
A Qualitative Study of Two Whole-Program Slicers for C

Leeann Bent Darren C. Atkinson William G. Griswold
Dept. of Computer Science & Engineering
University of California San Diego, 0114

La Jolla, CA 92093-0114 USA
lbent,wgg @cs.ucsd.edu

Department of Computer Engineering
Santa Clara University
500 El Camino Real

Santa Clara, CA 95053-0566, USA
datkinson@clarku.edu

ABSTRACT
Recently, a few whole-program static slicers for the C pro-
gramming language have been developed, permitting a vari-
ety of hypotheses about time–precision tradeoffs in program
analysis for software engineering to be tested. This paper re-
ports an initial investigation into these claims throughGram-
maTech’s CodeSurfer and UCSD’s Sprite research proto-
type, which represent two very different approaches in the
program analysis tool design space.

First, it was found that algorithmic superiority tended to pro-
vide large improvements in relative precision in select cases.
Second, a number of non-algorithmic design choices had a
substantial and sometimes unintuitive influence on slice re-
sults. Third, considerable expertise and time was required to
discern the reasons why a particular statement appeared in
a slice, diminishing the slice’s probable usefulness. These
results provide recommendations for future tool design.

1. INTRODUCTION
Program slicing and the techniques that support it have been
under investigation for nearly two decades. A few whole-
program static slicers for the C programming language have
been developed recently, permitting a variety of long-held
hypotheses abouting slicing (and program analysis for soft-
ware engineering in general) to be tested. Among these are
claims about time–precision tradeoffs and the importance of
using precise algorithms to achieve the best results.

This paper reports our initial investigations into these claims
through the use of two whole-program slicers, GrammaT-
ech’s CodeSurfer and our Sprite research prototype. These
slicers represent two very different approaches in the de-
sign space of program analysis tools. CodeSurfer uses al-

This research supported in part by NSF grant CCR-9970985

UCSD Technical Report CS2000-0643, May 2000 (revised). An earlier
version of this report was submitted to SIGSOFT FSE 2000.

gorithms of high precision, using tunability and precompu-
tation to control and amortize their cost. Sprite favors less
precise (and more efficient) demand-driven algorithms com-
plemented by tunability features that reduce or compensate
for losses of precision.

We first gleaned a comprehensive set of “microbenchmarks”,
or feature benchmarks, from the research literature to help
expose hidden contributors to slicing results. Second, we
ran a smaller number of production-quality “macrobench-
marks”, or performance benchmarks, to investigate the con-
sequences of each slicer’s design decisions and uncover fur-
ther issues. A number of quantitative and qualitative insights
arose from our investigations:

Algorithmic precision, coming at reasonable cost and
possible loss of scalability, had an unpredictable effect
on slice results. In one case, context-sensitive data-
dependencies created a 570% difference in slice size.
In other cases, context-sensitive data-dependencies had
no effect. Distinguishing fields in the pointer analysis,
on the other hand, had very little effect. This is possi-
bly due to the low quality of the points-to information
computed by both tools.

Several non-algorithmic design choices had a large and
sometimes unintuitive influence on the slice results.
The choice of what to highlight, what constitutes a
dependence, implementation decisions, library mod-
elling, and the handling of incomplete programs are
examples. Such choices have a small performance im-
pact, but may overwhelm a user with apparent depen-
dences or fail to lead her to points of interest in the
code.

Although both tools possess considerable programma-
bility, they lacked adequate control over what portions
of the program were sliced or highlighted. This lack
made it difficult for us to divine why a particular state-
ment is in a slice. This is problematic, given that a
purpose of slicing is to deduce the possible causes of a
variable having a particular behavior.

These insights both suggest a number of directions for future

1



investigation and provide lessons for tool designers.

The following sections first provide some background on
slicing, describe our experimental setup, and describe the
slicers. We then report the results of our microbenchmarks
and macrobenchmarks, provide some design recommenda-
tions for future slicing efforts, and conclude.

2. PROGRAM SLICING
A static program slice or backwards program slice of a vari-
able reference is the set of expressions and statements in a
program that may affect the value of that reference [15]. A
forward slice of a variable reference is the set of expressions
and statements that may be affected by that variable’s value.

Program slicing has a number of potential applications. In
the past, most of these have been unrealized (in part) because
of the lack of mature tools. Backwards slicing was originally
proposed as an aid to debugging, helping to answer the ques-
tion “How did this variable get the wrong value?” Forward
slicing might be applied to program change tasks, helping
to answer a question such as “How will my change affect
downstream code?” However, either might be used for pro-
gram understanding, code certification and inspection (i.e.,
in security applications), program restructuring, testing (to
ensure coverage), program differencing and specialization,
and optimization citeCsurfWhitePaper.

Program slicing is an attractive basis for a comparative as-
sessment of claims about performance and precision, be-
cause it has become an archetype of program analysis for
software engineering. Moreover, it places severe demands
on a program analysis infrastructure and the computer sys-
tem on which it runs because it computes a transitive closure
over the predecessor semantic dependence relation until a
fixed point is reached. This experiment focuses on back-
wards slicing, in deference to its historic roots.

3. RESEARCH QUESTION & DESIGN
Recent work on the effect of more precise algorithms sug-
gests that the benefits realized on small examples are not
realized on larger systems [4, 13]. This study goes a step
further by looking beyond small variances of design choices
within a single system to the combined impact of the col-
lected techniques that embody an approach to the design of
a complete tool.

Themotivating research question of our experimentwas “For
production-quality programs, how do choices about the pre-
cision of the whole-program analysis algorithms employed
in a tool affect the precision of the resulting slices and per-
formance, and why?” The focus on production-quality pro-
grams addresses, to the extent possible, external validity of
the results: slicing will be most useful on applications that
users count on for their correct and improved functionality.
Our focus on performance as well as precision reflects the

importance of having not only a precise result, but also a
timely one.

A more qualitative area of investigation regards the effec-
tiveness of the slicers. A slicer’s usefulness is determined by
its ability to solve programmers’ problems. For example, if
a slice is performed to uncover the determinants of a vari-
able’s behavior for the purpose of software maintenance or
enhancement, then a programmer may want to know why a
statement is included in the resulting slice. The statement
might be included due to a subtle pointer dependence or an
artifact of the slicing algorithm; the cause could determine
maintenance actions on the variable. Although our “task”
was to understand why one slicer returned a different result
than another, the same question underlies the investigation:
why is this statement in the slice?

Size alone is not an adequate measure of precision: omitting
just a couple of spurious but critical statements from a slice
could save a programmer significant time, even if a few less
critical statements slip into the slice. Consequently, qualita-
tive analysis of slice differences can provide additional in-
sights on the benefits of precision and also reveal the source
of the differences. Both slicers provide significant program-
mability in their interfaces. These features can help explore
these differences as well as the benefits of these techniques
in improving time–precision tradeoffs.

