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ABSTRACT
In process programming, processes are modeled as pieces
of software, and a process programming language is used to
specify the process. Such a language resembles a conven-
tional programming language, providing constructs such as
iteration and selection. This approach allows models to be
simulated and enacted easily. However, it also suffers from
the same problems that plague traditional programming,
such as the question of whether the program itself is seman-
tically correct or contains errors. We present an automated
approach for detecting errors in such process models. Our
approach is based on static code analysis techniques. We
have developed a tool to analyze processes modeled using
PML and have subsequently successfully redesigned mod-
els using our tool.
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1 Introduction

1.1 Motivation

In 1987, Osterweil asserted that “software processes are
software too” [1], and thus could (and should) be devel-
oped, analyzed, and managed using the same software en-
gineering methods and techniques that are applied to soft-
ware. This idea implies there is a software process life-
cycle that resembles the software life-cycle, involving anal-
ysis, design, implementation, and maintenance of software
processes [2]. One of the outgrowths of this line of research
is the notion ofprocess programming: the specification of
process models using process programming languages that
resemble, and in some cases are derived from, conventional
programming languages [3].

One advantage of process programming is that a pro-
cess model can be coded and simulated or enacted easily.
An enactment engine can, for example, automatically no-
tify actors when they should begin execution of a particular
task. However, process programming is also subject to all
of the pitfalls of traditional programming and software en-
gineering. In particular, there is the possibility of errors in
the program and, more importantly, errors in the design and
in the capturing of the requirements.
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There is a large body of knowledge comprising tech-
niques for analyzing programs written in conventional pro-
gramming languages. These techniques enable program-
mers to assess the correctness of their programs, identify
potential faults, and, as in the case of optimizing compilers,
automatically redesign the implementation of a program to
improve execution performance. We would therefore like
to apply these techniques to the analysis of process pro-
grams in order to help the process engineer find errors be-
fore simulation or enactment of a model. Specifically, we
would like to use these techniques to validate the correct-
ness of process programs as models of real-world processes
and aid in process redesign.

1.2 Approach

In this paper we present a technique for analyzing the flow
of resourcesthrough a process, as specified by a process
program. This technique, derived from research into data-
flow analysis of conventional programming languages, en-
ables a process designer to answer important questions
about a process model, including:

• Does a process actually produce the product that it is
supposed to produce?

• Are intermediate products consumed by later steps in
a process actually produced by earlier steps?

• Does the flow of resources through a process match
the flow of control?

The answers to these questions can result from errors
in the specification, indicating a need for further capture
and modeling activities; or, they may highlight flaws in the
underlying process, indicating a potential for process im-
provement. To validate our hypotheses, we have developed
a tool to analyze specifications written in thePML process
programming language [4].

We have used our tool to analyze software process
models and present an in-depth analysis of the redesign of
one model, used by students for their senior projects. Our
tool detected 63 errors in the model, which consisted of
only 204 lines ofPML code. Through iterative use of the
tool, we were able to successfully redesign the model.

We begin with a brief overview ofPML, to provide a
context for discussing our technique. Then, we present our



analysis technique and discuss the implementation of our
tool. We discuss our results of applying the tool to actual
PML specifications. We conclude with our assessment of
the technique and potential directions for future work.

2 The PML Language

PML is a simple process programming language that is in-
tended to model organizational processes at varying levels
of detail [4]. PML was designed specifically for rapid, in-
cremental process capture, to support both process model-
ing and analysis, and process enactment [5]. UsingPML,
a process can be specified initially at a very high level that
contains only major process steps and control flow.

PML reflects the conceptual model of process enact-
ment developed by Mi and Scacchi [6]. This model views
a process as a situation in which agents use tools to perform
tasks that require and produceresources. PML models pro-
cesses as collections of actions that represent atomic pro-
cess tasks.PML specifies the order in which actions should
be performed using conventional programming language
control flow constructs such as sequencing, iteration, and
selection, as well as concurrent branching of process flows:

