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Abstract

Understanding a program based on its source code is te-
dious and error-prone. Unfortunately, such a task is often
necessary due to lack of adequate documentation. To assist
software engineers in this task, automated analysis tools are
often used. Such tools analyze the program source, com-
puting information, and present that information to the tool
user in a useful way. To compute correct information, the
entire program may need to be analyzed; however, most
programs written today use libraries extensively, for which
source code may not be available. Therefore, tools must
somehow model the libraries to summarize their effects.
However, such models are hard to construct by hand and
are often tool-specific, limiting reuse.

We present a general, automatable technique for gen-
erating models of libraries given their source. The resulting
models are themselves pieces of source code called syn-
opses. Synopses are more accurate than hand-generated
models and are reusable across tools. Furthermore, the use
of synopses can increase precision of subsequent analyses
since they allow functions to be expanded inline, thereby
gaining one level of precision with respect to calling con-
text. Finally, synopses can be extended to entire software
layers, improving the efficiency of analysis tools.

Keywords: Software Tools, Software Re-engineering,
Program Development, Program Libraries.

1 Introduction

1.1 Motivation

Many software engineering tasks require that the engineer
have a thorough understanding of the program. For exam-
ple, correctly making a modification to a function’s signa-
ture requires knowledge of which functions call that func-
tion; anticipating the effect of a proposed change requires
knowledge of the control-flow and data-flow properties of
the program. Ideally, software engineers would have ade-
quate documentation to assist them in these tasks. Require-
ments, specification, and design documents present infor-
mation about the program in ways that are easier for the
engineer to understand, as compared with examination of
the source code. However, this documentation is often not
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available or is out of date. This lack of adequate docu-
mentation most often results from market-driven software
development practices that force developers to rush their
products to market. Consequently, the best alternative left
to the engineer is often to examine the program’s source.

However, understanding a system by examining its
source code is both tedious and error-prone. Market-driven
development often results in code that is poorly designed
and structured. Legacy systems are especially hard to un-
derstand. Many of these systems were not implemented us-
ing modern programming techniques that can help reduce
the complexity of a system, such as information hiding [1].
Furthermore, as a system evolves, its complexity may grow
exponentially with the number of changes made [2]. There-
fore, the software engineer needs some form of help in un-
derstanding the program.

Automated tools have been proposed as a solution to
the problem of understanding source code by hand. These
tools analyze the system, computing and extracting infor-
mation, and present the information in a way that is most
useful to the tool user. For example, given a code location
and name of a variable, a program slicing tool computes
and presents the set of all statements that may have had an
effect on the value of that variable [3, 4]. A program slicer
can be useful during debugging. As another example, a call
graph extractor determines the calling relationships of the
functions in the program, and presents a graphical view of
which functions call which other functions [5, 6]. Such a
view is useful in trying to anticipate how a change to one
function may affect the rest of the system. Recent work
has focused on the efficiency [7, 8, 9] and precision [10] of
such tools.

In order to compute correct information, an analysis
tool often needs to analyze the entire program. However,
the source code for libraries is often not available to the
analysis tool. Today’s programs make extensive use of li-
brary functions. These functions provide mechanisms for
storing objects, sorting, searching, string manipulation, file
access, and accessing resources provided by the operating
system. A program understanding tool must somehow ac-
count for the effects of calling a library function without
having access to its source code. Simply ignoring the li-
brary function calls leads to an incorrect analysis. There-
fore, analysis tools typicallymodel the effects of library
functions. Such a model often summarizes the effects of



the function such as which variables are used, which are
defined, and the relationship between the return value and
the parameters. These models are often programmed by
hand directly into the analysis tool itself. Although initially
straightforward, this approach suffers from several prob-
lems:

• Creating the models is time-consuming and error
prone. Often, the tool user has only a vague descrip-
tion of the library function from which to work. As
discussed, this sort of documentation is itself often out
of date, resulting in an inaccurate model being con-
structed. Furthermore, hundreds of library functions
may need to be modeled in order to analyze even a
relatively small program.

• The models are not reusable across multiple tools.
Since the models are programmed to work with a cer-
tain tool, they often make use of the tool’s internal data
structures. Although this approach may ease imple-
mentation or improve efficiency, it makes reusing the
models across tools difficult, thereby increasing cost.

• The analysis tool must be constantly updated. If a
newer version of the library is developed, the models
need to be updated so they correspond with the newer
version. Since the models are part of the tool itself,
the tool itself must therefore be changed.

1.2 Approach

Our approach to overcoming these problems is to automati-
cally generate library models from their source and to have
the models themselves take the form of source code. By
automatically generating the models, the tool user is free to
concentrate on the tool design alone. Furthermore, such
models will be accurate with respect to the source code
used to generate them. Since the models are themselves
pieces of source code, they can be used by any tool sim-
ply by specifying them as additional source files to be an-
alyzed. Finally, by separating the models from the tool,
only the models need be (automatically) updated when the
library is updated. The tool itself need not be changed.