Because we are by necessity measuring the behavior of whole
tools, not just their algorithms, there can be numerous inter-
vening variables influencing what statements are returned in
a slice and how long it takes. Additionally, because Sprite
is a research prototype, while CodeSurfer is a commercial
tool, there may be factors in implementation that are unac-
counted for. Consequently, we allowed for the generation of
additional hypotheses about determinants of precision and
performance and also undertook additional measurements in
order to tease out these extra variables.

To expose and control for intervening variables as much as
possible, we wrote 37 small programs, many based on exam-
ples from the literature, that exercise a slicer in just one be-
havioral dimension. Running a slicer on these “microbench-
marks” distills its salient characteristics into a discrete set of
micro-features that can help explain slicing results in larger
programs.

For the subsequent “macrobenchmarks”, we chose a small
set of production-quality public domain programs of varying
size that worked with both slicers. We performed three slices
on each program, attempting to choose slicing criteria that
both are dissimilar from each other and might be chosen by
programmers in practice. Focusing on 18 slices permitted a
detailed analysis of the underlying causes of the slice results.

Because Sprite’s algorithms are generally less precise than

2



CodeSurfer’s, settings were chosen for the slicers that en-
sured that CodeSurfer was at least as precise across all com-
ponents of the analysis, permitting a clearer assessment of
the impact of the algorithms that could not be controlled.
Settings were also chosen to ensure safety (conservative-
ness) of the analysis (both systems possess settings that can
result in an unsafe result). When time–precision anomalies
emerged in the results, we changed the settings for either or
both tools in an attempt to achieve a more desirable tradeoff,
thus exposing the underlying cause of the anomaly. Addi-
tional details on the microbenchmark and macrobenchmark
designs are provided in sections 5 and 6.

4. THE SLICERS
4.1 Sprite
Sprite v2.0b is a research prototype slicer for ANSI andK&R
C that can be run from a basic GUI or the command line [4].
It favors efficient techniques at the expense of precision. To
permit tool users to manage their own time–precision trade-
offs, Sprite provides a number of tunability features that ei-
ther select among a number of algorithmic options or pro-
vide extra information about the program being sliced.

For pointer analysis Sprite uses Steensgaard’s flow-insensitive,
context-insensitive points-to algorithm,which is space-efficient
and runs in nearly linear time [14]. It computes equivalence
classes of variables that refer to the same (abstract) memory
location.

Control flow is representedwith intraprocedural control-flow
graphs related by a separate call graph. Context sensitivity
(distinguishing unique paths to a function call) is provided
through a mechanism that permits the tool user to select the
context depth upto recursion. The effects of function point-
ers are extracted from the points-to sets, which can be com-
puted prior the call graph because the points-to analysis is
flow-insensitive.

The data flow analysis itself is performed with bit-vector
data flow methods. The method has been extended to cor-
rectly handle pointers to locals in the presence of recursion.
To reduce space usage the variable vector has been factored
to collapse a single sparse vector space into several denser
spaces. These spaces themselves are represented with semi-
sparse bit vectors.

To address scalability concerns, Sprite computes all struc-
tured program information on demand, and computes un-
structured (i.e. hard to demand) information upon starting
the first slice for a program. For example, CFGs of proce-
dures and points to information is computed upon starting
the first slice, while control dependencies and data-flow in-
formation is computed on demand during slicing.

The effects of libraries are modelled with skeletal function
definitions provided with the tool. The included libraries are

libc and libm.

Tunability parameters include: goto inclusion, context sensi-
tivity, filtering of function pointer classes by ANSI or K&R
type matching (this can be unsafe if the program is not type
safe), distinguishing fields of structures as individual vari-
ables, slicing into the callers (or not), and declaration of ad-
ditional memory allocators.

Sprite’s limitations include a limited number of provided li-
brary models, and line-level highlighting of slicing results
(rather than statements and expressions). Additionally, some
features of Sprite are simply engineering decisions. For ex-
ample, unless otherwise specified, gotos are processed in the
slicing, but not included in the slice. Also, the implemen-
tor chose not to include variable declaration, and function
header lines.

4.2 CodeSurfer
CodeSurfer 1.4p1 is a commercial slicing-based tool pro-
duced by GrammaTech. It employs a sophisticated user in-
terface providing capabilities such as “surfing” the program’s
dependences, but can be run from a command line inter-
preter as well. Though CodeSurfer implements several dif-
ferent algorithms, the publicly available version favors pre-
cise, asymptotically expensive algorithms. CodeSurfer uses
batch precomputation of program dependence information
to amortize analysis costs during interactive use.

CodeSurfer uses a System Dependence Graph (SDG) [9] as
the program representation, and a slice is computed as graph
reachability by computing a predecessor closure over this
graph. The SDG also provides full context sensitivity (upto
recursion).

The points-to analysis for CodeSurfer is parameterizable ac-
cording to precision (and consequently performance). The
options are “a” or Andersen’s cubic algorithm [2], which is
potentially more precise than Steensgaard’s algorithm [13].
“m” is minimal analysis, in which every pointer can refer to
anything that has had it’s address taken and data pointers can
refer to all dynamicmemory. Finally, no pointer analysis can
be specified (via the “none” option). A version of Steens-
gaard’s algorithm is available as well (“s”), but not publicly.
CodeSurfer’s points-to analysis does distinguish the fields of
structures in some cases (see microbenchmarks).

Other pointer analysis options include whether to treat calls
to malloc a different location at each call site, and whether
strings are modelled with a single location or unique loca-
tions. When calls to malloc are not expanded into seper-
ate heap values, dynamic storage is not included in pointer
analysis.

Libraries are modelled with stub functions provided with the
tool, designed to accurately reflect dependence. The libraries

3



provided with CodeSurfer 1.4p1 are libc and libm. The libc
libraries may be configured to model reads and writes to dif-
ferent discrete locations used as sources and sinks (called
discrete), or to treat the file system as a monolithic entity.
(Sprite’s library models are monolithic.)

CodeSurfer’s limitations include an inability to stop a slice
from proceeding into the callers. In contrast to Sprite, it can
highlight the exact expressions or statements on a line that
are part of a slice.

5. MICROBENCHMARKS
The microbenchmark programs are designed to test an algo-
rithm’s handling of one aspect of a language feature, cod-
ing style, or feature interaction. Consequently, they can ver-
ify or ascertain which algorithm a slicer is using. Because
of their small size, the results can be analyzed exhaustively,
also helping to reveal bugs in a slicer or oversights in howwe
are using it. The benchmarks test the following properties,
divided roughly according to correctness and features:

Correctness properties: interprocedural effects [9], han-
dling of unstructured control flow (break, continue,
goto) [1, 6], array definitions are preserving defini-
tions, assignment through pointers, correct handling of
function pointers, tracking of pointers through casts,
tracking of pointers through structure casts, symmetry
of array indexing [4], correct handling of external (im-
ported) variables and functions, parameter passing of
a pointer to a local variable in the presence of recur-
sion [4], pointer arithmetic within a structure variable,
handling of uninitialized pointers, and modelling of ef-
fects of I/O (e.g., on file descriptors).