• Sequence—A series of tasks to be performed in order:

sequence {
action first {}
action second {}

}

• Iteration—A series of tasks to be performed repeat-
edly:

iteration {
action first {}
action second {}

}
action go_on {}

• Selection—A set of tasks from which the actor should
chooseoneto perform:

selection {
action choice_1 {}
action choice_2 {}

}

• Branch—A set of tasks that can be performed concur-
rently (all tasks in a branch must be performed before
the process can continue):

branch {
action path_1 {}
action path_2 {}

}

The providesand requiresfields of an action spec-
ify how resources are transformed as they flow through
a process. As such, they capture several important facts
about a process, namely what conditions must exist before
an action can begin, and what conditions will exist after

an action is completed. As a result, therequiresandpro-
videspredicates specify the purpose of an action, in terms
of how the action affects the products under development.
The simplest form of a resource predicate simply names the
resource:

provides { resourceName }

This predicate states that the output of an action is a
resource bound to the variableresourceName. Resource
specifications may also be predicates that constrain the
state of the resource:

requires { resourceName.attributeName op value }

Here, op is any relational operator. Predicates may
also be joined using conjunction and disjunction. In short,
resource predicates allow process designers to specify in
some detail how a product evolves as a process progresses,
as well as what resources are required to produce a product,
and the state those resources must have before the process
can proceed.

3 Analysis of Resource Flow

What can we learn from analysis of syntactically correct
process programs? Analysis helps in two phases of the pro-
cess life-cycle. First, by analyzing the flow of resources
through a process specification, we can identify situations
where provided and required resources do not match. This
information is useful for validating process specifications
against reality; such inconsistencies may indicate gaps in
process capture and understanding.

Second, resource analysis can also point out potential
areas of improvement in the process being modeled. Incon-
sistencies between provided and required resources signal
a potential for re-engineering to make the process more ef-
fective. For example, if a sequence of actions does not have
a resource flowing from one action to the next, it may be
possible to perform those actions concurrently.

In the following sections, we examine in detail the
kinds of inconsistencies that can exist in a specification and
their potential impact on a process. Then, we discuss the
design of a tool for detecting these inconsistencies inPML

specifications.

3.1 Categories of Resource Inconsistencies

Inconsistencies can be classified into several situations:

1. A resource is provided by an action that does not re-
quire any resources. This situation (termed a “mira-
cle”) could represent a modeling error where the mod-
eler failed to capture an action’s inputs; or, it could
represent a real situation where the actor generates
something like a document from (intangible) ideas:

action describe_problem {
/* requires inspiration */
provides { problem_description }

}



2. A resource is required by an action that does not pro-
vide any resources. This situation (termed a “black
hole”) could represent a legitimate activity, such as a
task that requires the actor to read certain documents
and develop an “understanding” of their contents; the
action produces no tangible results, but is worthwhile
nevertheless:

action understand_problem {
requires { problem_description }
/* Provides nothing tangible */

}

3. A resource is required, but a different resource is pro-
vided. Occasionally, this situation (termed a “trans-
formation”) represents a modeling error, but is more
often the desired result: an action consumes some re-
sources in the production of another. A simple exam-
ple happens when a document is assembled from dif-
ferent sections: the action requires each section, and
provides the completed document:

action submit_design_report {
requires { use_cases && architecture }
provides { design_report }

}

4. Required resource not provided. In this situation, an
action requires a resource that is not provided by any
preceding action:

action a { provides { r } }
action b { requires { s } }

5. A provided resource is never used. An action might
provide a resource that is never required by a subse-
quent action:

action a { provides { r && s } }
action b { requires { r } }

Inconsistencies due to unprovided or unrequired re-
sources are not necessarily errors: an unrequired re-
source could indicate an action that represents an out-
put of a process; an unprovided resource could indi-
cate a point where the process receives input from an-
other process.

6. A provided resource does not match a subsequent re-
source requirement. Here, the resource is not missing,
but rather in the wrong state:

action a { provides { r.status == 1 } }
action b { requires { r.status == 2 } }

3.2 Analysis Tool Design

Our analysis tool, calledpmlcheck, is designed to com-
plement thePML compiler. The compiler generates exe-
cutable models, useful for simulation and enactment, and
pmlcheck can tell the process engineer interesting things
about these models.

function check-if-provided(node,resource,start)
visited[node] := true
status[node] := unknown

if node6= start and resource∈ provided[node] then
status[node] := true
necessary[node] [ resource] := true

else
for pred in predecessors[node] do

if visited[node] = false then
check-if-provided(pred,resource,start)

end if
status[node] := φnode (status[node], status[pred])

end for
end if

end function

Figure 1. Basic algorithm used bypmlcheck.

