
Call Graph Extraction in the Presence of Function Pointers

Darren C. Atkinson
Department of Computer Engineering

Santa Clara University
500 El Camino Real

Santa Clara, CA 95053-0566

Abstract Software engineers need to understand pro-
grams in order to effectively maintain them. The call
graph, which presents the calling relationships between
functions, is a useful representation of a program that
can aid understanding. For programs without the use
of function pointers, the call graph can be extracted by
parsing the program. However, for programs with func-
tion pointers, call graph extraction is nontrivial. Many
commonly used C programs utilize function pointers for
efficiency and ease of implementation. We present dif-
ferent techniques for extracting the call graph in the
presence of function pointers and demonstrate our tech-
niques on several commonly available programs. Our
results show that unless function pointers are taken into
account, the call graphs of these programs are erro-
neously small. We also show that performing a simple,
conservative pointer analysis yields graphs that are too
large to be useful. However, both filtering of the points-
to sets and the use of run-time pointer data can be used
to obtain a closer approximation to the true graph.

Keywords: Program Analysis, Pointer Analysis,
Software Maintenance

1 Introduction

Software engineering is the complex task of speci-
fying, designing, implementing, testing, and main-
taining programs and their associated documenta-
tion. However, the majority of time and effort is
spent on program maintenance [1]. Therefore, to
significantly reduce the cost of software, we need
to reduce the cost of maintenance.

Software maintenance can have a variety of
forms. A programmer may need to incorporate an
Copyright 2002 CSREA Press. Published in the Proceedings of the 2002 International
Conference on Software Engineering Research and Practice (SERP’02), June, 2002, Las
Vegas, Nevada. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from CSREA Press.

enhancement requested by the customer. The soft-
ware may need to be adapted for a new architecture
or platform. Defects in the design or implemen-
tation (i.e., bugs) may need to be corrected. Fi-
nally, the engineer may simply wish to restructure
the system, improving its design and organization,
to ease incorporation of future changes.

For all of these applications, the engineer needs
to thoroughlyunderstandthe system in order to
correctly maintain it. A lack of understanding
could lead to additional defects being introduced.
Ideally, requirements, specifications, and design
documentation would be available for the engineer
to use. Unfortunately, these documents often do
not exist or are out of date. Consequently, the en-
gineer is left with the tedious and error-prone task
of examining the source code by hand in order to
understand the system.

To assist the software engineer in understanding
a system, automated tools such as program slic-
ing tools and invariant checkers have been pro-
posed as a solution. For example, a backward
program slicer [2] computes the set of statements
that may have affected the value of a given vari-
able, which may aid programmers during debug-
ging. As another example, an invariant checker
infers facts about the state of the program and
checks those facts against assertions provided by
the programmer [3]. Such tools analyze the pro-
gram source, computing information about the pro-
gram, and present that information in a way that is
most useful to the tool user.

An extremely useful analysis is the extraction of
thecall graphof a program. The call graph illus-
trates the relationship between calling functions or
procedures and the function or procedures that they

call. Not only is the call graph useful alone, but
the proper determination of calling relationships is
a prerequisite for other analyses as well. For ex-
ample, determining how a proposed change to one
module of the system will affect the rest of the sys-
tem requires the knowledge of which functions call
which other functions. Accurate call graph extrac-
tion is also useful in software testing, since one
common goal of testing is to ensure that each func-
tion is executed on at least one test run [4].

Unfortunately, the problem of call graph extrac-
tion is nontrivial. Modern programming languages
allow functions to be used in ways other than just
in traditional call expressions. For example, most
languages allow functions to be passed as param-
eters to other functions. Languages such as C
and C++ allow the addresses of functions to be
taken and used as pointers. Many significant, large
scale programs rely heavily on function pointers
to implement dispatch tables (tables in which the
key is an integer value designating an operation
and the corresponding value is the address of a
function that performs that operation) or object-
oriented dispatch. In effect, functions and proce-
dures are used more as “first-class” objects such
as integers or pointers than solely through simple
function and procedure calls. These uses are nec-
essary for efficiency and often greatly simplify de-
sign. However, they complicate the construction
of the program’s call graph since the calling rela-
tionships are not apparent simply by examining the
lexical and syntactic structure of the program.