Features: capturing the effects of embedded halts and
the like on control dependences [8, 11],1 slicing into
callers, context sensitivity of pointer analysis, context
sensitivity of flow analysis, flow-insensitivity of pointer
analysis, Steensgaard versusAndersen flow-insensitive
pointer analysis [13], distinguishing of structure (or
union) fields as separate abstract memory locations [16].

For both the microbenchmarks and macrobenchmarks, both
tools were used with their “default” settings unless other-
wise noted (below and in Section 6). The Sprite default set-
tings are safe and favor performance: minimum context sen-
sitivity, no function pointer filtering, and not distinguishing
structure fields. CodeSurfer’s default settings are unsafe and
generally favor precision: Points-to analysis is performed

To some users, handling weak semantic dependences—especially those
due to an intentional call to the exit() function—could be considered
essential. They largely represent the fact that a statement in the slicing
criterion is not executed if the halt is executed. We include them under
features because there is not a direct control flow or data flow from the exit
to the dependent statement. Also, not all weak semantic dependences are
easily computable; statements that infinitely loop or divide by zero are two
examples.

with the ”a” algorithm, each malloc call site is modelled as
a unique location, but string literals are modelled as a sin-
gle entity; the file system is modelled non-monolithically.
For CodeSurfer, we used the non-defaultmonolithic file sys-
tem modelling, and the non-defaultmany-strings option. We
chosemonolithic I/Omodelling because non-monolithicmod-
elling is unsafe and Sprite models I/O with a monolithic file
system. We chose many-strings because that is closer to
what Sprite uses (Sprite models strings using a unique loca-
tion for each unique string), ensuring that our use of Code-
Surfer is at least as precise as Sprite, permitting the benefits
of its context-sensitive data dependence analysis and supe-
rior points-to analysis to be clearly observed. The practical
implications of using the non-default many-strings option is
discussed in Section 6.

5.1 Sprite
In the category of features, Sprite behaved as expected. Sprite
models unstructured control flow and weak semantic depen-
dences due to embedded returns, but not program exits. How-
ever, the microbenchmarks revealed several surprising be-
haviors in the “gray area” between correctness and features.
They are not bugs per se, but may have unintended conse-
quences for a tool user.

One gray area was in the handling of undefined entities. For
one, a call to an undefined function yields a warning of the
missing function definition, but there is no attempt to model
the likely effects of such a call. For example, the call x =
f(y) for undefined function f when slicing on x will not
include the call in the slice, and y is not added to the slicing
criterion despite the likely (albeit not guaranteed) seman-
tic dependence. Also, a pointer that is nowhere initialized
will not be a member of any points-to class, so any effects
through it are not tracked. For example, for uninitialized
pointer p, the statements *p = x; y = *p; when slic-
ing on y will not add x to the slicing criterion. Nor is there
a warning. Sprite does not include the library models by de-
fault; they must be explicitly included in the list of files for
the project.

Another gray area was a set of decisions about what to high-
light in a slice. For one, Sprite does not highlight global
variable declarations or declarations of uninitialized locals.
Global declarations are always initialized and are an actual
semantic effect that should seemingly be highlighted. Al-
though uninitialized local declarations are technically not
part of the slice, a programmer seeking a bug may wish to be
directed to such a declaration as it might be the source of a
bug. Sprite also chooses not to highlight control flow state-
ments such as else, case, break, continue, goto,
goto label and return, although it models their effects cor-
rectly. When the goto option is enabled, semantically signif-
icant goto’s are highlighted as expected.

4



5.2 CodeSurfer
In the category of correctness and features, CodeSurfer be-
haved as expected. It provided full context sensitivity of data
dependences, distinguishing structure fields in variable ref-
erences but not pointer references, and pointer modelling
consistent with Andersen’s algorithm. CodeSurfer models
unstructured control flow and weak semantic dependences
due to embedded returns, but not program exits. It does cap-
ture the analogous effects of a return statement appearing
before the end of the function. As with Sprite, we encoun-
tered a few surprising behaviors in the gray area between
correctness and features.

One gray area was in the handling of undefined entities. A
call to an undefined function yields a warning of the missing
function definition and partially models the possible effects
of the call. For example, the call x = f(y) for undefined
function fwhen slicing on xwill include the call in the slice,
and add y to the slicing criterion, presumably because it is
likely that a function’s return value is dependent on its in-
put arguments. However, a call of the form g(&x) will not
be treated as a possible definition of x. Also, a pointer that
is nowhere initialized will not be a member of any points-
to class, so any effects through it are not tracked. That is,
for uninitialized pointer p, the statements *p = x; y =
*p; when slicing on y will not add x to the slicing crite-
rion. Nor is there a warning. Finally, CodeSurfer does not
include the library models by default; they must be explicitly
included in the list of files for the project.

In the gray area of what should be highlighted in a slice,
CodeSurfer highlights code that is not only semantically re-
lated to the slicing criterion, but also syntactically related
to the executable code in the slicing result. This produces
something close to an “executable” slice, although the user
interface permits some customization of what is highlighted.
For example, CodeSurfer highlights variable declarations re-
gardless of whether they are initialized. CodeSurfer also
highlights all relevant statements that alter or determine con-
trol flow, with the exception of goto labels.

5.3 Discussion
Both slicers behaved largely as expected, although we were
surprised at both the diversity of handling gray areas and the
level of expertise required to use both tools.

Given that a slicer assists in changing code, a user desires to
have all potentially relevant code highlighted without nec-
essarily being overwhelmed with information. Sprite’s uni-
form highlighting of declarations could be a problem in this
regard. In comparison, CodeSurfer’s approach of highlight-
ing generously, but providing filters, allows a user to cus-
tomize the highlighting to fit the task at hand.

Both tools print warnings about undefined functions to the

Program LOC Salient features
compress 1.29 842 Data transformer; no external

libraries
wally – 1519 Legacy AI go engine with

backtracking
ispell 3.1.2 5794 Interactive, table-driven
ed 0.2 7084 Command interpreter; uses op-

tions libraries
diff 2.7 8584 Complex, tightly nested recur-

sion; uses options libraries
enscript 1.6.1 14554 Data transformer

Figure 1: Macrobenchmarks. LOC is non-blank non-comment
source lines of code.

command line, yet the rest of the information is displayed
via a GUI. This bifurcation of displayed information means
that a tool user could easily overlook warnings that might
have dramatic effects on slices that mislead the user. This
was the case early in our studies, before we became sensi-
tized to the issue. In some respects CodeSurfer’s approach
could be misleading in a subtler way because its partial solu-
tion to missing function definitions could mask the fact that
something is wrong. Many of the undefined functions we
encountered were in fact from standard C libraries that are
handled by each slicer’s library models, yet it is also easy
to forget to include these until the undefined function mes-
sages are noticed. A benefit of the library modelling mecha-
nisms of both tools is that they are simply simplified C func-
tion definitions that approximate each function’s effect on its
parameters and return value: a (sophisticated) user can add
their own models at incremental cost.