To compute the flow of resources though aPML pro-
gram, pmlcheck constructs aprocess graphsimilar to a
control-flow graph in conventional languages. Each atomic
action becomes a graph node. The graphs for other con-
structs are easily constructed in a syntax-directed manner:

sequence {
A { }
B { }

}

A

B

iteration {
A { }

}
A

selection {
A { }
B { }

}

A B

branch {
A { }
B { }

}

A B

The colored nodes in thebranchgraph distinguish it
from theselectiongraph, since in the former all paths are
always executed and in the latter only one path is executed.

The first three inconsistencies described in the Sec-
tion 3.1 arelocal to an action node and are easily checked
without traversal of the graph. However, the latter three
inconsistencies requireglobal knowledge of resources and
therefore require a graph traversal.

The basic algorithm used to check if a required re-
source is provided is given in Figure 1. The algorithm per-
forms a depth-first search of the process graph looking for
a node that provides the required resource. The function
φnodeis a decision function that updates the status of a node
given its current status and the status of a predecessor. Ef-
fectively,φnodeperforms a booleanand for aselectionsince
a resource must be provided on all paths to be definitely
provided, and performs a booleanor for a branchsince it
is enough that the resource be provided on any path since
all paths are guaranteed to be executed. The algorithm also
records those provided resources that were found during
the search. This information is used to determine which
resources are provided, but never required.

3.3 Further Design Considerations

Rather than using a separate analyzer, we could require that
global consistency be enforced at compile time, as many



modern programming languages do. However, such a pol-
icy is generally not desirable. First, it is not necessary:
useful process analysis and enactment are possible with-
out global consistency. Second, it is not always possible.
Process capture is an iterative process that uncovers hid-
den activities over time, as process understanding emerges.
Thus it is desirable to allow specifications that are incom-
plete or inconsistent. Finally, valid models can be incon-
sistent, because the underlying process being modeled is
inconsistent. An organization’s processes may contain use-
less steps, missing steps, or sequences of activities that do
not produce desired results. Nevertheless, it is important to
document these processes accurately, to establish a baseline
for process redesign. Therefore, the process engineering
environment must be tolerant of inconsistencies that exist
in the real world.

4 Examples and Results

To assess the effectiveness ofpmlcheck, we analyzed two
software development processes: the development pro-
cess used to conduct Computer Engineering Senior Design
projects at Santa Clara University, and a graduate Software
Engineering course software development process.

4.1 SCU Senior Design Process

Our first experiment employedpmlcheck to aid in the cre-
ation of a model of the Santa Clara University Computer
Engineering department’s senior design project process.
The process spells out a set of milestones and deliverables
roughly based on Boehm’s Anchoring Milestones [7].

We first did an initial capturing of the process in
which we simply translated the narrative specification into
PML. Then, we used the analysis provided bypmlcheck to
improve the accuracy of the model by correcting specifica-
tion errors and elaborating resource specifications.

The first version of the model was a simple transla-
tion of the narrative specification into aPML specification.
We modeled each milestone as a sequence of actions, each
action producing a single deliverable.

The tool reported 63 potential inconsistencies in this
initial model (see Table 1). How many of these were actual
errors? To determine the answer, we analyzed the reported
inconsistencies in detail, categorizing them as follows:

• Specification error—The modeler made a mistake in
the program specification such as misspelling a re-
source name.

• Modeling error—The model did not match the under-
lying process. For example, an action was out of order
or was missing.

• Process error—The model was correct, but the under-
lying process contained an inconsistency.

• Spurious error—The tool correctly identified an error,
but the error was triggered by a previous error.

• No error—The tool incorrectly reported an inconsis-
tency.

Of the 63 reported inconsistencies, three were speci-
fication errors where a resource name was misspelled, and
two were spurious errors, caused by the specification er-
rors. An additional two were not errors as they represented
process output.

The remaining 56 errors were the result of incorrectly
modeling some aspect of the process, such as omitting a
required or provided resource from an action (42 inconsis-
tencies). These conclusions are summarized in Table 2.

