type node’s

overridable members (properties, methods, events, and indexers). If so those derived and base members
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are added to the MemberNode’s derivedMembers and baseMembers arrays respectively. The third pass also

looks for MethodNodes in each scope’s symbol table. For every methodNode found, each of its argument

types are looked up and added to its argSyms array.

The fourth pass finds the references to each symbol. This is by far the most complicated pass in terms

of implementation because it requires parsing every expression to discover which symbol each identifier is

referencing. This pass traverses the AST looking for expression nodes. For each expression found, that

expression is parsed from left to right and each identifier referring to a symbol is added to that symbol’s

references array. If during expression parsing there is an identifier whose symbol can not be found, then

the expression parsing is aborted at that point since there is no way to continue without knowing what that

identifier’s symbol type is. Typically, symbol table lookup fails because the code is referencing a non-user

defined symbol located in an external library that Look# could not find or load for some reason. Currently

Look# still has difficulty locating some external libraries that projects use. The project file that Look# reads

sometimes has out-of-date filepath information about the external libraries it uses. This importing process is

the reason for the userDefined flag mentioned in the previous section.

3.4 Refactoring Detection

The refactoring engine was designed to be flexible and user configurable. Each refactoring checking class

is completely independent of all the other refactoring checking classes. That means any number of refac-

toring checks can be performed in any order. This is accomplished by having all the refactoring checking

classes implement a common interface defined in RefactorChecker. All refactoring checking classes in-

herit from the RefactorChecker class. This class defines the abstract method createRefactorList() and

the abstract property RefactorName, that all of child classes of RefactorChecker must implement. The

createRefactorList() method returns an array of RefactorItem objects. The RefactorItem class de-

scribes where a refactoring technique should be applied. It includes the name of the refactoring that should

be used, a description of how and why it should be applied, and the code location where it should be applied.

The RefactorController class simply takes a list of refactoring checking classes and sequentially calls

createRefactorList() on each appending the results into an overall RefactorItem list that is eventually

presented to the user. Any combination of refactoring checking classes in any order can be included in the

list that RefactorController executes.

Many refactoring detection algorithms require that additional information be computed. Often this ad-
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RefactorDetection

RefactorController

<<abstract>>

RefactorChecker

RefactorItem

RefactoringAlgorithm

MemberCounter

CharLineStats

Figure 3.5: Class diagram of the refactoring engine. Note: each refactoring technique has its own class, but
for simplicity sake, they are all represented by RefactoringAlgorithm.
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ditional info is not unique to just one refactoring detection algorithm, so the refactoring engine includes a

collection of common helper classes and methods. All of these helper methods and classes are inherited from

the RefactorChecker class that all the refactoring checker classes inherit from.

The CharLineStats class takes a BaseNode and scans the source code that node represents and calculates

the lines/characters of code, lines/characters of comments, and the ratio of comments to code. CharLineStats

determines the first and last line of a node tree to find a line range, then opens the file containing that node

and scans that line range counting the lines and characters of code and comments it finds while scanning that

section of code. For example, if a method node is passed, then CharLineStats will calculate the lines/char-

acters of code/comments for the entire method. These calculations are useful to refactoring techniques that

need to know the size of methods and classes such as Extract Class or Extract Method.

The MemberCounter class takes a TypeNode node and counts the number of member attributes the type

has defined. Individual counts are provided for each kind of member attribute (constants, fields, properties,

methods, indexers, operators, events, and constructors). This information is useful for refactoring techniques

that need to know the size or complexity of a type, such as Extract Class.

Most refactoring detection algorithms operate on a certain attribute or type, so the refactoring detection

classes must examine every instance of that kind of attribute or type in the user’s code. For that reason

RefactorChecker provides the methods GetFieldNodes(), GetPropertyNodes(), GetMethodNodes(), and

GetClassNodes(). Each of those methods returns a list of BaseNode objects that represent every attribute or

type of that kind in the user’s code. Since these are frequently used methods, once their results are calculated

once, they are cached to improve the performance of future queries. Most refactoring techniques detection

classes make use of these helper methods. For example, Encapsulate Field uses GetFieldNodes() to get the

list of every field in the user’s code, so it can check each field to evaluate if it needs to be encapsulated.

Some refactoring detection algorithms analyze the class hierarchy of a user’s code. Most often such

a refactoring algorithm needs to examine every class hierarchy in a user’s code. RefactorChecker also

provides the method GetInheritanceList() that returns an array of BaseNode objects with the root classes

of every class hierarchy in the user’s code. In other words it returns the inheritance forest. Since Look# is

only analysing the user’s code, there is no common inheritance root because Object is defined by the System

library. For example, Pull Up Method uses GetInheritanceList() to examine every class hierarchy to

evaluate if any methods should be pulled up.
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Chapter 4

Refactoring Detection Algorithms

4.1 Overview

The primary challenge in making this tool is being able to correctly and accurately identify the situations when

a certain refactoring technique should be applied. Many of the guidelines Fowler provides for determining

when to apply certain refactoring methods are based on “human intuition” and abstract perceptions like

“smells” [Fowler, 1999, p. 75-76]. This makes it extremely difficult to automatically identify where many

of the refactoring methods should be applied. Fowler even claims that “no set of metrics rivals informed

human intuition” [Fowler, 1999, p. 75]. Unfortunately it takes “informed human intuition” much longer to

find refactorings in a large scale program than a computer program using metrics. Therefore the goal of

Look# is not to definitively find all the refactorings in the users code, but to use metrics that look for common

tell-tale signs of refactorings to help point “informed human intuition” in the right direction.

I classified the feasibility of automatically detecting the approximately seventy refactorings discussed in

[Fowler, 1999]. About one third appear to be too high-level for any automated tool to detect (or perform). For

example, Substitute Algorithm(See 2.3.19) suggests replacing an existing algorithm with another that is easier

to understand. Computers can reduce simple mathematical equations. Well known compiler optimizations

exist that can reduce mathematical equations involving one variable and multiple constants [Cooper and

Torczon, 2004, p. 401]. Typically if a mathematical equation is not reduced as much as it can be, the developer

left it unreduced for a reason. For example, the equation 2 ∗ π ∗ radius = circumference is actually clearer

than the more reduced version 6.2832∗ radius = circumference. This is a case there the computer can detect

an algorithm that can be reduced, but should not reduce it because the unreduced version is actually clearer.
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Many algorithms that should be simplified are not strictly mathematical. For example, obviously there is no

way a computer could automatically detect that the algorithm in figure 2.14(a) could be replaced with the

better algorithm in figure 2.14(b). Refactoring techniques like Substitute Algorithm are best left for humans

to detect and implement.

I also estimated that data-flow analysis [Aho et al., 1986, p. 586] is required to effectively detect about

one sixth of the refactoring techniques Fowler describes. For example, to detect the Split Temporary Variable

(See 2.3.20) refactoring technique, more detailed information is needed about where each value a temporary

variable is given is used. Such information can be derived from the reaching definitions data-flow analysis

[Aho et al., 1986, p. 610]. Without the reaching definitions information, accurately detecting this refactoring

would be very difficult and error prone.

The remaining half of the refactorings can be discovered using mostly syntactic means. Therefore, rather

than develop a static analysis tool that uses data-flow analysis to detect refactorings, I decided to build a tool

that uses purely syntactic data such as symbol table information and simple code metrics.

4.2 Detecting refactorings

Of the refactorings that were classified as detectable through syntactic means, the following are the ones

I chose to implement. Some of the refactoring techniques I implemented are not explicitly mentioned in

[Fowler, 1999]. To automatically detect where a refactoring technique should be applied, each refactoring

technique needs to be distilled down into a conditional that checks a set of counts, code metrics, and other

attributes against a set of thresholds and expected values. That is exactly what I have done with the following

refactoring techniques. All the algorithms that use counts or other metrics have variable thresholds that can

be adjusted by the tool user.