6. MACROBENCHMARKS
6.1 Experimental Set-up
To ascertain the consequences of the algorithmic choices and
other issues surfaced by the microbenchmarks, we selected
six production-quality public-domain “macrobenchmarks”.
These programs are: compress (spec95 benchmark), wally,
ispell (GNU software), ed (GNU software), diff (GNU soft-
ware), and enscript (GNU software). They range range from
850 to 14500 lines of non-comment source lines of code (ex-
cluding header files) and embody a variety of applications
and software architectures (Figure 1). These programs were
run on a 440 mHz UltraSparc 10 with 640MB of real mem-
ory and 1.1GB of virtual memory running the Solaris oper-
ating system.

Choice of slicing criteria. To increase the external validity
of our study, it is desirable to select slicing criteria that re-
flect those used in practice. Slicing, however, is an emerging
technology, so there are no operational profiles for slicing
or a characterization of a “typical” slice. Indeed, it may be
infeasible to acquire valid profiles until tool designers better
understand the performance–precision tradeoffs and feature
choices that would likely impact the way a program slicer
is used. A slow slicer, for example, could discourage spec-

5



ulative, exploratory uses; an imprecise slicer might lead a
programmer to subset the program before slicing on it.

Consequently, we used our own experience as programmers
to choose slicing criteria that we felt might be used in prac-
tice. We also tried to vary the slicing criteria to expose the
effects of program structure and language features on each
slicer’s behavior. Of course, this collection of slicing crite-
ria does not represent a typical, average, or complete profile,
so any general conclusions we drawmust be considered pre-
liminary and hypothesis-generating for future studies.

Normalization of slice results. Because of behavioral dif-
ferences revealed in the microbenchmarks, we took a couple
of steps to insure that the slicers’ results could be meaning-
fully compared. In drawing conclusions from the results, the
effect of these normalizations must be kept in mind.

Because Sprite did not traverse into the callers, we had to en-
sure that CodeSurfer did not. 2 To achieve this effect, for the
(eleven) slicing criteria not within function main, we modi-
fied the programs processed by CodeSurfer to remove those
calls to the procedure containing the initial slicing criterion
that could be reached from entry proceduremain. Although
this changes the nature of the program somewhat, we veri-
fied that it had no adverse impacts on slice results.

Because the slicers report their findings differently, we had
to do postprocessing on the results returned from each slicer.
Because Sprite reports line-based results, CodeSurfer’s syntax-
based results are mapped to line numbers. To remove state-
ments that are artifacts of highlighting (e.g. uninitialized
declarations, or syntactic statements unrelated to the slice)
rather than the slicing algorithms themselves, declarations
and control structure artifacts are filtered from the output.
This post-processing has a possible side effect of removing
relevant statements from the slices. However, this postpro-
cessing was implemented (and checked) carefully, and we
have verified that any side effects from this are minimal.
Also, since this is a partly comparative study and both pro-
grams were post-processed, it will not affect the relative re-
sults.

6.2 Slice Size
A conservative or safe slice includes all statements that could
possibly affect the slicing criterion (and perhaps some that
do not). A minimal slice is a conservative slice that con-
tains no unnecessary statements. Since it is impractical to
compute a minimal slice for large programs, for the pur-
poses of comparison we use the intersection of the two slices
returned from Sprite and CodeSurfer, called the intersected
slice. This is a safe approximation of the minimal slice. The
relative safety margin of a slice is the size of a slice divided

Sprite v2.0b does slice into the callers, however, Sprite v2.0b is a beta
version and slicing into the callers is still an unsupported feature.

by the size of the intersected slice. The safety margin pro-
vides a measure of the relative quality of a slice.

The results of running the slicers on 18 criteria over the
6 programs are presented in Figure 2. Focusing first on
the slices in which no options are set, no obvious pattern
emerges. It is apparent that for some slices, Sprite’s results
are considerably larger. Neither slicer’s results are consis-
tently containedwithin the other, nor does one slicer produce
consistently smaller slices. However, on average Sprite’s
slices are larger. Upon closer examination, we observe that
Codesurfer produced a high (greater than 1.50) safety mar-
gin on one slice (discussed below); Sprite produces a high
saftey margin on five slices. Codesurfer produced a safety
margin of 12.79 on ed:sflags:1009. Sprite produces a safety
margin of 2.56 onwally:x:1798, 177.22 on ispell:cflag:857,
5.87 on ispell:preftype:727, 571.80 on diff:switch string:629,
and 1.54 on enscript:token:1881. The average slice size is
11.78% of the given program, with many (eight) small (5%
or less) slices, and no slice larger than 35% of the system.
Sprite produces a smaller slice than Codesurfer on two cri-
teria, but by a small margin on one of these. The slice sizes
were approximately equal on three slices, and Codesurfer
was smaller on the remaining 13.

A more interesting question is why the slicers produced the
above results.

Sprite.

The discernible causes of Sprite’s safety margins are var-
ied. The most obvious cause of Sprite’s imprecision is the
lack of context. As Figure 6.1 shows, increasing the context
for the five slices with large safety margins reduced them to
within the 1.50 safety margin. An interesting thing to note
is that while increasing the context improves Sprite’s results,
using the worklist algorithm (instead of the default iterative
algorithm) gives similar results. This is because the worklist
algorithm converges locally, instead of globally. This means
that it considers fewer unreachable paths (or contexts) during
Sprite’s default one-pass setting. The timings for the work-
list algorithm are discussed in the Timings section below.

Because of early results, and the close examination of slices
(particularly compress:new count:241which containsmany
I/O calls) we also knew that imprecision in the libraries might
be an issue. A look at the library models confirms that the
Codesurfer libraries are far more detailed than Sprite’s. For
example, a typical Sprite function model might contain six
statements, whereas the CodeSurfer equivalent might con-
tain 40. Consequently, we resliced four slices with larger
safety margins using CodeSurfer’s libraries and infinite con-
text depth. These further reduced both the slice size and the
safety margin in all four slices (bottom of Figure 6.1)).