Perhaps most interesting from a process engineering
viewpoint, 13 errors were the result of omitting actions to
capture and deliver document components as a single doc-
ument; for example, one sequence was missing a “submit
design report” action to assemble the document parts and
deliver them as a completed “design report” resource. We
used our analysis of the initial version of the model to cor-
rect the errors uncovered bypmlcheck. In the new model,
12 inconsistencies were reported, none of which were er-
rors, as they represented process input or output.

4.2 Graduate Software Processes

We also used topmlcheck to analyze twenty-four process
models developed by graduate software engineering stu-
dents to describe the class project development process.
The intent was to develop formal models of the processes
specified by the instructor as narrative text in assignments
and lectures, augmented by the students’ personal experi-
ence. The analysis results are shown in Table 1.

4.3 Discussion

It appears from these experiments that the majority of in-
consistencies reported bypmlcheck are unprovided or un-
required resources. This is its chief limitation: sincePML

does not distinguish between provided and required re-
sources and process inputs and outputs,pmlcheck takes a
conservative approach and reports process inputs as unpro-
vided resources, and outputs as unrequired resources.

Curiously, the Graduate Software Development pro-
cesses contained only two miracles and no black holes
among 95 actions; in contrast, the initial Senior Design
model had 28 miracles and 15 black holes. This ap-
pears to be the due to careful attention to detail on the
part of the three modelers who wrote these specifications.
Also, pmlcheck reported 67 transformations in the Gradu-
ate Software Development processes; 31 of these proved to
be specification errors that caused the provided resource to
appear to be a new resource rather than a modification of
the required resource. This was a surprise: we had antici-
pated that most actions identified as transformations would



Model Lines Actions Resources Empty Unprovided Unrequired Miracles Black Holes Trans.

Senior Design
seniordesign.pml 204 35 69 1 3 16 28 15 36
seniordesign2.pml 290 37 122 0 6 6 0 0 42

Graduate S/W Development
Architecture.pml 130 16 26 3 5 5 0 0 13
Checkout.pml 11 1 2 0 1 1 0 0 1
Commit.pml 12 1 2 0 1 1 0 0 1
Edit.pml 27 3 6 0 2 2 0 0 3
PostMortem.pml 44 7 4 4 0 2 2 0 3
Update.pml 18 2 4 0 2 2 0 0 2
checkin.pml 13 1 2 0 1 1 0 0 1
checkout.pml 16 1 2 0 1 1 0 0 1
make.pml 13 1 2 0 1 1 0 0 1
milestone1.pml 172 18 36 0 13 13 0 0 8
milestone5.pml 141 15 30 0 10 10 0 0 6
updateANDresolve.pml 22 2 4 0 2 2 0 0 1
Analysis.pml 10 1 3 0 2 1 0 0 1
FunctionalRequirements.pml 10 1 3 0 2 1 0 0 1
Milestone2.pml 59 7 21 0 7 7 0 0 7
Milestone3.pml 45 5 15 0 5 5 0 0 5
NonFunctionalRequirements.pml 10 1 3 0 2 1 0 0 1
OperationalConcept.pml 10 1 3 0 2 1 0 0 1
ProjectLog.pml 10 1 3 0 2 1 0 0 1
RepositoryCheckIn.pml 10 1 3 0 2 1 0 0 1
RepositoryCheckOut.pml 20 2 5 0 3 2 0 0 2
RepositorySynchronize.pml 20 2 5 0 3 2 0 0 2
RiskIdentification.pml 10 1 3 0 2 1 0 0 1
SourceCodeEdit.pml 33 4 6 1 3 3 0 0 3
TOTAL 866 95 193 8 74 67 2 0 67

Table 1. Detailed analysis of the errors reported for all models.

Model Total Spec. Model. Proc. Spurious No Error
original 63 3 56 0 2 2
revised 12 0 0 0 0 12

Table 2. Classification of analysis results for the original
and the revised senior design models.

actually transform resources into new resources. Thus, it
appears to be useful to optionally flag actions that trans-
form resources for closer examination.

5 Related Work

5.1 Program Analysis

Many of the checks performed by our tool are analogous
to those checks performed by optimizing compilers such as
gcc and static checkers such aslint. Optimizing compil-
ers typically warn the user regarding possibly uninitialized
variables. Our analysis tool informs the user regarding re-
sources that are required without possibly being provided.
As another example, register allocation [8], the process of
effectively assigning registers to variables to increase exe-
cution speed, requires knowledge of the lifetimes of vari-
ables in a program. Such knowledge is obtained by com-
puting when a variable is first and last possibly referenced,
which is analogous to determining when a resource is first
provided and last required.