In our approach, a model for a library function is it-
self a function that consists of a small number of source
lines that correctly capture the effects of the function. We
call such a model alibrary synopsissince it is a compact
but accurate description of the most important aspects of
the function, namely its effects as seen byanycalling func-
tion. Since the function may use pointers to data structures
provided by the caller, but unknown at the time the synop-
sis is constructed, the synopsis itself will also make use of
pointers. To correctly account for the effects of a library
function, its set ofobservablesmust first be computed. An
observable is any program component that may have an ef-
fect on the calling function. For example, changes to global
variables and return values are observable by the calling
function, but changes to local variables are not. Once the

int cmp ( int *p, int *q) {
return *p - *q;

}

int main ( ) {
/* initialize array */
p = bsearch (k, a, n, sizeof ( int ), &cmp);
/* use result pointer */

}

Figure 1. Proper determination of the call graph requires
an accurate model forbsearch .

sets of observables have been computed, the dependencies
among the observables are then derived, yielding a depen-
dency graph. Finally, a set of program statements is con-
structed from the graph. This final set of statements has the
same dependency graph as the original library function.

The remainder of this paper is structured as follows.
In Section 2, we present examples showing the necessity of
modeling library functions and how simple errors in mod-
els can yield inaccurate results from subsequent program
analyses. In Section 3, we present our approach in detail
and show how to construct the set of observables for a li-
brary function, along with its associated dependency graph.
Section 4 discusses how synopses can be used to increase
the precision of the subsequent analysis through the use of
function inlining. We then discuss how the concept of syn-
opses can be extended to software architectures, reducing
analysis time. Finally, we conclude with some thoughts
on future work in the area of automatic generation of syn-
opses.

2 Modeling Library Functions

Construction of models for library functions is essential for
an accurate analysis. For example, an engineer may wish to
use a call graph extractor to determine which functions in
the system are called and therefore “live” and which func-
tions are never called and therefore “dead”. Consider the
problem of extracting a call graph for the program given
in Figure 1. The functioncmp is not called directly from
anywhere in the given program text. However, it is called
indirectly by bsearch , a standard C library function. If
we ignore the call tobsearch or model it incorrectly,cmp
will be absent from the call graph, which may lead an en-
gineer to conclude that it is never called (i.e., “dead code”),
and therefore can be safely removed.

As another example, the engineer may need to know
how a proposed change will affect the rest of the system.
The engineer might use an analysis tool such as a program
slicing tool to compute the dependencies between modules.
At first glance, no dependency exists in Figure 2 between
functionf and the error module. However,atan2 will set
the value oferrno if both arguments are zero, thus creat-



int f ( int x, int y) {
/* do something with x and y */
return atan2 (x, y);

}

int main ( ) {
f ( );

if (errno)
/* call error module */

}

Figure 2. The call toatan2 may set the value oferrno ,
causing a dependency between functionf and the error
module.

ing a dependency. However, if we ignore the call toatan2
or model it incorrectly, the engineer might erroneously be-
lieve that a change to functionf (such as replacingatan2
with atan ) will have no effect on the error module.

As these examples have illustrated, failure to model a
library function, or modeling it incorrectly, can lead to an
inaccurate program analysis. As a result, the engineer using
an analysis tool may come to incorrect conclusions about
the program’s behavior. Such errors are likely to cause an
engineer not to use a program analysis tool at all, and in-
stead try to understand the program by analyzing its source
code by hand.

3 Constructing Synopses

Errors in modeling library functions are easily made if the
models are constructed by hand. In this section, we present
our approach to automatically constructing synopses from
existing code. Since a synopsis must be correct for any call
to the function, we first compute the set of objects that may
have an effect on the caller or that may have an effect on
the called function. The set of observable objects, or just
observables, is defined as follows:

• The formal parameters are the onlyIN observables:
changes made to a formal parameter are unseen by the
caller; however, a formal parameter does have an ef-
fect on the called function.

• The return value of the function is the onlyOUT ob-
servable: this value is undefined until specified by the
function and is returned by the function and therefore
has a visible effect.

• Pointer dereferences and global variables areIN-OUT

observables: the function may consume the values of
these observables and any changes to their values may
be seen by the caller.

• Nothing else is an observable: local variables and
compiler generated temporaries are private to the

char *strcpy ( char *s, char *t) {
char *p = s;

while (*t != ’\0’)
*p ++ = *t ++;

return s;
}

int strlen ( char *s) {
int n;

for (n = 0; *s != ’\0’; n ++)
s ++;

return n;
}

Figure 3. Example implementations of two common C
functions for manipulating strings.

function and therefore do not have an effect on the
caller nor do they provide any information to the
called function.