Most static (i.e., compile-time) program anal-
yses account for these problems by first comput-
ing the sets of pointer values (points-to sets) for
functions, and then using the pointer values to con-
struct an accurate call graph. Although precise al-
gorithms exist for determining points-to sets, they
typically have running times that are not accept-
able for use on larger programs (e.g., programs
with at least 50,000 lines of code). For exam-
ple, many algorithms haveO(n2) or O(n3) running
times, wheren is the number of lines of code [5].
Therefore, less expensive and less precise analy-
ses are often used that trade precision for perfor-
mance. These analyses are typically not fully flow-
sensitive or context-sensitive [6, 7]. For example,
efficient, near-linear time points-to algorithms are

well known [8, 9] and are often used in practice.
Unfortunately, the results of these analyses are of-
ten less than desirable. For example, the resulting
data may indicate that a call made through a func-
tion pointer could possibly call any function in the
system whose address is taken. This leads to many
“false” edges in the call graph, hindering program
understanding.

Previous work has focused on filtering the
points-to sets for function pointers in an attempt to
recover the true pointer relationships [10]. Such an
approach may be done automatically by the soft-
ware tool using heuristics or may be done by hand
by the tool user. For example, one heuristic ap-
proach is to use the function prototypes (signa-
tures) to infer the set of legal call targets from the
set of conservatively computed targets. A moread
hocapproach is for the targets of function pointers
to be specified explicitly using a compact, flexible
notation such as regular expressions.

More recent work has focused on using dy-
namic (run-time) information as a replacement for
static (compile-time) information in program anal-
yses [11]. Dynamic data has the advantage that it
captures the true calling relationships, rather than
some approximation of the relationships. The prin-
cipal disadvantage of using dynamic data is that it
may be optimistic, since it may not capture every
possible calling sequence. That is, the dynamic
data will always be a subset of the true set, and
may therefore fail to indicate that a relationship ex-
ists when it in fact does. However, given a large
number of test runs, the dynamic data can be made
close to optimal. Furthermore, since dynamic data
is a subset of the true set, it can be used to establish
a lower bound on the size of the call graph.

In this paper, we perform an empirical evalua-
tion of the effectiveness of several techniques for
constructing the call graphs of C programs with
function pointers. Our results show that if func-
tion pointers are ignored, the call graph is often er-
roneously too small. However, if only a simple,
although efficient, flow-insensitive and context-
insensitive pointer analysis is performed to com-
pute the points-to sets for functions, then the re-
sulting graph is too large to be generally useful.
Through the use of heuristics and dynamic data, a
more faithful approximation of the true call graph

can be obtained without placing an inordinate bur-
den on the tool user.

2 Extraction Techniques

Edges in the extracted call graph may be classi-
fied as either direct edges or pointer edges. The
direct edges can be computed using a simple syn-
tactic analysis of the program text. The com-
pute the direct edges, we used thecgraph utility
(based on the standardUNIX cflow utility), avail-
able as part of theICARIA tool set. To compute the
pointer edges, we modified thesprite program
slicing tool [10, 11, 12] to display the call graph
without performing a program slice.Sprite uses
Steensgaard’s flow-insensitive, context-insensitive
points-to analysis, which models storage as equiv-
alence classes of locations [9]. We modified this
standard points-to analysis in several ways.

Function prototype filtering: In this modifica-
tion, we use type information to reduce the sizes
of the points-to sets. In particular, the user may
specify whether the program uses weakly (old-
style “K&R” C) or strongly ANSI-compliant func-
tion prototypes. The filtering rules for both levels
of checking are shown in Figure 1. Function pro-
totypes provide additional typing information for
static semantic checking by ensuring that the types
and number of formal and actual arguments agree.
After retrieving the points-to set for a function
pointer reference, the prototypes of the resultant
set of function definitions are compared against the
prototype implied by the function call. The proto-
types are computed from the actual function defini-
tion and the function call since the program may be
ANSI-compliant, but not be written using explicit
ANSI-style prototypes. Enabling this option does
not affect the construction of the points-to classes,
but rather filters the classes based on the calling
statement, reducing the number of functions that
may be called for a given function call expression.
This option is unsafe if the program does not use
function pointers in anANSI-compliant manner.