4.2.1 Encapsulate Field

Construct a list of all field members in the code. Examine each field member and flag any field member that

is declared public. This is easily the simplest refactoring to detect and also the most foolproof.

for c ∈ classes[program] do
for f ∈ fields[c] do

if PUBLIC ∈ modifiers[ f ]∧ CONST 6∈ modifiers[ f ]∧ READ-ONLY 6∈ modifiers[ f ] then
report(“encapsulate field” , f )

Figure 4.1: Encapsulate Field algorithm.
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Command Description
fields Takes a class and returns a set of all the fields defined

on that class.
methods Takes a class and returns a set of all the methods de-

fined on that class.
properties Takes a class and returns a set of all the properties de-

fined on that class.
child-classes Takes a class and returns a set of that class’s child

classes.
class-hierarchy-roots Takes a set of classes and returns the subset classes that

are at the top of a user-defined inheritance hierarchy.
implemented-interfaces Takes a class and returns the set of interfaces that class

implements.
parent-method Takes an overridden method and returns the parent

class method it is overriding.
modifiers Takes a field, method, property, or class and returns a

set of access modifiers for that item.
references Takes a field or method and returns a set of all the iden-

tifier nodes that are a reference to that field or property.
parameters Takes a method, and returns the set of parameters that

method takes.
containing-class Takes any non-type element and returns the type that

contains it.
containing-method Takes any statement, expression, or identifier and re-

turns the method that contains it.
containing-property Takes any statement, expression, or identifier and re-

turns the property that contains it.
lines-of-code Takes a class or method and returns the lines of code

in the class or method body.
statements Takes a method and returns the number of statements

in the method body.
return-statements Takes a set of statements and returns the subset of re-

turn statements.
identifiers Takes a set of statements, and returns a set of identifiers

found in those statements.

Table 4.1: Pseudo code commands key.
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4.2.2 Remove Empty Method

Construct a list of all the methods in the code. Count the number of code statements in each method body.

Any method body with a zero statement count most likely serves no purpose. The only time when this method

should not be removed is if it is implementing an interface member or abstract method that must be imple-

mented. Therefore check the parents of the method’s class for interfaces that define this method or a parent

class that defines an abstract method with the same signature. If the method is not implementing an interface

method or an abstract method, and it has a statement count of zero, it should be flagged as an empty method.

It is important that a statement count is used instead of a line count to detect this refactoring technique. If

a simple line count is used, many situations where the developer commented out all the statements in the

method body or left a blank line in the body would be missed.

for c ∈ classes[program] do
for m ∈ methods[c] do

if statements[m] = 0 then
if m /∈ implemented-interfaces[c]∨ (OVERRIDE ∈ modifiers[m]∧ ABSTRACT /∈ modifiers[parent-method [m]]) then

report(“Remove Empty Method” ,m)

Figure 4.2: Remove Empty Method algorithm.

4.2.3 Remove Unused Field

Construct a list of all field members in the code. Examine each field member and flag any field member that

has no references in the user’s code, meaning that field is not used anywhere in the code. The algorithm itself

is simple, however finding every reference of a field can be difficult.

for c ∈ classes[program] do
for f ∈ fields[c] do

if |references[ f ]|= 0 then
report(“Remove Unused Field” , f )

Figure 4.3: Remove Unused Field algorithm.

4.2.4 Remove Unused Method

Construct a list of all the methods in the code. Examine each method and flag any method that has no refer-

ences in the user’s code, meaning that method is not used anywhere in the code. This detection mechanism
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is not totally accurate because the method may be defined as part of an external API only intended for other

users to use. It is impossible to know if that is the case without the developer examining the code.

for c ∈ classes[program] do
for m ∈ methods[c] do

if |references[m]|= 0 then
report(“Remove Unused Method” ,m)

Figure 4.4: Remove Unused Method algorithm.

4.2.5 Hide Method

Construct a list of all the methods in the code. Examine each method’s references. If all of a method’s

references are from within the class the method is declared in, then recommend hiding that method since no

external classes are using it. Typically if a method is only used by the class that defines it, then there is no

need to share it with the other classes since they do not seem to need it. Depending on the maturity of the

system, this may not be true, the method may be used by an external class at some point in the future. In

that case it is very easy to make the method public again once it is needed. Like remove unused method,

this detection mechanism is not totally accurate because the method may be defined as part of an external

API only intended for other users to use. It is impossible to know if that is the case without the developer

examining the code.

for c ∈ classes[program] do
for m ∈ methods[c] do

if PUBLIC ∈ modifiers[m] then
flag := TRUE

for r ∈ references[m] do
if containing-class[r] 6= c then

flag := FALSE

if flag = TRUE then
report(“Hide Method” ,m)

Figure 4.5: Hide Method algorithm.

4.2.6 Extract Class

Construct a list of all the classes in the code. For each class, count the lines of code, the number of fields,

the number of methods, and the number of properties. If all of those counts exceed their corresponding

thresholds, then the class should probably be extracted into multiple smaller classes. This algorithm relies on

the assumption that most classes with a large number of attributes and span many lines are rather complex

32



and not very cohesive. Of course, it is possible to have a very large class with many attributes that is still very

cohesive and crystal clear, but this algorithm assumes that is not the case typically.

λ := 1000,φ := 10,µ := 10,ζ := 5
for c ∈ classes[program] do

if lines-of-code[c]≥ λ∧|fields[c]| ≥ φ∧|methods[c]| ≥ µ∧|properties[c]| ≥ ζ then
report(“Extract Class” ,c)

Figure 4.6: Extract Class algorithm.

4.2.7 Extract Method

Make a list of all the methods in the code. For each method, count the lines of code and the number of state-

ments in the method’s body. If both of those counts exceed their corresponding thresholds, then the method

should probably be extracted into multiple smaller methods. The statement count is important because it pre-

vents false positives from methods with statements that span many lines. For example, a method may have

just a few statements, but one of those statements can contain a conditional expression that spans one or more

screens. The line count is less important; however, it is useful for users that want to enforce strict policies on

how many lines a method may span.

λ := 70,β := 50
for c ∈ classes[program] do

for m ∈ methods[c] do
if lines-of-code[m]≥ λ∧|statements[m]| ≥ β then

report(“Extract Method” ,m)

Figure 4.7: Extract Method algorithm.

The Extract Method algorithm is based on the assumption that a method with a large body can most likely

be split up into smaller methods. This is done by extracting chunks of functionality from the large method

into separate small methods. This algorithm also makes the assumption that the large the method body is, the

more likely it is to have multiple chunks of code that are mostly independent of each other. Those independent

chunks of code are easily extracted. This is not always the case, sometimes a method is so interconnected

and cohesive that there is no functionality that can easily be extracted into separate methods.

4.2.8 Decompose Conditional

Traverse the AST searching for conditional (i.e., logical) expressions. Count the number of boolean OR and

AND operators in each conditional expression found. Also count the number of statements in the method
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body containing the conditional expression. If both counts exceed their respective thresholds, then suggest

decomposing the conditional. The motivation for the threshold on the minimum number of statements is to

avoid suggesting decomposing conditionals that have already been moved into their own methods. Before

adding this simple threshold, the tool was suggesting decomposing conditionals in methods where clearly

refactorings had already been performed.

This algorithm assumes that counting the number of conditional logic junctions (boolean OR and AND

operators) is an effective way of measuring the complexity of a conditional expression. In other words, the

more conditions a conditional expression evaluates, the more complex it is. Obviously this is not always true,

well named methods and variables can make large conditional expressions very clear. Conversely, poorly

named methods and variables can make small conditional expressions very confusing. There is no good way

for a computer to determine if the methods and variables used in a conditional expression are well named.

Therefore this algorithm assumes that any conditional expression with a certain number of conditional logic

junctions is most likely confusing or too complex.

α := 3,β := 12
for c ∈ classes[program] do

for m ∈ methods[c] do
DFS(m)

function DFS(n) do
if type[n] = AND∨ type[n] = OR then

count := 1
for d ∈ descendants[n] do

if type[d] = AND∨ type[d] = OR then
count := count +1

if count ≥ α∧|statements[method-containing(n)]| ≥ β then
report(“decompose conditional” ,n)

else
for c ∈ children[n] do

DFS(c)

Figure 4.8: Decompose Conditional algorithm.

4.2.9 Replace Magic Number

This algorithm is complicated by the fact that three different levels need to be maintained: global level, type

(i.e., class or struct) level, and method level. The rationale for the different levels is that a literal may be used

many times, but if it used in different classes or methods, then it may not in fact represent the same thing and

cannot be replaced with a single symbolic constant.

The tool traverses the AST and updates the level when encountering a class or method declaration. Each

literal found is added to the current scope. When the end of a construct such as a method is reached, the scope
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is closed and a literal whose occurrence count exceeds a threshold is reported. (Each scope level has its own

adjustable threshold.) The occurrence counts of the current scope are merged with those of the parent scope.

This step is done so if a number appears frequently throughout a class but only once or twice per method, we

will still detect it as a magic number for the entire class.

Certain uses of literals must be ignored such as those in expressions when initializing a constant (i.e.,

when the symbolic constant itself is declared) and in functions not written by hand but rather generated by

the development environment. For example, Microsoft Visual Studio automatically generates a method called

InitializeComponent that is blacklisted by default in Look# .1 Furthermore, certain literals such as zero

and one must be ignored in most, but not all, circumstances. For example, if such a literal is used an array

index, then the use should probably be flagged.