Figure 3 shows example implementations of two com-
mon C functions for manipulating strings. Using these
rules, the sets of observables are therefore:

strcpy strlen
IN : {s , t } IN : {s}

OUT : {s} OUT : {n}

IN-OUT : {
*
p ,

*
t } IN-OUT : {

*
s }

To construct a program synopsis, we must determine
how the observables relate to one another. Naively, we can
state that the set ofOUT and IN-OUT observables depends
upon the set ofIN and IN-OUT observables, as suggested
by [11]. However, such a dependence relation is too conser-
vative to be used in practice. For example, the return value
of strcpy depends only on the formals and not on the
other observables. To overcome such a limitation, we must
construct the dependency graph for the function. The de-
pendency graph explicitly shows the dependencies between
observables. Before the graph can be constructed, each
function is translated to a simpler form known as three-
address code [12], as shown in Figure 4. This form ex-
poses any subtle dependencies caused by the operators of
the language. Once the three-address code has been built,
the dependency graph is then constructed. An edge in the
dependency graph links each operand to those operands on
which it depends. The graph can be built during a single
pass over the three-address code.1

1The resulting graph isflow-insensitive. A more accurate analysis can
be obtained by building aflow-sensitivegraph, in which eachoccurrence
of an operand becomes a node. For simplicity, the flow-insensitive graph
is discussed in this paper.



strcpy: p := s
L1: t 0 := *t

if t 0 = 0 goto L 2

t := t + 1
*p := t 0

p := p + 1
goto L 1

L2: t 1 := s
return t 1

strlen: n := 0
L1: t 0 := *s

if t 0 = 0 goto L 2

s := s + 1
n := n + 1
goto L 1

L2: t 1 := n
return n

Figure 4. Three-address code for the functions in Figure 3.

The graphs for bothstrcpy andstrlen are shown
in Figure 5. A dependency graph can contain three different
types of edges:

• Data dependence edgeslink uses of objects to defini-
tions that consume their values.

• Control dependence edgeslink uses of objects to def-
initions that are conditionally executed based on their
values.

• Dereference edgeslink pointer variables to a derefer-
ence of the pointer.

Once the dependency graph for a function has been
constructed, the synopsis can be derived. To derive a syn-
opsis, we find a backward path from eachOUT or IN-OUT

observable toIN or IN-OUT observables. For example, the
return value ofstrcpy , t 1, has a path tos , and there-
fore the return value in the synopsis ofstrcpy is simply
s itself. The return value ofstrlen is more interesting.
The return valuet 1 depends upon*s through first a con-
trol dependency and then a data dependency. Therefore,
the return value in the synopsis ofstrlen is *s .

Continuing with theIN-OUT observables of function
strlen , we find that*s has no data dependencies, but
does have a dereference dependency withs . Following the
edges that lead tos , we are led back to*s itself. Since*s
is the onlyIN-OUT observable, the synopsis ofstrlen is
therefore complete, as shown in Figure 6. Continuing with
the IN-OUT observables of functionstrcpy , we find that
*t leads back to itself and that*p leads to*t . Therefore,
we can claim that*p depends upon*t . However, we need
to express this fact in terms of formal parameters and global
variables in order to construct a synopsis. The variablep
is a local variable. Following the dereference edge from
*p to p, we find thatp depends ons . Therefore, we can

t1 s

p *p t0

t*t

*s st0

t1 n

(a) (b)

Figure 5. Dependency graphs for (a)strcpy and (b)
strlen . Solid edges are data dependencies, dashed edges
are control dependencies, and dotted edges are dereference
dependencies. Loops are not shown for clarity.

express the body ofstrcpy as the fact that*s depends
upon*t , as shown in Figure 6.

In summary, to construct a synopsis for a library func-
tion we first translate the function into three-address code
to expose the dependencies. We then construct the depen-
dency graph from the three-address code and we compute
the set of observables. Finally, we find all paths in the graph
from OUT or IN-OUT observables toIN or IN-OUT observ-
ables. Each path becomes a statement in the synopsis, with
eachIN-OUT observable expressed in terms of global vari-
ables or formal parameters. The resulting synopsis has the
same effect on the caller as the original function.

4 Using Synopses in Practice

Synopses can be constructed automatically from existing
library implementations. Implementations of the standard
C library are available through [13] and asglibc , avail-
able via the Free Software Foundation. By constructing
synopses from such an implementation, a working model
of the standard C library is generated as source code such
as in Figure 6. This code can then be specified as another
source file to a program analysis tool such as a call graph
extractor or a program slicing tool. In practice, the use of
synopses over hand-generated models has two additional
benefits.