The slices that were affected by context depth often increased

6



Sizes Times
Program Slicing Criterion Slicer Intersection Sprite CodeSurfer Sprite CodeSurfer

Name LOC File Variable Line Options Lines Frac Lines SM Lines SM Bld Ld Slc Bld Ld Slc
compress 842 compress95.c block compress 390 – 13 0.02 13 1.00 13 1.00 0.23 1.52 0.01 3.94 1.07 0.00

compress95.c fcode 496 – 122 0.14 123 1.01 123 1.01 0.04 0.00
harness.c new count 241 – 261 0.31 287 1.10 261 1.00 0.17 0.00

wally 1519 wally.c es 1593 – 173 0.11 241 1.39 208 1.20 0.11 0.67 0.29 5.18 1.05 0.00
wally.c rvalue 2055 – 492 0.32 492 1.00 502 1.02 0.69 0.25
wally.c x 1798 – 77 0.05 197 2.56 78 1.01 0.19 0.02

ispell 5794 ispell.c cflag 857 – 9 0.00 1595 177.22 9 1.00 1.74 2.13 1.80 32.77 1.54 0.43
ispell.c hashheader 745 – 334 0.06 492 1.47 341 1.02 0.37 0.12
ispell.c preftype 727 – 79 0.01 464 5.87 79 1.00 0.45 0.08

ed 7084 main.c buf 1160 – 127 0.02 142 1.12 129 1.02 2.65 2.50 0.33 58.09 1.66 0.00
main.c err status 302 – 2500 0.35 2539 1.02 2538 1.02 5.67 0.00
main.c sflags 1009 – 168 0.02 180 1.07 2214 13.18 0.55 0.24

diff 8584 analyze.c changes 1010 – 1065 0.12 1191 1.12 1071 1.01 2.44 2.69 1.75 73.13 1.59 0.16
diff.c switch string 629 – 5 0.00 2859 571.80 5 1.00 6.13 0.02
diff.c val 1073 – 1837 0.21 1911 1.04 1844 1.00 2.82 0.00

enscript 14554 main.c real total pages 1567 – 3269 0.22 3410 1.04 3274 1.00 3.24 5.13 6.85 670.11 2.20 0.00
psgen.c token 1881 – 327 0.02 504 1.54 338 1.03 0.85 0.00
psgen.c x 878 – 2045 0.14 2142 1.05 2047 1.00 3.82 0.43

wally 1519 wally.c es 1593 CSLibs, CD 173 0.11 174 1.01 0.10 2.54 98.76
wally 1519 wally.c x 1798 CD 77 0.05 77 1.00 0.09 0.68 4.96
wally 1519 wally.c x 1798 Worklist 77 0.05 77 1.00 0.13 0.66 0.06
ispell 5794 ispell.c cflag 857 CD 9 0.00 10 1.11 1.74 2.14 84.44
ispell 5794 ispell.c cflag 857 Worklist 9 0.00 10 1.11 1.75 2.13 0.24
ispell 5794 ispell.c hashheader 745 CSLibs, CD 331 0.06 419 1.27 1.72 4.15 21.10
ispell 5794 ispell.c preftype 727 CSLibs, CD 79 0.01 80 1.01 1.75 4.04 52.64
diff 8584 diff.c switch string 629 CD 5 0.00 5 1.00 3.34 2.74 191.24
diff 8584 diff.c switch string 629 Worklist 5 0.00 5 1.00 2.33 2.75 0.01
enscript 14554 psgen.c token 1881 CSLibs, CD 323 0.02 455 1.41 4.47 7.41 6.09
enscript 14554 psgen.c token 1881 CD 327 0.02 462 1.41 3.35 5.20 2.59
enscript 14554 psgen.c token 1881 Worklist 327 0.02 462 1.41 4.23 5.52 0.80
compress 842 harness.c new count 241 One 261 0.31 261 1.00 3.74 1.10 0.00
wally 1519 wally.c x 1798 One 77 0.05 78 1.01 4.58 1.07 0.00
ispell 5794 ispell.c cflag 857 One 9 0.00 9 1.00 26.02 1.54 0.02
ed 7084 main.c sflags 1009 One 168 0.02 2214 13.18 55.07 1.76 0.00
diff 8584 diff.c switch string 629 One 5 0.00 5 1.00 39.95 1.62 0.03
enscript 14554 psgen.c token 1881 One 327 0.02 338 1.03 98.61 1.98 0.16

Figure 2: Slice Sizes and Times. LOC is non-blank non-comment source lines of code; Size is the size of the slice in lines; Frac is the
slice size relative to LOC; SM is the relative safety margin for a slice. The CSlibs option implies that the sprite slices were performed
with CodeSurfer libraries; the CD option implies that context depth was infinite for Sprite. The One option implies the one-string
option was used for CodeSurfer. All times are in seconds. Build and load times are per-program, not per-slice, so the first values
hold for all slices. Slicer Options are those slice-time or build-time options deviating from the settings described at the beginning of
Section 5, when applicable.

in precision tremendously. For example, the slice ispell:cflag:857
is decreased from 1595 lines to 10, with an intersection of
nine lines using infinite context depth. The slice diff:switch string:629
was reduced from 2859 statements to 5, with an intersection
of 5. The slice wally:x:1798 was decreased from 197 to 78
lines, 77 of which are in the intersection. All of these be-
come almost identical to their respective CodeSurfer slices.

For some slices the CodeSurfer libraries and the addition of
context depth had similar effects. These slices werewally:es:1593,
ispell:preftype:629, ispell:hashheader:745, and enscript:token:1881.
The slicewally:es:1593, using CodeSurfer’s libraries in con-
junction with infinite context depth, reduces the slice to 174
statements with an intersection of 173 statements. Most of
this gain is due to the use of CodeSurfer’s libraries; using
only CodeSurfer’s libraries reduces the slice size to 180 state-
ments, while using only context depth gives no reduction at

all. 3 For the slice ispell:preftype:629 using both Code-
Surfer’s libraries and infinite context depth decrease the slice
size to 80 lines, with 79 statements in the intersection. Using
infinite context depth alone only descreases the slice to 271
slices, while only using CodeSurfer’s libraries decreases the
slice to only 261. The slice ispell:hashheader:745 was de-
creased to 419 lines, with 331 lines in the intersection using
both options. Only using context depth decreases the slice to
467, while the use of CodeSurfer’s libraries only decreases
the slice to 489.

The use of the structs option in Sprite had little to no effect
on the slices it was used on (those in the Sprite customization
section of Figure 6.1).

Context depth and CodeSurfer library results are not necessarily additive.
Additional context depth will also improve the precision of statements de-
pending upon the library models.

7



Using customizations in Sprite permitted attributing a cause
to dependences (e.g., unrealizable paths due to conflation of
calling contexts) by changing options rather than by inspect-
ing the code or Sprite’s dependence information by hand.
On the other hand, it requires expertise to get improved re-
sults quickly, since there are many plausible (combinations
of) customization options to try. Turning on all the options,
while affordable on these programs, does not scale [4].