α := 2,β := 3
for c ∈ classes[program] do

for m ∈ methods[c] do
for n ∈ body [m] do

if type[n] = LITERAL∧ type[parent[n]] 6= INITIALIZER then
method-count[value[n]] := method-count[value[n]]+1

for v ∈ method-count do
if method-count[v] > α then

report(“replace magic number” ,v,m)
else

class-count[v] := class-count[v]+method-count[v]
delete method-count

for v ∈ class-count do
if class-count[v] > β then

report(“replace magic number” ,v,c)
delete class-count

Figure 4.9: Replace Magic Number algorithm.

4.2.10 Move Field

Make a list of all the fields in the user’s code. Examine each field, if a field has no references or is not static,

then it should be ignored. Count how many of those references occur in each class in the user’s code. If the

class with the most field references is not the class that declares the field, then that field should be moved.

This algorithm makes the assumption that if a field is used more by an external class than the class it is defined

on, then it should be moved to that class.

The static check severely limits the number of fields considered by this refactoring algorithm. The static

check was added after many of the fields flagged by this algorithm could not be moved due to problems with

1The tool user can add functions to the blacklist as necessary. Each refactoring has its own blacklist.

35



a discrepancy in the number of instances of the class that defines the field and the class the field should be

moved to. For example, many instances of a class Student with the field name may be passed to a single

instance of a class RosterGenerator. Even though RosterGenerator may use name more than the Student

class, because only one instance of RosterGenerator uses name but it is defined on many instances of the

Student class, obviously name can not be moved to RosterGenerator. There is a fundamental problem

with moving a field defined on a class with multiple instances to a class with a single instance. The simplest

way to resolve with problem is to only focus on static fields which do not have this problem.

for c ∈ classes[program] do
for f ∈ fields[c] do

if |references[ f ]|> 0∧ STATIC /∈ modifiers[ f ] then
for r ∈ references[ f ] do

refcount[containing-class[r]] := refcount[containing-class[r]]+1
if refcount[highestcountclass] < refcount[containing-class[r]] then

refcount[highestcountclass] := refcount[containing-class[r]]
highestcountclass := containing-class[r]

if highestcountclass 6= containing-class[ f ] then
report(“move field” ,highestcountclass, f )

Figure 4.10: Move Field algorithm.

4.2.11 Move Method

This detection algorithm is based on the data class “smell” [Fowler, 1999]. A data class is a class that

holds data but does not make use of the data itself; it merely holds the data for other classes to use. In our

experiments, we found that restricting our detection algorithm to this “smell” helped increase the accuracy of

the move method detection algorithm, at the cost of ignoring other possible instances where the refactoring

should be applied between two non-data classes.

The tool traverses the AST to create a list of all classes and structs in the program. For each class or struct

in the list, we count the number of fields and methods declared. If there is a low ratio of methods to fields,

then we assume that the class is a data class and target it as a candidate class for move method.

Once a candidate class has been found, for each field in the class we determine the set of methods refer-

encing the field by using the forward reference chains previously built. If a foreign method makes too many

references to a number of distinct fields, then we suggest moving the method or some of its functionality

into the data class. The additional check on the number of distinct fields is needed since some methods may

reference a single field many times, but in fact a temporary variable could have been used to reference the

field only once.
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α := 0.40,β := 4,γ := 2
for c ∈ classes[program] do

if |fields[c]|> α · |methods[c]| then
for f ∈ fields[c] do

for r ∈ references[ f ] do
m := containing-method(r)
fields-referenced [m] := fields-referenced [m]∪{ f}
total-references[m] := total-references[m]+1

for m ∈ fields-referenced do
if total-references[m]≥ β∧|fields-referenced [m]| ≥ γ then

report(“move method” ,m,c)
delete fields-referenced , total-references

Figure 4.11: Move Method algorithm.

4.2.12 Remove Parameter

This refactoring algorithm is very similar to the remove unused field refactoring algorithm, except with

method parameters instead of fields. Make a list of all the methods in the user’s code. Ignore all methods

with no parameters, overridden methods, and extern methods. Examine each parameter for every method,

any parameter that has zero references should be flagged for removal. If the method is abstract or virtual,

then all of its child instances must also be checked to make sure none of them use the parameter either.

The method must also be checked to make sure it is not an implementation of an interface, in which case

the method’s signature can not be changed. Overridden and extern methods are not considered because their

method signatures can not be changed. Thats also the same reason methods that implement interface methods

are also not considered.

This algorithm makes the assumption that if a method does not make use of a parameter, then it does

not need that parameter. There are many exceptions to this rule. If the method is implementing an interface

method, then the method signature can not be changed so the parameter can not be removed. The same

applies for methods that override virtual and abstract methods inherited from ancestors.

for c ∈ classes[program] do
for m ∈ methods[c] do

if |parameters[m]|> 0∧OVERRIDE /∈ modifiers[m] then
if EXTERN /∈ modifiers[m]∧m /∈ implemented-interfaces[c] then

for p ∈ parameters[m] do
if |references[p]|= 0∧ ((VIRTUAL /∈ modifiers[m]∨ ABSTRACT /∈ modifiers[m])∧no-child-references[m, p]) then

report(“remove parameter” ,m, p)

Figure 4.12: Remove Parameter algorithm.
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4.2.13 Pull Up Field

Make a list of all the inheritance hierarchy roots in the user’s code. Walk down each inheritance hierarchy

and examine each class’s subclasses. Compare all the subclass’s fields and flag any fields that are common

to all the subclasses. Any field with the same type and name that appear on all the subclasses, then that field

should be pulled up to the parent class. This algorithm makes the assumption that any field with the same

name and type will also be used in similar ways in a class hierarchy. It is possible for many subclasses to

have the same field but use it in completely different ways, in which case moving the field up may not be

appropriate.

α := 0.501
for c ∈ class-hierarchy-roots[classes[program]] do

EXAMINETREE(c)
function EXAMINETREE(root) do

if |child-classes[root]|> 1 then
for c ∈ child-classes[root] do

for f ∈ fields[c] do
common-fields-count[ f ] := common-fields-count[ f ]+1

for f ∈ common-fields-count do
if common-fields-count[ f ] = |child-classes[root]| then

report(“pull up field” , f )
else if common-fields-count[ f ]/|child-classes[root]| ≥ α then

report(“extract superclass” , f )
for c ∈ child-classes[root] do

EXAMINETREE(c)

Figure 4.13: Pull Up Field algorithm.

4.2.14 Pull Up Method

This algorithm is identical to the pull up field refactoring algorithm with the exception that each method’s

arguments must be matched in addition to its name and type. Another difference with pull up method is

that the similarities between methods can better be judged by comparing if the line counts of each method

are similar. If all the methods are performing similar actions then they should all also have similar line

counts. A better strategy would be to use some kind of duplicate detection. Future versions of Look# may use

duplicate detection to improve this algorithm. This algorithm makes the assumption that multiple instances

of any method in a class hierarchy with the same method signature will be used in very similar ways. It also

assumes that methods with the same method signature and roughly the same number of lines are more likely

to have a similar purpose.
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α := 0.501,β := 20
for c ∈ class-hierarchy-roots[classes[program]] do

EXAMINETREE(c)
function EXAMINETREE(root) do

if |child-classes[root]|> 1 then
for c ∈ child-classes[root] do

for m ∈ methods[c] do
common-methods-count[m] := common-methods-count[m]+1
if common-methods-max-lines[m] < lines-of-code[m] then

common-methods-max-lines[m] := lines-of-code[m]
if common-methods-min-lines[m] > lines-of-code[m] then

common-methods-min-lines[m] := lines-of-code[m]
for m ∈ common-methods-count do

if common-methods-max-lines[m]− common-methods-min-lines[m]≤ β then
if common-methods-count[m] = |child-classes[root]| then

report(“pull up method” ,m)
else if common-methods-count[m]/|child-classes[root]| ≥ α then

report(“extract superclass” ,m)
for c ∈ child-classes[root] do

EXAMINETREE(c)

Figure 4.14: Pull Up Method algorithm.

4.2.15 Extract Superclass

Extract superclass uses the exact same algorithms as pull up field and pull up method. The only difference

is, instead of requiring that all of the subclasses have the same field or method, it only requires that a majority

do. To avoid extract superclass and one of the pull up refactorings being suggested for the same attribute,

the extract superclass algorithm does not trigger when all of the subclasses share the same attribute. Also,

to avoid situations where extracting a superclass makes no sense, there must be at least three subclasses.

That ensures that the extract superclass algorithm is never triggered on a single subclass. For example, if

the threshold we set to fifty percent, and there were only two subclasses, then the algorithm would suggest

extracting a superclass for every attribute not shared by the two classes.