Lexical specification of call patterns: In this
modification, we specify a lexical pattern (i.e.,

regular expression) for filtering the static points-
to data. Both the function call expression
and the set of called functions can be speci-
fied as regular expressions. For example, for
the find application, we specified a pattern in-
dicating that any call through a function pointer
named “parse_function” resolved to any func-
tion whose name began with “parse_”. For some
programs such asfind, lexical specification of
call patterns is simple due to naming conventions.
However, for some programs, this type of specifi-
cation is not practical without a deep understand-
ing of the program’s behavior. Use of this option
is, in the general case, unsafe, and requires more
knowledge of the code than simple prototype fil-
tering.

Use of dynamic data: In this case, we instru-
mented the programs in our test suite, insert-
ing code that captures the run-time addresses of
pointer targets. The instrumented application is
compiled and then executed on some representa-
tive inputs. Upon termination, the instrumentation
code will save the set of locations that were ref-
erenced at each call site, thereby producing a dy-
namic points-to set for each function pointer use.
This data can then be used as a replacement for the
static points-to data computed by Steensgaard’s al-
gorithm. As previously mentioned, the dynamic
function pointer data may be optimistic, in that it
may be a subset of the true data, and may therefore
fail to indicate a calling relationship where one in
fact does exist.

3 Results

Table 1 lists the programs we used in our exper-
iments. We used programs from the SPEC 2000
benchmark suite along with programs used by
other researchers in call graph extraction and pro-
gram slicing experiments [12, 13], many of which
are commonly usedUNIX utilities. Table 1 also
shows the number of edges in the call graphs ex-
tracted using the various techniques. An empty en-
try indicates either that the dynamic data was un-
available due to the program’s size or that specifi-
cation of the lexical patterns was impractical.

Strong checking Weak checking
arguments number of actuals must number of actuals must be

match number of formals at least number of formals
specifiers one is assignable to other, one is assignable to other,

structure tags must match structure tags need not match
declarators must match exactly, unlessmatch at outermost level only,

one is pointer to void and unless one is pointer and
other is pointer other is integer

qualifiers ignored ignored

int f (int x, int y) {
 ...
 g (x, y + 1.5);
 ...
}

specifiers

const int *x, y, z ();

formals

actuals

qualifiers declarators

Figure 1: Prototype filtering rules for both strong and weak prototype filtering.

For all applications, we do not know the size of
the true call graph. Rather, we are using the exper-
imental data to try to obtain an estimate of the true
size. However, we do know that (1) the call graph
extracted using dynamic pointer data is a subset of
the true call graph, and (2) the programs in our test
suite are mostlyANSI-compliant, at least with re-
spect to function calls. Therefore, the number of
edges in the true call graph most likely lies some-
where between the numbers presented in the “dy-
namic data” and “strong prototypes” columns.

We see forgap andmesa that if we ignore func-
tion pointers entirely, then the call graph extracted
is too small by several orders of magnitude. On the
other hand, we see that the call graph extracted us-
ing Steensgaard’s pointer analysis without any fil-
tering performed on the points-to sets is almost cer-
tainly overly conservative and in many cases is too
large to be generally useful.

For most programs, it was too difficult to spec-
ify lexical patterns for the function calls, given the
complexity of the programs and our unfamiliarity
with them. Furthermore, our attempt to specify the
call patterns formesa generated unsound informa-
tion since the resulting call graph has fewer edges
than the call graph extracted using dynamic func-
tion pointer data. However, forfind andburlap,
we were able to specify patterns that yielded good
results. Forfind, the number of edges is equal as
the number of edges obtained using strong proto-
type filtering. Forburlap, the results are slightly
better than those obtained with prototype filter-
ing and were verified by hand to be fully precise.

Therefore, for certain applications, lexical specifi-
cation of the function calls is possible and yields
better results than what could be otherwise ob-
tained.