CodeSurfer. Much of CodeSurfer’s slice safety margin can
be attributed to its choice of control dependences as affected
by by embedded returns, breaks, and gotos. For example,
ed:sflags:1009 appears in a case statement that can be ap-
proximated as follows (this code does not appear in a loop
and its function has no callers):

[1] switch (c = *ibufp++) {
[2] case ’z’:
[3] if (display_lines(sa, min(al,sa+r), gflag))
[4] return ERR;
[5] gflag = 0;
[6] break;
[7] case ’!’:
[8] sflags = get_shell_command();
[9] break;
[10] }

Because of the way CodeSurfer computes control depen-
dences [5], slicing on sflags on line 8 includes lines 3
and 4 in the slice, on the presumption that a true conditional
in line 3 results in a return from the function, and line 8 is
never executed. Because the conditional in line 3 contains
a function call to display lines, the slice also contains
the lines from that function that may determine its return
value, and so forth. However, lines 3 and 4 have no influ-
ence on sflag’s value. The reason is that the unconditional
break on line 6 ensures that regardless of the return value
from the display lines call on line 3, line 8 can never
be reached; thus there is no control dependence generated by
lines 3 and 4.

The above example results in a particularly large slice be-
cause the expressions in the included conditionals add vari-
ables to the slicing criterion that propagated into function
calls controlling the conditionals. No other slice had this
extreme behavior. When we removed all of the return state-
ments in ed’s case statement, all with break’s below them,
CodeSurfer’s slice dropped to around 200 lines. Although
we are unsure of what control dependence algorithm Code-
Surfer uses, Sprite computes control dependences from the
dominance frontiers of the reverse control flow graph [7].

Besides this control-dependence issue, CodeSurfer, for the
settings chosen, is generally more precise than Sprite, as ex-
pected. Given that this can come at a cost in build and slic-
ing times (as discussed below), we reverted CodeSurfer to its
default one-string, monolithic setting and reran a build and a
slice from each program. The results lose no precision, and

Program LOC CodeSurfer Options
compress 842 1.34MB 1-string
wally 1519 2.19MB 1-string
ispell 5794 10.00MB 1-string
ed 7084 14.66MB 1-string
diff 8584 7.56MB 1-string
enscript 14554 27.39MB 1-string

Figure 3: Pre-built database sizes for CodeSurfer. LOC is non-
blank non-comment source lines of code. 1-STRING is the one-
string build option (with monolithic libraries) for CodeSurfer.

the builds are sometimes considerably faster, as discussed
below in the timings section.

6.3 Timings and Database Sizes
Slicing can be broken down into the following phases of
computation: a “build” phase which must happen each time
the program is changed, a “loading” phase which must hap-
pen each time the tool is used, and a “slicing” phase, which
must occur each time a slice is requested. While Sprite
and Codesurfer both have these phases, they perform dif-
ferent behaviors during these phases. During Sprite’s “build
phase”, the source files are parsed. These parsed files (.cpp
files) are stored across tool invocations. This is represented
as the “build” time in Figure 6.1. Precomputation for the
program, including constructing the AST and CFG, and com-
puting points-to information, is done on the first slice re-
quest. This is represented in Figure 6.1 as “load” time, be-
cause it must happen each time the tool is invoked for a
particular program. Finally, Sprite computes control and
data dependencies during “slicing”. CodeSurfer, meanwhile,
precomputes a large amount of information, storing a deep
structure representation that contains a system dependence
graph, data dependencies, control dependencies, and pointer
information. Thus, the “build” phase for CodeSurfer con-
sists of the time it requires to compute this information and
write it to disk. When CodeSurfer slices a program, it must
reload that information from disk (assuming the tool has
been exited) before slicing. This is represented in Figure 6.1
as “load” time. Slicing may be performed any number of
times for a particular load. Finally, “slicing” time is just
the time it takes CodeSurfer to handle a particular slicing
request.

Each of these phases has a potentially unique impact on a
tool user, as the first only occurs when the program to be an-
alyzed is changed, the second only occurs whenever a tool
is restarted for a particular program, and the last will likely
occur several times before the program is changed. Also, the
runtime cost of these activities has a feedback effect that will
influence frequency. If build or load times are slow, the pro-
grammer may attempt to use the slicer on stale versions of
the program or hesitate to rebuild the database to change the
tuning options to the build. Short slice times can encourage
speculative use.

8



We captured build, load, and slicing time for all of the slices
using TC-shell’s built-in time command with the machine
unloaded. Wall-clock time is reported since this represents
the time a user is required to wait for her results (Figure 2).
Although we modified each program slightly for CodeSurfer
to prevent it from slicing into callers, we report build and
load times for the unmodified program to permit comparing
these numbers to Sprite’s results. (These times are compa-
rable for the modified programs, however.) Because, time
commands on Solaris UltraSparc II’s do not provide space
usage, paging, or I/O data, we used CPU utilization and the
sizes of the on-disk data produced by the two tools (Fig-
ure 3) as indicators of memory effects on time. On an un-
loaded machine, the amount of CPU utilization below 100%
approximates the percentage of time lost to I/O events, in-
cluding paging. Finally, all timings are taken without using
the tools user interfaces; batch modes are used instead.

Builds. Build times for CodeSurfer range from 3.94 to 670.11
seconds for the settings we used. While these are up to 207
times slower than Sprite’s build, CodeSurfer does most of
it’s work during build while Sprite does very little. In ad-
dition, excepting the enscript program, CodeSurfer’s build
times are on par with the full context depth slice times for
Sprite (non-default setting). The outlying data point for build
timings is enscript, taking 9 times longer than diff (a pro-
gram half it’s size). The many-strings, monolithic build for
enscript required 130MB of memory. This is less than the
system limits of 640MB for real memory and 1.1GB of swap.
Sprite, meanwhile uses 23MB for the same slice (where Sprite’s
computation is performed). For CodeSurfer, CPU utilization
figures indicate that 2.5% of the build time was lost to paging
or I/O.

The CodeSurfer database for enscript at 27.39MB is the largest.
The databases tend to growwith code size; enscript’s database
is almost twice as large ed’s. However, diff’s database is an
exception. It is half the size of ed’s database, even though ed
has a smaller size. We are unsure why this is so.

The builds of the larger programs with the one-string option
(CodeSurfer’s default), show that some of the build cost is at-
tributable to the many-strings option’s more precise pointer
modelling, which magnifies the cost of CodeSurfer’s depen-
dence and points-to analyses. Compared to the many-string
builds, the diff and enscript one-string builds are 1.83 and
6.80 times faster respectively, whereas the ed build is only
1.05 times faster, suggesting the effects can be powerful but
are highly dependent on the program.