4.2.16 Push Down Field

Make a list of all the inheritance hierarchy roots in the user’s code. Walk down each inheritance hierarchy and

examine each class’s fields. If all of the references to a field occur in a subclass of the current class, then that

field should be pushed down into that subclass. If references to that field appear in external classes outside

of that class’s inheritance hierarchy, then the field can not be moved since it is most likely being referenced

though accessors in its defining class. Also, if references to that field appear in the class the field is defined

in then that class is using that field, so the field can not be pushed down into a subclass. An exception to

that last rule is when the references to a field only occur in properties that return that field. In those cases
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the class is probably setting up a public accessor but not actually using the field. This algorithm is based on

the assumption that if a subclass is the only place a parent class field is referenced, then that field is not used

by the parent class, only the subclass. Therefore if the parent class is not using the field, it should be pushed

down into the subclass that is using it.

α := 0.40
for c ∈ class-hierarchy-roots[classes[program]] do

EXAMINETREE(c)
function EXAMINETREE(root) do

if |child-classes[root]|> 1 then
for f ∈ fields[root] do

if |references[ f ]|> 0 then
for r ∈ references[ f ] do

if containing-class[r] ∈ child-classes[root] then
reference-containers := reference-containers + containing-class[r]

else if containing-class[r] 6=
root ∨¬is-in-property [r]∨ identifiers[return-statements[containing-property [r]]]∩ references[ f ] = {} then

reference-containers := {}
break

if |reference-containers|= 1 then
report(“push down field” , f , root)

else if |reference-containers|/|child-classes[root]| ≤ α∧|reference-containers|/|child-classes[root]|> 0.0 then
report(“extract subclass” , f , root)

reference-containers := {}
for c ∈ child-classes[root] do

EXAMINETREE(c)

Figure 4.15: Push Down Field algorithm.

4.2.17 Push Down Method

Make a list of all the inheritance hierarchy roots in the user’s code. Walk down each inheritance hierarchy

and examine each class’s methods. If all of the references to a method occur in a subclass of the current class,

then that method should be pushed down into that subclass. If references to that method appear in external

classes outside of that class’s inheritance hierarchy, then the method can not be moved. Also, if references to

that method appear in the class the method is defined in then that class is using that method, so the method

can not be pushed down into a subclass. This algorithm is based on the assumption that if a subclass is the

only place a parent class method is referenced, then that method is not used by the parent class, only the

subclass. Therefore if the parent class is not using the method, it should be pushed down into the subclass

that is using it.
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α := 0.40
for c ∈ class-hierarchy-roots[classes[program]] do

EXAMINETREE(c)
function EXAMINETREE(root) do

if |child-classes[root]|> 1 then
for m ∈ methods[root] do

if |references[m]|> 0 then
for r ∈ references[m] do

if containing-class[r] ∈ child-classes[root] then
reference-containers := reference-containers + containing-class[r]

else
reference-containers := {}
break

if |reference-containers|= 1 then
report(“push down method” ,m, root)

else if |reference-containers|/|child-classes[root]| ≤ α∧|reference-containers|/|child-classes[root]|> 0.0 then
report(“extract subclass” ,m, root)

reference-containers := {}
for c ∈ child-classes[root] do

EXAMINETREE(c)

Figure 4.16: Push Down Method algorithm.

4.2.18 Extract Subclass

Extract subclass is actually part of the push down field and push down method algorithms. If a field or method

is referenced by more than one subclass, then those algorithms check if the field or method is referenced by

a minority of subclasses. If a field or method is referenced by a minority of subclasses, then a subclass with

that field or method can be extracted and placed between the parent class and the subclasses using the field

or method. The push down algorithms also need to check if the ratio of subclasses that use a field or method

is greater than zero. The way these algorithms are setup, there must be at least four subclasses for extract

subclass to be suggested. The minority threshold is user adjustable, so the ratio does not necessarily need to

be a minority ratio if the user wishes.
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Chapter 5

Experimental Results

5.1 Overview

To validate the hypothesis that lightweight techniques can be used to accurately detect program refactorings,

twelve public domain C# programs were analyzed with Look#. General information about each program is

given in table 5.1. The programs are listed in this and other tables in order of increasing size. All the programs

are publicly available from SourceForge. The time in seconds required by Look# to construct the syntax tree

and execute all of the refactoring detection algorithms is also given in table 5.2. While the total time it takes

Program Version Lines Methods Classes Description
FCKeditor 2.0 809 34 6 online text editor
MyACDSee 1.3 4118 137 14 image viewer
AscGen 2.0.2.4 4762 168 17 image conversion
TVGuide 0.4.3.1.3 6231 296 55 TV listings
MFXStream 1.0.0 7077 323 24 media streamer
GmailerXP 0.7 9347 288 29 mail client
3DProS 1.0 13629 381 22 3D animation
HeroStats 2.2.1 28840 1317 115 gaming statistics
ZedGraph 1.0 33539 1193 107 graphing package
NDoc 1.3.1 38118 1119 269 Documentation tool
NUnit 2.2.2 39910 1943 402 Unit testing tool
NAnt 0.85 80986 3416 408 Ant-like build tool

Table 5.1: Description of programs used in the experiments.

the Look# tool to completely analyze a program is a bit long, this is mostly due to a very inefficient symbol

table generator. The refactoring detection engine runs very fast.

For each program in our test suite, table 5.3 gives the number of refactorings detected. Not surprisingly,
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Program AST Gen Symboltable Gen Refactoring Detection Total
FCKeditor 2.08 75.25 0.02 77.34
MyACDSee 1.81 81.20 0.12 83.14
AscGen 2.28 79.31 0.19 82.20
TVGuide 3.00 110.20 0.17 113.38
MFXStream 4.08 88.11 0.29 92.48
GmailerXP 3.00 109.64 0.29 122.94
3DProS 5.65 139.59 0.55 145.80
HeroStats 5.42 127.95 1.28 134.65
ZedGraph 4.14 132.22 0.95 137.31
NDoc 6.69 147.75 1.64 156.07
NUnit 7.25 151.23 1.38 159.86
NAnt 7.61 178.02 1.96 188.44

Table 5.2: Summary of the time required to analyze the test case programs.

more refactorings were generally detected for the larger programs. Of course, all refactorings detected by

Look# are not necessarily correct. Each reported refactoring was verified by hand to determine its correctness.

Each refactoring reported is scored on a correctness scale from one to four, where one is definitely incorrect,

two is probably incorrect, three is probably correct, and four is definitely correct. Unless otherwise stated, a

score of three or four is considered correct, and a score of one or two is considered incorrect.

The correctness values reported in this paper are also not infallible. The correctness of each refactoring

reported was only evaluated by one developer. Due to a combination of human error and the developer’s

personal opinions about refactoring application, a certain degree of error is inherent in the correctness scores.

Table 5.4 lists the percentage of refactorings that were correct for each program. Table 5.5 provides a

summary of the correctness across all programs. Table 5.5 has three columns that show the success rate and

success count of each refactoring if a success is only a four, if a success is a four or three, and if a success

is a four, three, or two. Table 5.5 also shows the accuracy of each refactoring algorithm if correct is a four,

maybe is a three or two, and incorrect is a one. It is interesting to see that the more subjective or gray area

refactorings are the ones with higher maybe percentages.

5.2 Refactoring Detection Results

5.2.1 Encapsulate Field

Not surprisingly, the encapsulate field detection algorithm has a perfect score. However, the high count

was slightly surprising. The high count shows that many developers do not acknowledge that public fields
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Table 5.3: Number of refactorings detected for each program.
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Table 5.4: Success rates of refactorings detected for each program.
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Table 5.5: Summary of refactoring detections.
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are a violation of good object oriented programming practice. The object oriented programming style calls

for all fields to be encapsulated. Furthermore, C# provides the properties mechanism that can be used to

transparently and safely encapsulate a public field. Our results would seem to indicate that this mechanism is

not being used as much as it should be.

5.2.2 Remove Empty Method

Interestingly, this algorithm does not have a perfect score because although Look# correctly detects that

the method is empty, the method cannot always be removed because it is required to implement an external

interface or is overridden by child classes. In the case of NDoc and NUnit, the incorrect remove empty method

refactorings that are detected are incorrect because the developers purposely overrode parent class methods

with empty methods to disable the functionality. In NAnt the incorrect remove empty method refactorings are

methods with overridden child class implementations so they can not be removed either. This was not caught

due to a bug in the Look# symbol table that causes it to occasionally fail to find child class implementations.

5.2.3 Remove Unused Field

The remove unused field algorithm has a perfect success rate. It is a fairly straight forward refactoring and is

also easy to detect. Most of the detected unused fields are either legacy fields that are no longer used, or are

part of a new section of code that is not yet complete.