Improved precision: Most data-flow analyses used in
program understanding are interprocedural. An interproce-
dural analysis must descend into and analyze a called func-
tion in order to account for its effects. If the function is
called multiple times, the analysis may elect to either (1)
analyze the function once, reusing information from previ-
ous calls, or (2) analyze the function each time it is called.
The first approach iscontext-insensitivesince the calling
context is not taken into account, whereas the second ap-
proach iscontext-sensitive. Context-insensitive analyses
are, in general, more efficient, but suffer from poorer pre-
cision as compared to a context-sensitive approach. The
loss of precision occurs when data-flow information from
all callers is shared (i.e., incoming information is merged)



char *strcpy ( char *s, char *t) {
*s = *t;
return s;

}

int strlen ( char *s) {
return *s;

}

Figure 6. Synopses for the two functions in Figure 3.

in the called function. In contrast, context-sensitive analy-
ses are more precise, but are, in general, less efficient since
a function may be analyzed repeatedly. A context-sensitive
analysis can be viewed as expanding all function bodies in-
line, resulting in a possible exponential expansion in code
size.

However, since a program synopsis is much smaller
than the original function it summarizes, it can be expanded
inline without causing this rapid growth in code size. In our
approach, we wish to accommodate inline expansion in a
portable (i.e., tool-independent) manner in order to main-
tain the flexibility of using synopses. Fortunately, the C
programming language supports inline expansion of code
through the use of macros.2 Rather than generating a func-
tion body for a synopsis, a macro definition can be gener-
ated instead, as shown in Figure 7. The macro definitions
are placed in a header file (e.g.,<string.h> ) and a di-
rective to the preprocessor is used to instruct the analysis
tool to use the generated header file rather than the sys-
tem header file. By expressing the synopses as macros,
they will be expanded inline, thereby gaining one addi-
tional level of context-sensitivity for the subsequent pro-
gram analysis.

Improving efficiency: As software grows in size and
functionality, a software architecture [14] is typically em-
ployed to manage complexity. Layered architectures are
particularly common, with lower layers providing function-
ality to higher layers, which are at a greater level of abstrac-
tion. Program libraries are an example of layering. How-
ever, beyond system-provided libraries, many software sys-
tems devise and implement their own libraries. Although
these application-provided libraries are often specific to an
application or set of applications and are therefore not gen-
erally reusable, they help reduce the complexity of the sys-
tem. For example, many programs developed as part of the
GNU project make use of libraries that encapsulate and cir-
cumvent the idiosyncrasies of manyUNIX system calls and
library functions. Often, such libraries are quite old and

2In general, a macro may evaluate an argument more than once, which
could lead to incorrect code should the argument have side-effects. A
solution to this problem is to first assign the arguments to previously de-
clared global variables or to variables declared locally in an expression
block “({ ... }) ”, a language extension supported byGCC.

# define strcpy(s,t) (*(s) = *(t), (s))

# define strlen(s) (*(s))

Figure 7. The synopses of Figure 6 expressed as macros for
future inline expansion.

well-tested, existing in an organization for many years. As
such, they are generally not of particular interest to the soft-
ware engineer. For example, when searching for the source
of an error, an engineer is more likely to suspect code writ-
ten one month ago than code located in a library written two
years ago. Since the library code is not of interest, rather
than analyzing it in its entirely, the code can be replaced
with its synopses. By extending the notion of synopses to
software layers such as application-provided libraries and
modules, we can improve the efficiency of subsequent pro-
gram analysis since less code needs to be analyzed.

5 Conclusions and Future Work

Automated tools are necessary for helping software engi-
neers understand systems based on their source code. Since
these tools need to analyze a system in its entirety, they
must somehow account for the effects of calls to library
functions. A library synopsis is a concise description of the
effect a library function has on its caller and have several
advantages over hard-coding library models into an analy-
sis tool. Synopses are less likely to have errors compared
to hand-coded models since they can be automatically gen-
erated from an existing library implementation. Since syn-
opses are themselves pieces of source code, they are in-
stantly reusable across multiple tools. Furthermore, the use
of synopses can improve the subsequent program analysis
in two ways. First, additional precision can be obtained by
expressing synopses as macros to be expanded inline. The
inline expansion provides an additional level of context-
sensitivity without negatively impacting performance since
a synopsis is much smaller than its corresponding original
library function. Second, by creating synopses for entire
software layers, portions of the system that are uninterest-
ing to the tool user can be reduced in size, speeding subse-
quent analyses.

The techniques presented in this paper are automat-
able. Work is currently being done to produce a tool to au-
tomate the generation of synopses from existing code. The
resulting synopses will be compared with the actual library
models used by two existing program slicing tools [15, 16]
to verify their accuracy. The synopses will also be used in
experiments involving both points-to analysis [17] and pro-
gram slicing to determine the benefits of macro expansion
on precision. Finally, application-provided libraries such as
those used in theGNU project, will be synopsized to evalu-
ate the performance gain achieved by using synopses.
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