While the one-string settings produce some noticable gains
in build time, they produce little savings in database size.
The one-string builds range 91.48% from 99.26% the size
of the many-strings builds. The best improvement is seen
in enscript, and a look at the enscript source confirms that it

contains many strings used for character mapping.

An additional concern for CodeSurfer is the time to build the
library. This must only be done (potentially) once for each
setting of the library, however it does contribute additional
cost to a build. For both settings (monolithic many-strings,
and monolithic one-string) this build takes around 42 sec-
onds.

Load time. Both slicers show fairly short load times that
tend to scale with program size. Since, for both slicers, little
is done in this phase, it is reasonable that these times should
be short. For Sprite, this time includes PDG creation and
pointer analysis; for CodeSurfer it seems to comprise file
I/O to read portions of the SDG off of disk. Note that these
times are fairly linear with respect to code size.

Slicing time. On a per-slice basis, CodeSurfer’s slice time
is incredibly small. In fact many slices come up with a 0.00
second slicing time, once load time is removed. This in-
dicates that its precomputation strategy is successful at re-
ducing slicing costs. This result also indicates that Code-
Surfer probably does not read in much of its database before
beginning graph traversal. The utilization numbers support
this; they are generally between 45% and 70%. Thus, while
I/O is a significant cost, it does not overwhelm the compu-
tation costs. The higher utilization for larger slices suggests
that I/O costs could be amortized when many slices are per-
formed in a single session The slice on ispell.c:cflag:857
is anomalous, with just 9 statements in it but taking 0.43
seconds (the measurements were repeated to ensure consis-
tency). Given that this slice is derived from the program
generating the second-largest database, there may be some
non-locality in the slice that requires reading in a dispropor-
tionate amount of the SDG.

The timings of slices using CodeSurfer’s default one-string
setting in the build are similar to the many-strings option
(with no change in precision). This is an indication that
much of the work, and hence savings, can be seen in pre-
computation time. These results sugggest that slicing time
can be reduced to almost constant, for programs of this size,
with suitable investment in build time.

For Sprite, slicing time is closely related to slice size, prob-
ably due to the costs of data and control dependence com-
putation during slicing. (While true for the programs here,
[4] claims that this trend does not extrapolate to larger pro-
grams and slices.) The “tuned” slices appearing near the
bottom of Figure 2 are considerably slower on the whole.
Increasing context sensitivity to infinite depth potentially re-
sults in a quadratic increase in the context-graph (generated
on demand) [4], largely explaining the increase. Addition-
ally, enscript:token:1881 takes longer with the CodeSurfer
libraries than with Sprite’s. This is probably due to the Code-

9



Surfer libraries richer modelling. Using the worklist algo-
rithm shortens these times considerably, while giving results
idenical to infinite context depth. However, these results do
not scale to larger programs. For diff:switch string:629 the
worklist algorithm slices in 0.01; for the enscript:token:1881
slice, Sprite runs in 0.80 seconds using the worklist algo-
rithm. On ispell:cflag:857 the worklist algorithm takes 0.24
seconds, and on wally:x:1798 the worklist algorithm takes
0.39 seconds.

7. DISCUSSION

7.1 Tradeoff Analysis
Precision. For the settings chosen and given CodeSurfer’s
more precise data dependence and points-to algorithms, we
had expected more of Sprite’s relative safety margins to be
larger, perhaps 2 and above on many slices. This turned out
to be the case; in fact when Sprite’s safety margins were
larger, they were much larger (up to 572 times). However, all
of Sprite’s poor margins were reduced to within 1.5 by us-
ing CodeSurfer’s library models and by increasing context
sensitivity. (CodeSurfer’s conservative handling of uncon-
ditional branches cannot be a contributor Sprite’s low mar-
gins, as this affects only CodeSurfer’s safety margin). The
microbenchmarks reveal that CodeSurfer’s context-sensitive
data dependences and use of Andersen’s points-to analysis
can exhibit considerably greater precision. For example,
Andersen’s algorithm preserves the directionality of pointer
assignments, whereas Steensgaard’s algorithm maintains a
symmetric relation. CodeSurfer’s major compromise is the
use of a context- and flow-insensitive points-to analysis that
does not model structure fields.

Changing settings to increase Sprite’s precision or decrease
CodeSurfer’s had varying effects on precision. Thus, the
differences in precision we found can be attributed to Code-
Surfer’s conservative handling of unconditional control flow,
use of infinite context depth, use of Andersen’s superior points-
to analysis, and its generally better library models.

A closer look at the data behind several slices revealed that
points-to relations for several of the programswere large and
implausible for both CodeSurfer and Sprite. A likely ex-
planation for the largely similar slicing results once context
sensitivity and CodeSurfer’s libraries were used (and hence
Sprite’s small safety margins) is that collapsing of points-
to sets due to pointer manipulations and the context insen-
sitivity of the pointer analysis defeated the distinguishing
of structure fields in Sprite’s points-to analysis, the direc-
tionality of CodeSurfer’s points-to analysis, and the context-
sensitivity of data dependences in both. Further investigat-
ing the effects of context- and flow-sensitive pointer analyses
might yield improved algorithmic precision. Recent work
suggests that partial context sensitivity in pointer analysis
can be achieved at low cost [10, 12].

Performance. The precision results above suggest that in
addition to the performance-management techniques employed
by Sprite and CodeSurfer, performance can be managed by
“balancing” precision across the algorithms employed in an
approach, thus avoiding the cost of algorithms whose bene-
fits cannot be realized due to compromises elsewhere in the
analysis.

CodeSurfer’s precomputation of costly data structures re-
duces slicing costs to roughly constant on these slices. Sprite’s
demand-driven analysis avoids unnecessary computation at
both build and slicing time. However, CodeSurfer’s high-
precision build costs remain high, as do Sprite’s high pre-
cision slices. Both tools also provide significant tunabil-
ity. Unfortunately, tunability is compromised by both the
precomputation and demand-driven approaches. Tuning pa-
rameters to achieve high-precision in CodeSurfer sacrifices
scalability because increased space requirements translate
into increased time in builds. That is, precomputation sig-
nificantly amortizes per-slice costs, but it does not insulate
slicing from increases in slice time as precision is increased
(and perhaps as program size is increased). Using tuning
parameters to achieve high-precision in Sprite is costly be-
cause super-linear costs are pushed into slicing time. The
precomputation and demand-driven approaches both have
advantages, but they cannot be straightforwardly combined:
changing Sprite, for example, to save all costly data struc-
tures on disk would significantly raise the build-time cost of
tuning parameters to increase precision.