5.2.4 Remove Unused Method

The high detection count of unused method refactorings is surprising, since this refactoring indicates a

method that is never called. Most of the programs analyzed are immature and thus would not have evolved as

to have so much dead code. Rather, we attribute the high count to the fact that these programs are immature,

and therefore have features that are only partially implemented. Additionally, we found that some programs

were providing a more complete interface for a class than was necessary for their own use. For example, Zed-

Graph provides an implementation of a collection with methods for adding and removing elements, but itself

only adds elements to the collection. Most of the incorrectly detected unused methods are due to Look#’s

imperfect implementation of method overloading. Some of the key problems Look# has are resolving meth-

ods with an arbitrary number of arguments, and handling implicit down-casting of types. Those among other

bugs contribute Look# missing method references and thus mistakenly labeling some methods as unused.
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5.2.5 Hide Method

The hide method detection algorithm has a respectable success rate. Hide method has a lower success rate in

3DProS because some of the methods are only referenced outside the their local class through user-defined

indexers, which Look# does not properly handle yet. Hide method also has a lower success rate in NUnit

because many of the detected methods are part of a public API NUnit provides but does not use itself. The

errors Look# has collecting references can be fixed, but there is no way to tell if a public method that is not

used outside its local class is part of a published API or not.

5.2.6 Extract Class

The extract class refactoring was detected infrequently, which may indicate that its thresholds are too high.

However further research revealed that lower the thresholds did indeed increase the number of detections, but

it also lowered the success rate. The Look# project values the quality of the detected refactorings over the

quantity, so the thresholds have been left at their high values. This is the kind of refactoring that typically

occurs more frequently in larger projects. This is reflected in my data as extract class refactorings were only

detected in the larger projects.

5.2.7 Extract Method

The extract method algorithm works fairly well and has a decent number of occurrences. The difference in

results between extract method and extract class is surprising since they use similar algorithms: the extract

class algorithm counts the number of lines, methods, and fields while the extract method algorithm counts the

number of statements and lines. Many of the failures occur on large programs, however there does not appear

to be any relation between the size of the program and the success rate of the extract method algorithm.

Most of the the extract method algorithm’s failures are due to methods that have large switch statements

that are difficult to break up and extract. Many of the other extract method failures are due to large methods

that are very cohesive despite how large they are, and thus are difficult to break up and extract. In some of

those cases the method is so cohesive that extracting part of the method could actually reduce understand-

ability.
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5.2.8 Decompose Conditional

This detection algorithm has a very good success rate. One its few errors was due to an object creation as

part of the conditional expression and therefore the expression could not be moved. This is certainly a case

where using data-flow analysis would have eliminated the error. The only other source of errors was a few

cases where the conditional was sufficiently clear that it did not need to be decomposed and extracted. This

was mostly due to well named variables and simple conditional expressions. In most cases the decompose

conditional algorithm works very well, further confirming our hypothesis that refactorings can be correctly

detected using purely syntactic techniques.

5.2.9 Replace Magic Number

Like extract method, the replace magic number refactoring algorithm experiences more failures on the larger

programs. However, once again size was not the inherent reason for the failures. The larger programs such

as NAnt, ZedGraph, NDoc, and NUnit provide scaffolding to facilitate testing, and this code contains many

instances of literals that are themselves unrelated. For example, NAnt provides unit tests and the expected

results of several tests happen to be the same integer; however, the values themselves are not related, so

replacing them with a symbolic constant would be inappropriate, as shown below:

AssertExpression("1 + 2", 3);

AssertExpression("1 + 2 + 3", 6);

AssertExpression("1 + 2 * 3", 7);

AssertExpression("2 * 1 * 3", 6);

AssertExpression("1 / 2 + 3", 3);

There are also some cases where the same number is used multiple times but each use is totally unrelated.

In those cases making a symbolic constant for those numbers does not make much sense.

5.2.10 Move Field

The success rate of the move field algorithm is definitely disappointing. The testing found that in most cases,

Look# suggested moving a field from a data class that had multiple instances to a data processing class that

had only a single instance. For example, a student data class may have a field name that is seldom referenced

within the class, but is referenced frequently by other classes that perform data processing tasks such as

printing rosters or calculating payments. It is impossible to move such fields to another class even if that
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class is the only one referencing the fields because of the number of instances. To overcome this problem,

the set of target fields was restricting to only static fields. This solves the multiple instance to single instance

move problem since a static field has only one instance for all the instances of its defining class. Of course,

this change caused far fewer refactorings to be detected. However, as stated before, the priority of the Look#

project is the quality of detected refactorings, not the quantity.

The much higher detection count and success rate for 3DProS is interesting. This program uses a single

structure with static fields that are defaults for the entire program or serve as global variables. However, these

fields are often only used in a single class, and thus perhaps should be moved to that class.

5.2.11 Move Method

The move method refactoring algorithm does not have a very good detection rate. The current algorithm

simply uses reference counts and data class detection to determine if a method should be moved into a data

class. Obviously this algorithm is insufficient to accurately detect methods that should be moved. Some errors

were caused by large copy methods that simply copy data from one class to another. Since all this data is

being copied there is going to be a large amount of coupling between the two classes regardless of where the

method resides so moving the method does not make much sense. Many other errors were caused by methods

that referred to the same reference many times but did not use many different resources. In these cases, if

temporary variables had been used to store the external data, then the methods probably would not have been

reported as move method cases. Most of the detection failures were just simply because nothing in the method

could be moved or extracted out. That represents a fundamental flaw in the detection algorithm. Compiling

a list of all the references in a method and determining which class owns the most of those references might

be a better strategy.

5.2.12 Remove Parameter

The remove parameter algorithm has a good successful detection rate. Many of the errors were caused by

problems with the Look# symbol table either not detecting that a parameter was used, or not detecting that

the method is derived from a parent class method or that a child class method overrides a method. In those

cases the method’s signature can not be changed so a parameter can not be removed. In NUnit, the errors

were caused by empty methods that were purposely overriding the parent class methods with empty methods

to disable that functionality. Since the methods were overloading parent class methods, their signatures could

not be changed.
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5.2.13 Pull Up Field

The pull up field algorithm has a very good successful detection rating but is detected infrequently. Pull up

field refactorings were only detected in the larger projects with many classes. This makes sense because these

larger projects also have larger inheritance hierarchies. Smaller projects tend to have very small inheritance

hierarchies and so do not have any pull up field refactoring instances.

5.2.14 Pull Up Method

The Pull up method algorithm does not have a very good success rate. The reason for the discrepancy between

pull up field and pull up method is, in order to pull up a method, all the methods must be doing roughly the

same thing, to pull up a field, all the fields simply have to have the same type. The current pull up method

algorithm simply tries to evaluate method similarity by comparing the size of the method body. Obviously

this is a poor way to determine the similarity between methods. Most of the pull up method errors are caused

by trying to pull up many different methods with very different bodies into a single method in a parent class.

Using a better mechanism, like duplicate code detection, to measure the similarity between methods would

increase the accuracy of this algorithm.

5.2.15 Extract Superclass

While the extract superclass algorithm appears to have a very good success rate, the maybe percentage is

also very high. This is because while it correctly identifies fields and methods that could be extracted into a

superclass. However, sometimes this algorithm is only triggered once on a class hierarchy, so it is simply not

practical to create a whole new superclass just so a single method or field can be moved up into it. Ideally

this algorithm would only trigger when multiple fields and or methods can be moved up into a superclass.

Unfortunately, due to the current design of the refactoring engine, this is difficult to do.

5.2.16 Push Down Field

Unfortunately this algorithm did not detect any push down field refactoring instances in any of the test cases.

I believe this is not because the algorithm is broken, but because it is quite rare for a class to declare a field

and then not use it. In order to push a field down, the class that defines the field can not use it, only a single

child class.

51



5.2.17 Push Down Method

The push down method algorithm also had very few detection instances, however most of those were correct.

The only failure for this algorithm was when it recommended pushing down a method that accessed private

class data not visible to the child class. This could be avoided by checking each reference in the method’s

body for private data. However, pushing down a method that accesses private data is not always wrong as

sometimes that private data can also be pushed down with the method. Because very few instances were

detected, not much can really be extrapolated from these results.

5.2.18 Extract Subclass

The extract subclass detection algorithm has a very poor success rate in contrast to push down method even

though it mostly suggested pushing methods down into a new subclass. This most likely shows that the push

down method algorithm does not work as well as the test case results seem to indicate. One error with the

extract subclass algorithm occurred because it recommended pushing down a method that simply acted as a

wrapper for another method. In that case it makes no sense to push down a wrapper method. Another error

was from a method accessing private data again. Checking if a method accesses private data would have

helped in this case.