4 Conclusion

The call graph is a useful representation of a pro-
gram that can greatly aid understanding. In this pa-
per, we presented different techniques for perform-
ing call graph extraction in the presence of function
pointers. We showed that simply ignoring calls
through function pointers can result in a call graph
that is erroneously too small. We also showed that
using a conservative but efficient static points-to
analysis can result in a call graph containing many
“false” edges and is too large to be generally use-
ful. To overcome these problems, we used a vari-
ety of techniques such as filtering of the points-to
sets and the incorporation of dynamic data. Using
these techniques a more accurate call graph can be
constructed. Future work is required to determine
how the accuracy of the call graph affects various
program analyses.

References

[1] M. Hanna. Maintenance burden begging for
a remedy. Datamation, pages 53–63, April
1993.

Table 1: Number of edges in the call graphs extracted using various techniques.

Lines
of code

Syntax
analysis

Dynamic
pointer data

Lexically
filtered

Strong
prototypes

Weak
prototypes

Unmodified
ptr. analysis

diff 11,755 348 350 — 360 360 360
grep 13,084 371 377 — 393 440 488
find 13,122 388 424 710 710 1,010 1,059
ammp 13,263 590 606 — 891 891 891
less 18,305 1,131 1,132 — 1,157 1,157 1,157
gap 49,482 1,956 17,336 — 97,216 152,597 237,499
mesa 49,701 1,919 11,670 7,832 22,976 120,309 245,574
burlap 49,845 2,441 2,500 2,759 2,878 4,416 5,785
vortex 52,633 4,654 4,695 — 4,660 4,746 4,886
gcc 205,743 10,189 — — 11,521 15,365 17,658

[2] M. Weiser. Program slicing. IEEE
Transactions on Software Engineering, SE-
10(4):352–357, July 1984.

[3] G. N. Naumovich, L. A. Clarke, and L. J. Os-
terweil. Verification of communication proto-
cols using data flow analysis. InProceedings
of the 4th ACM Symposium on the Founda-
tions of Software Engineering, pages 93–105,
San Francisco, CA, November 1996.

[4] G. J. Myers.The Art of Software Testing. Wi-
ley, New York, NY, 1979.

[5] L. O. Andersen. Program Analysis and
Specialization for the C Programming Lan-
guage. Ph.D. dissertation, University of
Copenhagen, DIKU, May 1994.

[6] M. Shapiro and S. Horwitz. Fast and accu-
rate flow-insensitive points-to analysis. In
Proceedings of the 24th ACM Symposium
on Principles of Programming Languages,
pages 1–14, Paris, France, January 1997.

[7] R. P. Wilson and M. S. Lam. Efficient
context-sensitive pointer analysis for C pro-
grams. InProceedings of the ACM SIGPLAN
’95 Conference on Programming Language
Design and Implementation, pages 1–12, La
Jolla, CA, June 1995.

[8] M. Das. Unification-based pointer analysis
with directional assignments. InProceed-
ings of the 2000 ACM SIGPLAN Conference
on Programming Language Design and Im-
plementation, pages 35–46, Vancouver, BC,
June 2000.

[9] B. Steensgaard. Points-to analysis in al-
most linear time. InProceedings of the 23rd
ACM Symposium on Principles of Program-
ming Languages, pages 32–41, St. Petersburg
Beach, FL, January 1996.

[10] D. C. Atkinson and W. G. Griswold. Effec-
tive whole-program analysis in the presence
of pointers. InProceedings of the 6th ACM
International Symposium on the Foundations
of Software Engineering, pages 46–55, Lake
Buena Vista, FL, November 1998.

[11] M. Mock, D. C. Atkinson, C. Chambers,
and S. J. Eggers. Improving program slic-
ing with dynamic points-to data. School of
Engineering Technical Report COEN-2002-
03-15, Santa Clara University, Department of
Computer Engineering, March 2002.

[12] D. C. Atkinson and W. G. Griswold. Imple-
mentation techniques for efficient data-flow
analysis of large programs. InProceedings
of the 2001 International Conference on Soft-
ware Maintenance, pages 52–61, Florence,
Italy, November 2001.

[13] G. C. Murphy, D. Notkin, and E. S.-C. Lan.
An empirical study of static call graph extrac-
tors. InProceedings of the 18th International
Conference on Software Engineering, pages
90–99, Berlin, Germany, March 1996.