Algorithms for analyzing programs described as
graphs are well-known [9, 10] as are algorithms for com-
puting properties of the graphs [11]. Finally, other tools to
aid the programmer in finding errors in programs include
assertion checkers [12] and program slicing tools [13, 14].

5.2 Process Validation

Cook and Wolf [15] discuss a method for validating soft-
ware process models by comparing specifications to actual
enactment histories. This technique is applicable to down-
stream phases of the software life-cycle, as it depends on
the capture of actual enactment traces for validation. As
such, it complements our technique, which is an upstream
approach.

Similarly, Johnson and Brockman [16] use execution
histories to validate models for predicting process cycle
times. The focus of their work is on estimation rather than
validation, and is thus concerned with control flow rather
than resource flow.

Scacchi’s research employs a knowledge-based ap-
proach to analyzing process models. Starting with a set
of rules that describe a process setting and models, pro-
cesses are diagnosed for problems related to consistency,
completeness, and traceability [2]. Conceptually, this work
is most closely related to ours; many of the inconsisten-
cies uncovered bypmlcheck are also revealed by Scacchi
and Mi’s Articulator [17]. Although PML and theArticu-



lator share the same conceptual model of process activity,
there are important differences. Their approach is based on
knowledge-based techniques, with rule-based process rep-
resentations and strong use of heuristics. This is a differ-
ent approach thanPML’s, which closely resembles conven-
tional programming. Thus, our analysis technique is de-
rived from programming language research.

6 Conclusion

What can we conclude about data-flow analysis of pro-
cess programs? Data-flow analysis can uncover specifica-
tion errors, such as misspelled resource names, that can ex-
ist in otherwise syntactically correct process specifications.
Without analysis, these errors would not be detectable un-
til the process is executed. Also, resource flow analysis
can identify inconsistencies between a specification and the
process it models. This was shown in Section 4, where our
initial Senior Design process model was missing several
resource dependencies that were important to the process.
Further, data-flow analysis can validate that a process pro-
duces the products it was intended to produce. By verify-
ing that the resource flow specified by the process program
proceeds correctly from beginning to end, the process de-
signer can validate that the process does in fact transform
its inputs into the desired outputs. Finally, in addition to
identifying potential errors in a process specification, re-
source flow analysis can suggest opportunities for redesign
of a valid process.

For example, our revised Senior Design model con-
tains six actions that require the “problem statement” re-
source. Where does this resource come from? At present,
the process assumes that the problem statement exists prior
to the beginning of the process. But the intent of the process
is for professors to provide problems for student teams to
solve; so the process should include a phase where students
and professors negotiate the problem statement, which then
serves as the input to the Conception phase.

6.1 Future Work

A sequence specifies a temporal dependency between ac-
tions: a predecessor must be completed before the succes-
sor can begin. This implies that the predecessor does some-
thing that the successor needs; in other words, the predeces-
sor provides something that the successor requires. If the
resources analysis shows that no resource flows between
sequential actions, however, it may indicate an opportunity
for concurrency. In this case, the process specification in-
dicates a dependency among actions that does not exist.

The opposite situation occurs when the control-flow
specification indicates that actions can be performed con-
currently, but the resource flow among them requires that
they performed in a certain order. This situation may indi-
cate either an error in process capture, or a problem with
the process itself.

This suggests a tool for automatically transforming a
specification into an equivalent specification based on the
resource flow graph. Such a tool would analyze the re-
source dependencies among actions, then re-arrange their
ordering so that the control flow matches the resource flow.

Finally, the analysis of actualPML programs dis-
cussed in Section 4 revealed certain deficiencies inPML.
Specifically, sincePML makes no distinction between re-
sources provided by or required from actions within the
process and resources provided by or to the external envi-
ronment,pmlcheck cannot distinguish between an unpro-
vided resource and a process input, and likewise between
an unrequired resource and a process output. This suggests
the need for an enhancement toPML to allow the process
modeler to specify the process inputs and outputs.
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