5.3 Error Analysis

To help identify what caused the refactoring detection errors, each error was classified as either interpretive(I),

algorithm(A), or tool(T). An interpretive error is an error such that even though the refactoring algorithm

worked correctly, the refactoring it suggested was incorrect due to a subjective factor the algorithm can not

detect accurately. For example, the problems the unused method algorithm has in NUnit with the public

API methods are interpretive errors because there is no way a computer algorithm can accurately detect if a

method is part of a public API or not. Another example of an interpretive error is when the extract method

algorithm fails because the targeted method is classified as too cohesive and interconnected to breakup into

multiple methods. In that case the move method algorithm itself worked properly in finding a large method,

however the method it found was too cohesive to extract. It might be possible to redesign the algorithm

so it measures cohesion in someway, but ultimately only a human will know for sure if a method should

be extracted or not, thus those errors are interpretive errors. Algorithm errors are errors that are caused

by failures in the algorithm. Typically these types of errors come in the form of special cases the are an
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exception to the existing algorithm logic that could be patched up with special checks. An example of an

algorithm error is when the move method algorithm suggests moving a method that is simply copying data

from one class to another. In that case moving the method serves no purpose because the high degree of

coupling between the two classes will remain the same because then the rolls would be switched and the

other class would be directly accessing the original class’s fields. The special case could probably be checked

for by the algorithm with a good degree of accuracy. Tool errors are errors caused by an underlying problem

in the Look# architecture. A good example is the unused method algorithm errors. The unused method

algorithm simply checks if a method has zero references. If Look# fails to find the references to a method, it

is the tool’s fault for the failure, not the algorithm’s.

Errors
Count

I Type

I Count

A
Type

A
Count

T Type

T Count

Decompose Conditional 4.1 3 2.7 2 1.4 1 0.0 0
Encapsulate Field 0.0 0 0.0 0 0.0 0 0.0 0
Extract Class 0.0 0 0.0 0 0.0 0 0.0 0
Extract Method 12.9 9 8.6 6 4.3 3 0.0 0
Extract Subclass 75.0 3 50.0 2 25.0 1 0.0 0
Extract Superclass 0.0 0 0.0 0 0.0 0 0.0 0
Hide Method 6.4 21 3.1 10 0.9 3 2.4 8
Move Field 45.0 18 40.0 16 5.0 2 0.0 0
Move Method 48.9 108 38.9 86 10.0 22 0.0 0
Pull Up Field 0.0 0 0.0 0 0.0 0 0.0 0
Pull Up Method 37.5 3 25.0 2 12.5 1 0.0 0
Push Down Method 25.0 1 0.0 0 25.0 1 0.0 0
Remove Method 20.0 8 10.0 4 10.0 4 0.0 0
Remove Parameter 8.8 7 5.0 4 0.0 0 3.8 3
Replace Magic Number 14.4 40 12.9 36 1.4 4 0.0 0
Unused Field 0.0 0 0.0 0 0.0 0 0.0 0
Unused Method 6.0 51 2.1 18 0.1 1 3.7 32
Total 9.0 281 6.3 195 1.4 43 1.4 43

Table 5.6: Error types table.

Table 5.6 shows the break down of how many types of errors each refactoring algorithm had. Only three

refactoring algorithms suffered from tool errors: hide method, remove parameter, and unused method. Most

of these errors were caused because Look# failed to find method references, failed to properly link up the

inheritance hierarchy, or failed in some other way. Many of the refactoring algorithms had a few algorithm

errors. Most of these are special cases like methods that are called implicitly and should be blacklisted, ac-

cess modifiers that should be checked for, and switch statements that should be avoided. The move method

results in particular have many algorithm errors, most of these are attributed to large switch statements and
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data copying methods. Most if not all of the algorithm errors could be fixed with more algorithm modifica-

tion. Some algorithm errors have not been fixed due to time constraints, while other algorithm errors have

not been fixed because there is a more fundamental problem with the algorithm and it should probably be

rewritten anyway. In the case of move method, there are so many interpretive errors due to highly cohesive

methods, the time fixing the algorithm errors would be better spent trying to develop a method cohesion met-

ric. Interpretive errors were the most common errors. It is not surprising that many interpretive errors occur

on the more complicated refactoring techniques like replace magic number, move field, and move method.

It was surprising that some of the simpler refactoring algorithms like unused method and hide method had

quite a few interpretive errors though. Most of those were caused by methods that were part of a program’s

public API. Most of the other interpretive errors were caused by some fundamental flaw in the refactoring

algorithms. For example, the replace magic number algorithm can not tell which instances of a number are

related, the move field algorithm can not determine the best class to move a field to, and the move method

algorithm can not measure cohesiveness of a method.

From the results in table 5.6, it is plain to see that many of the refactoring algorithms could be improved.

Ideally, there should be no tool errors at all. More work on the parser and symbol table could help eliminate

those errors. Most of the algorithm errors could also probably be fixed especially on the move method

algorithm. The interpretive errors are the hardest ones to fix. Some interpretive errors could be fixed with

more complicated algorithms that calculate more metrics, while other errors could be fixed by using data flow

analysis. Unfortunately some interpretive errors can not be avoided, like the public API errors.

5.4 Reliability of the Results

Overall the Look# tool appears to work pretty well on the analyzed programs. Of course those results were

obtained after much fine tuning and bug fixes based on the initial results from those programs. Obviously

my vision for the Look# tool does not include having to tweak the tool for each new program it analyzes.

I theorized that the more programs the Look# tool is tuned on, the more consistent its results would be

on different programs. Initially the tool was tuned on ten programs: FCKeditor, GmailerXP, MyACDSee,

3DProS, TVGuide, ascgen2, MFXStream, HeroStats, NAnt, and ZedGraph. Binomial confidence intervals

were then computed for each refactoring algorithm based on its performance on those ten programs. Two

more programs, NDoc and NUnit, were then analyzed without any additional tuning or bug fixes. Table 5.7

compares the refactoring algorithm confidence intervals for the first ten programs to the initial results of the
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last two programs. Table 5.8 shows the initial results for NDoc and NUnit.

First 10 Programs Initial Results
Lower Rate Upper NDoc NUnit

Decompose Conditional 0.88 0.96 1.00 0.82 0.50
Encapsulate Field 1.00 1.00 1.00 1.00 1.00
Extract Class 0.18 0.57 0.90 1.00 –
Extract Method 0.77 0.88 0.95 0.80 0.00
Extract Subclass 0.01 0.25 0.81 – –
Extract Superclass 0.69 1.00 1.00 1.00 1.00
Hide Method 0.87 0.91 0.95 0.95 0.74
Move Field 0.40 0.56 0.72 – 0.00
Move Method 0.42 0.49 0.57 0.78 0.21
Pull Up Field 0.65 1.00 1.00 – 1.00
Pull Up Method 0.55 1.00 1.00 – 0.00
Push Down Method 0.01 0.50 0.99 – 1.00
Remove Method 0.61 0.77 0.88 0.20 0.67
Remove Parameter 0.73 0.87 0.95 0.95 0.78
Replace Magic Number 0.81 0.86 0.90 0.81 0.78
Unused Field 0.94 0.98 0.99 1.00 1.00
Unused Method 0.86 0.88 0.90 0.86 0.49
Total 0.88 0.89 0.90 0.88 0.73

Table 5.7: Confidence interval of the first ten programs compared to the initial results of last two programs.

Unfortunately this analysis does not work very well with low numbers so some interpretation of the results

is required. As you can see in 5.3, the following refactoring algorithms all have a very low detection count

total: extract class, extract subclass, extract superclass, pull up field, pull up method, and push down method.

As a result, the confidence intervals for these algorithms are quite broad and do not tell us much. Likewise, a

low detection count for some refactoring algorithms on the two new programs analyzed also makes the results

harder to read. If only one or two instances of a refactoring are found on a program, then chances are that

algorithm’s success rate is not going to fit nicely into an existing confidence interval because there just is not

enough data. Much like it is difficult to draw a best fit curve when there are only 2 data points.

For example, decompose conditional appears to work very poorly on NUnit, however if you look at table

5.8, you’ll notice that only two instances of decompose conditional were found and only one of them was a

success. With only two instances of decompose conditional found, it is hard to draw any conclusions from

that data. However seventeen instances of decompose conditional were reported on NDoc, and with a success

rate of eighty two percent, it just barely falls outside the confidence interval. Even though the success rate was

out of the confidence interval range, eighty two percent is still a good success rate so decompose conditional

appears to work reasonably well without further modification.

The encapsulate field algorithm maintained its one hundred percent success rate in NDoc and NUnit. At
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Initial NDoc Results Initial NUnit Results
Report Correct Rate Report Correct Rate

Decompose Conditional 17 14 0.82 2 1 0.50
Encapsulate Field 69 69 1.00 90 90 1.00
Extract Class 1 1 1.00 0 0 –
Extract Method 10 8 0.80 1 0 0.00
Extract Subclass 0 0 – 0 0 –
Extract Superclass 1 1 1.00 1 1 1.00
Hide Method 38 36 0.95 50 37 0.74
Move Field 0 0 – 1 0 0.00
Move Method 32 25 0.78 19 4 0.21
Pull Up Field 0 0 – 5 5 1.00
Pull Up Method 0 0 – 1 0 0.00
Push Down Method 0 0 – 2 2 1.00
Remove Method 5 1 0.20 3 2 0.67
Remove Parameter 22 21 0.95 18 14 0.78
Replace Magic Number 16 13 0.81 9 7 0.78
Unused Field 7 7 1.00 5 5 1.00
Unused Method 111 95 0.86 70 34 0.49
Total 329 291 0.88 279 204 0.73

Table 5.8: The initial results for NDoc and NUnit.

this point it is safe to say that the encapsulate field algorithm works very well as long as you subscribe to the

philosophy that public fields should not exist.

The extract method algorithm worked as expected on NDoc with a success rate of eighty percent landing

it within the confidence interval. Since only one instance of the extract method refactoring was detected in

NUnit, not much can be learned from its results. The ten reported instances of extract method on NDoc helps

support the claim that the extract method algorithm can produce consistent results.

The hide method algorithm worked very well on NDoc and not so well on NUnit. The hide method score

on NUnit was significantly lowered due to the public API it provides users using its framework because it

does not use some of the framework itself. As discussed in section 5.2.5, there is no way to know if a method

is part of a public API or not. Therefore, despite the poor performance on NUnit, I believe the hide method

algorithm works well with no need for further tweaking.

The replace magic number algorithm performed decently on NDoc and a little worse than expected on

NUnit. I believe the poor score derives from the fact that NUnit already makes good use of symbolic con-

stants, so any remaining numbers are more likely to be unrelated. Perhaps the replace magic number algo-

rithm could be made more intelligent but ultimately only a developer can tell if two numbers are related or

not.

The move method algorithm exceeded expectations on NDoc and disappointed on NUnit. Both NDoc
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and NUnit had decent detection counts as well so their results can not be chalked up as flukes. I believe this

shows that the move method algorithm is still wildly inconsistent. In large part this is due to its inability to

measure the cohesion of a method. The NDoc and NUnit results indicate that there is still much work to be

done on the move method algorithm.

NDoc revealed a weakness in the remove method algorithm. I had not previously considered that a

developer might wish to purposely override inherited methods with empty methods to disable some parent

functionality. While the algorithm functioned as expected on NUnit, the NDoc results indicate that more

tweaking of this algorithm is required before it will produce consistent results.

The remove parameter algorithm was one of the few that actually performed as expected on both NDoc

and NUnit. Unfortunately the lower bound of the confidence interval is a little low for what should be a

simple check. I believe the expected performance should be higher.

The unused method algorithm worked as expected on NDoc but worse than expected on NUnit. Like

hide method, part of the reason behind this poor score was the public API NUnit provides. Another problem

was the large number of non-user-defined types NUnit used that the Look# symbol table could not identify.

This result lead to modifications to Look# the symbol table to allow it to handle non-user-defined types better.

Despite the poor NUnit score, no changes or tweaks to the unused method algorithm are called for. Because

the unused method algorithm is so simple, almost all its errors are either due to a bug in the underlying tool,

or the result of an interpretive error that can not be fixed (such as a public API). The difference in scores

between unused field and unused method is evidence of this. Despite having almost identical algorithms, the

unused method algorithm’s score is much lower because Look#’s symbol table has difficulty resolving some

overloaded method references.

The confidence interval analysis produced some pretty mixed results. It showed that roughly one third of

the refactoring algorithms produced consistent results. One third of the refactoring algorithms need further

fine tuning to produce consistent and reliable results. The remaining refactoring algorithms did not have a

high enough detection count to draw any meaningful conclusions from their results. Not surprisingly, the

more complex refactoring techniques tended to be the ones that need more modification or did not produce

many results.

After improving some of the refactoring algorithms based on the results of the initial confidence interval

analysis, a second set of confidence intervals were calculated based on the results from all twelve analyzed

programs. Table 5.9 compares the earlier confidence interval to the updated one. Mostly improvements were

made to the underlying tool’s data collection however some refactoring algorithms were further tuned as
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First 10 Programs Final Analysis w/ All 12
Lower Rate Upper Lower Rate Upper

Decompose Conditional 0.88 0.96 1.00 0.88 0.96 0.99
Encapsulate Field 1.00 1.00 1.00 1.00 1.00 1.00
Extract Class 0.18 0.57 0.90 0.55 1.00 1.00
Extract Method 0.77 0.88 0.95 0.77 0.87 0.94
Extract Subclass 0.01 0.25 0.81 0.01 0.25 0.81
Extract Superclass 0.69 1.00 1.00 0.74 1.00 1.00
Hide Method 0.87 0.91 0.95 0.90 0.94 0.96
Move Field 0.40 0.56 0.72 0.38 0.55 0.71
Move Method 0.42 0.49 0.57 0.44 0.51 0.58
Pull Up Field 0.65 1.00 1.00 0.78 1.00 1.00
Pull Up Method 0.55 1.00 1.00 0.24 0.63 0.91
Push Down Method 0.01 0.50 0.99 0.19 0.75 0.99
Remove Method 0.61 0.77 0.88 0.64 0.80 0.91
Remove Parameter 0.73 0.87 0.95 0.83 0.91 0.96
Replace Magic Number 0.81 0.86 0.90 0.81 0.86 0.90
Unused Field 0.94 0.98 0.99 0.98 1.00 1.00
Unused Method 0.86 0.88 0.90 0.92 0.94 0.96
Total 0.88 0.89 0.90 0.90 0.91 0.92

Table 5.9: Comparison of the confidence interval of the first ten programs and the final analysis with all
twelve programs.

well. As you can see most of the confidence intervals and average success rates have improved in the final

analysis. The few cases where the confidence interval and or average success rate actually decrease in the

final analysis are mostly due to bad results in the last two programs, NDoc and NUnit, that were not fixed by

the improvements.

5.5 False Negative Analysis

Up until this point, only false positive analyses have been discussed. Even though avoiding false positives is

the primary concern of my refactoring algorithms, knowing the false negative rate is still very useful in eval-

uating the refactoring algorithms’ success. After all, a refactoring algorithm is not much use if it successfully

avoids returning any false positives, but misses over half of the valid refactorings as a consequence.

Performing a false negative analysis is much more time intensive than performing a false positive analysis.

To perform a false negative analysis, every line of the target project’s code must be examined by the evaluator

and every possible refactoring identified. For example, to determine which methods were unused, every

single method in the program was individually commented out one at a time and the program recompiled to

check for compile errors. If the program compiled with no errors with a method commented out, then that
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method was deemed unused. In contrast, a false positive analysis simply requires each reported refactoring

be evaluated for accuracy.

Due to the time intensive nature of false negative analysis, it was only performed on one program: Gmail-

erXP. GmailerXP was chosen because it was roughly the median of our test suite in terms of program size. It

is also not prohibitively large so the false negative analysis could be done in an acceptable amount of time.

Table 5.10 shows the original number of successful refactorings found by Look#, the number of refactorings

found by hand, and the resulting false negative count. Unfortunately during the false negative analysis of

GmailerXP, I realized it was not the best choice because it had absolutely no inheritance hierarchy, so obvi-

ously there were no results for any of the inheritance related refactoring algorithms such as pull up method

and push down field.

Orig Success By Hand False Negatives
Decompose Conditional 1 2 1
Encapsulate Field 39 39 0
Extract Method 5 22 17
Hide Method 13 13 0
Move Method 16 20 4
Remove Method 2 2 0
Remove Parameter 1 1 0
Replace Magic Number 34 37 3
Unused Field 3 6 3
Unused Method 16 16 0
Total 130 158 28

Table 5.10: GmailerXP false negative analysis.

The one decompose conditional refactoring missed was because even though the conditional had a small

number of logic junctions, one of the conditions was having a string match a complex regular expression

whose purpose was very clear.

There were many extract method refactorings missed. Most of the missed extract method refactorings

were found during the false negative analysis by using a similarity detection tool called Simian. Simian re-

vealed that many methods in GmailerXP contained duplicate code, which is one of the “smells” associated

with the extract method refactoring [Fowler, 1999, p. 75]. The results of the false negative analysis indicate

that the current size based metric for detecting extract method refactorings is insufficient. A duplicate detec-

tion mechanism needs to be added to catch all the methods with duplicate code being missed by the current

algorithm.

A few replace magic number refactorings were missed because they involved blacklisted numbers. The
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replace magic number algorithm normally ignores the numbers negative one though two because these are

very commonly used numbers that oftentimes do not have a symbolic meaning.

The false negative analysis confirms that the move method refactoring detection algorithm does not work

very well. Some of the missed refactorings did not have many references to an external class, but even so

only manipulated the data from an external class. This algorithm needs to use a different metric.

A few unused field refactorings were missed because the fields in question did have references, but only

in properties or methods that were subsequently unused. During an iterative refactoring process these unused

fields would have been eventually detected by Look# once the user had removed the unused properties and

methods using these fields. For that reason, this is not really considered a failure because these unused field

refactorings would have eventually been detected after some maintenance had been performed.

With the exception of the extract method refactoring detection algorithm, all the algorithms had low false

negative counts. This shows that most of my algorithms are catching most of the valid refactorings. Of

course simply analyzing one program for false negatives does not prove much of anything. Especially since

GmailerXP had no inheritance hierarchy. In the future I hope to conduct more false negative analyses to get

a better idea of how well the refactoring algorithms work.

5.6 Conclusion

Overall the Look# tool worked well for accurately detecting refactoring techniques. As would be expected,

the simpler refactoring techniques, like encapsulate field and unused field, were detected with a very high

degree of accuracy. The more subjective and abstract refactoring techniques had lower success ratings, but

some of the more advanced refactoring algorithms, like replace magic number and decompose conditional,

still managed to have good success rates. I thought it was interesting to see that the more advanced and

subjective refactoring techniques like extract class/method and the pull up and push down algorithms, were

the ones with high maybe scores. That could mean that it is harder to definitively find the more advanced

refactoring technique instances. I believe it illustrates that the correctness of the more advanced refactorings

is a gray area as compared to the simple black and white conditions for the simpler refactoring techniques

like unused method.

Some of the refactoring algorithms still need improvement. Most notably, move field, move method,

extract method, remove method, pull up method, and push down method all have lower success rates that

could be improved. The extract method and move method algorithms would probably benefit from some form
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of duplicate code detection, as well as a metric for measuring method cohesion. The move field algorithm

would benefit from an object instance count metric so it could operate on more than just static fields. The

remove method algorithm could be improved if it ignored overriding methods. The pull up method algorithm

needs a better way of evaluating method similarity than lines of code. The push down method algorithm needs

to evaluate if any private data is accessed by the method.
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Chapter 6

Related Work

The field of refactoring detection is still in its infancy. At this point it appears that more work has been

done on automated refactoring tools that implement refactoring techniques for the user rather than detecting

where refactoring techniques should be applied. [Mens and Tourwé, 2004] provide an excellent survey of

the existing software refactoring research, including refactoring detection at both the design and source code

level.

[Simon et al., 2001] have done similar research using metrics to detect refactoring techniques. Their tool

uses a distance metric to measure the coupling between class elements, which appears to work better for some

refactoring techniques than the reference count metric the Look# tool employs. Their tool is more oriented

toward software visualization. It uses the Virtual Reality Modeling Language (VRML) to display each class

element in 3D space. The distance between these class elements in the 3D model is determined by their

distance metric. The tool user can then look for fields and methods that are isolated or do not belong with

other objects in a cluster. However this tool still leaves it up to the user to draw their own conclusions about

what needs refactoring based on the 3D view rather than explicitly identifying locations where refactorings

should be applied. Due to the visualization aspect of the tool, their approach only works well when used

on a small number of classes. Finding refactorings in a large visualization space can be difficult, and the

time required by their tool to layout the space can be prohibitive. In contrast, our approach is inexpensive and

scales well. While their approach may work better for comparing two or three classes, Look# is more efficient

and user friendly at identifying refactorings on a large scale. Interestingly, their approach to detecting move

field suffers from the same problem as ours once did: moving a field from a class with multiple instances to

a class that has only a single instance.
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[Tourwé and Mens, 2003] made a tool called SOUL that uses logic meta programming to identify in code.

Program facts are computed and stored in a database that can then be queried using Prolog. The detection

algorithms are themselves coded in Prolog. One advantage of this separation is that should the program facts

change (e.g., become more accurate if a different code analysis is used), the queries themselves do not change.

This allows their detection algorithms to be mostly language independent. Look# , being AST based, is not

as language independent. However, the authors admit that program facts alone are not enough to detect some

refactorings and that metrics will probably need to be added. Although they report a perfect success rate,

they only analyzed the tool itself and tried to identify only two refactoring techniques: obsolete parameter

and inappropriate interface. Look# has been tested on a larger set of programs and can detect many more

refactorings.

[Kataoka et al., 2001] detect refactorings using program invariants. Likely program invariants are com-

puted from test runs and then used to locate refactorings. For example, the remove parameter refactoring can

be applied when the parameter is not used by the method body or when its value is always a constant. The

latter is a program invariant that their tool can detect. The authors present a small case study of a single Java

application and report a 35% success rate among detected refactorings that are definitely correct and a 65%

success rate among those that are possibly correct.

[Balazinska et al., 2000] and [Ducasse et al., 1999] both use duplicate code detection, also called clone

detection, to find refactorings. [Fowler, 1999] discusses duplicate code as a major indicator of refactorings.

Duplicate code detection is useful in detecting extract method, extract class, and pull up method. Incorporat-

ing similar duplicate code detection techniques into Look# could improve several of its refactoring algorithms.

Because Look# is AST based, an AST based clone detection technique as described by Baxter et al. could be

used. Future versions versions of Look# will probably utilize some form of duplicate code detection.

Finally, refactorings can be detected in other software artifacts such as design documents. For exam-

ple, a widely recommended way to detect refactorings is to observe design shortcomings manifested during

development and maintenance [Gamma et al., 1995].
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Chapter 7

Conclusion

Program refactoring is the process of applying meaning-preserving changes to a program to improve its

structure in order to aid understanding and maintenance. Although some earlier work has focused on detecting

refactorings in code, much of the work on refactoring has focused on automating the changes to the source

code. As of this writing, no tool exists (that the author has found) that does a very good job of identifying

where refactoring techniques should be applied in C# code. There are some specialized tools that do a good

job of detecting one or two specific refactoring techniques but none that work well for detecting a broad

spectrum of refactoring techniques. The Look# tool that was developed during my research uses low-cost

syntactic approach to finding refactorings in source code. My refactoring algorithms use a symbol table and

AST together with simple code metrics such as line and statement counts.

The Look# tool was developed to evaluate the effectiveness of the refactoring algorithms. Twelve C# pro-

grams of varying size and type were analyzed with Look#. Over three thousand refactorings were discovered

across those twelve C# programs. Each reported refactoring was then inspected by hand to determine its cor-

rectness and validity. As a result of this analysis, over 91% of the suggested refactorings were correct. Some

of the refactoring algorithms even had a near-perfect success rate. Overall the majority of the refactoring al-

gorithms had a success rate of 80% or more. During the this testing and analysis some interesting trends were

noticed about the programs being analyzed. Many of the programs provide a rich set of interface methods

that are never actually used. Additionally, the property mechanism of C# that was designed to transparently

encapsulate public fields was not used as extensively as expected. Apparently many C# developers so not

take the object-oriented principle of encapsulation very seriously as many public fields were discovered dur-

ing our testing. I also noticed that the Look# tool tended to not work as well on programs that contain test
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scaffolding for self tests. Some of the refactoring algorithms were confused by the tests.

Future work will focus on expanding the library of refactoring techniques Look# can detect, and improv-

ing the accuracy of the existing refactoring algorithms. While most refactoring algorithms had a good success

rate, some of them were quite low. These algorithms might be improved by using different metrics or more

advanced analysis techniques like data flow analysis.

For the purposes of this project, success rate is defined as the number of detected refactorings that are

correct. False negatives are not considered in our success rate. The motivation for focusing on eliminating the

false positives is that a tool that reports many refactorings, only a few of which are correct, will simply not be

used because the user has to sort through too many bad reports. The whole purpose of automated refactoring

detection is to save the user time. Reporting bad refactorings wastes the user’s time. The real advantage of

autonomously identifying refactoring techniques is how quickly a computer can process large amounts of

data. A tool like this can rapidly find many possible refactoring techniques, thus dramatically reducing the

amount of data the user needs to process during the refactoring process. However, false negatives are still

a concern. An algorithm that correctly reports one refactoring but misses ten others has limited usefulness.

(Summarize results of false negative analysis)
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