Non-algorithmic effects. An unexpected result is that non-
algorithmic decisions tended to have as great an impact on
the results as algorithmic ones, with modest impact on per-
formance. The tools’ designs differ regarding what should
be highlighted (e.g., declarations), whether to slice into callers,
or how to handle incomplete or erroneous programs (e.g.,
behavior for a missing function definition). The reasonable
decision to highlight declarations often doubles the size of
a slice. Using CodeSurfer’s library models on several slices
brings slice size down at modest cost. Better library models
are not a substitute for context sensitivity, but library im-
provements allow increased precision at low a cost.

Additionally, for Sprite, using the worklist algorithm could
improve the results to the same level as context sensitivity
at a fraction of the cost. For Sprite, the use of the worklist
versus iterative algorithm is an implementation issue, not an
algorithmic one; the algorithm is essentially the same for
both implementations. Using the default iterative algorithm
yields up safety margins up to 572, while using the worklist
algorithm gives results similar to maximum context sensitiv-
ity. This result does not scale to larger programsxi, however.

There is no “right” answer in handling some of these issues.
The particular task and working style of the programmer in-

10



fluence what is the best choice. Highlighting more state-
ments is safe in that it is a more complete enumeration of
the contributors to the slice and hence to the behavior of the
initial slicing criterion. Yet highlighting statements that are
irrelevant to the task slows down and frustrates the program-
mer, perhaps causing the programmer to use the tool less.

7.2 Usability
Although both tools provide customization and query capa-
bilities, neither adequately helped us to customize what is
highlighted to fit the task, avoid common mistakes, or an-
swer questions that we believe many programmers using a
slicer would ask. Only with considerable effort could we de-
termine why a statement or variable reference was included
in a slice, even thoughwe had an extra slicer for comparison.
As a result, we often resorted to modifying the program (e.g.,
removing a return or a pointer assignment) just to see how
the slice changed. If a programmer is using a slicer to guide
complicated code changes, she may want to know not only
what needs to be changed, but how. In our experience from
this study, getting the answer using a slicer requires know-
ing a great deal about both the semantic characteristics of the
program and how the slicer operates. A complex interaction
of pointer characteristics, data dependences, control depen-
dences, and highlighting rules can be at work. Furthermore,
the possible loss of precision due to any number of factors—
say, imprecision in the pointer analysis—means that the tool
user must remain constantly aware of what the program’s de-
pendences actually are and how the slicer is modelling and
displaying them. Unfortunately, the straightforward solution
to increasing confidence in the trueness of dependences—
increasing precision—comes at considerable cost.

7.3 Recommendations and Open Questions
Our results suggest a few issues that tool designers might
take into consideration when designing a program slicer or
other interactive data-flow analysis tool:

To provide beneficial time–precision tradeoffs, an ap-
proach should use (or permit choosing) algorithms of
complementary and balanced precision. For example,
context-sensitivity in data dependences should be com-
plemented by context-sensitivity in pointer modelling.

Greater attention should be given to non-algorithmic
design choices and how they affect a user’s interpre-
tation and use of a slice. Behaviors that can lead to
confusion, such as handling of undefined functions and
uninitialized pointers deserve special attention. Im-
proved librarymodellingmight provide substantial pre-
cision benefits at modest cost.

For the purposes of understanding why certain state-
ments are in a slice, support should be provided for sig-
nificant customization of what dependences or portions

of the program are included in the slice. For exam-
ple, it should be possible to control not only the inclu-
sion of control versus data dependences, as CodeSurfer
can, but also distinguish (and/or filter) weak seman-
tic dependences, loop-carried dependences, etc. Be-
cause many of the pointer aliases we saw were highly
implausible, removal of aliases according to declared
program types or declarative methods could permit ex-
ploring these properties. We would also like to see
what assignment in the program brought about such
an alias.

Three research questions arose during our study that could
not be answered adequately with the tools in their current
instantiation:

Howmight a context-sensitive (and even flow-sensitive)
pointer analysis improve the precision of slices?

Do the results we report here hold on larger programs?

How can a program slicer or similar tool be designed to
hide the complex details of its algorithms from users,
yet provide insight into the legitimate (versus illegiti-
mate) causes of dependences?

8. CONCLUSION
This paper reports on the first comparative studying using
two whole-programstatic slicers, GrammaTech’s CodeSurfer
and our Sprite research prototype. CodeSurfer favors preci-
sion and uses precomputation to amortize slicing time costs,
whereas Sprite favors performance and uses demand-driven
algorithms to reduce slicing costs. Examining the net im-
pact of a set of complementary techniques in the design of a
complete tool provides insights for the efficacy of an overall
approach, rather than individual algorithms. We first ran a
set of microbenchmarks to ascertain the feature sets of the
two slicers and expose hidden experimental variables, and
then ran a set of macrobenchmarks to determine the broader
implications of each tool’s approach.

For the programs and slicing criteria we chose, we found
that the relationship between the cost and the precision of
an approach was unpredictable. The use of precise algo-
rithms incurred a high runtime cost, yet only sometimes pro-
vided large benefits in reducing slice size. It appears that the
precision provided by context-sensitive dependence analysis
and a superiority of Andersen’s points-to analysis was com-
promised by the context-insensitive points-to analysis. Dis-
tinguishing structure fields in Steensgaard’s points-to analy-
sis in Sprite was also ineffective. Subtleties in the control-
dependence analysis also increased the size of slice results,
sometimes dramatically. The preliminary implication is that
achieving good time–precision tradeoffs benefits from con-
sistent precision across the chosen algorithms comprising an
approach, although the results are highly dependent on the

11



exact nature of the program and the slicing criterion.

An unexpected discovery in this study was that non-algorithmic
design decisions had a significant impact on the results, of-
ten similar to the impact of algorithmic choices. For ex-
ample, in trying to improve Sprite’s results on some slices,
using CodeSurfer’s I/O library models had as much impact
as adding context sensitivity. Using the Sprite worklist al-
gorithm had as much impact as context sensivity in all other
cases. However, this algorithm may have a performance im-
pact on larger programs [3]. Given the modest cost and
high impact of non-algorithmic decisions, compromises are
unwarranted, but good choices require attention to the tasks
to which a user may apply the tool.

Our pained attempts to understand why a particular state-
ment appears in a slice suggest that tools like slicers need
support for customizingwhat constitutes a dependence, post-
filtering of dependences, and classifying the remaining de-
pendences in a convenient fashion. The implausibility of
many pointer aliases computed by both tools suggests that
users be allowed to customize these as well. Ultimately, it
would be ideal to be able to learn the “cause” of a depen-
dence without requiring detailed knowledge of how the tool
operates.

Much work remains to be done in understanding the various
tradeoffs in the design of a program analysis tool such as a
static program slicer. Due to the large number of variables
that can influence slicer behavior and the difficulty of un-
derstanding why a particular statement is in a slice, we have
only scratched the surface. With the improvements likely to
come, it should soon be possible to assess the impact of tools
like program slicers on program development and mainte-
nance activities. Such contextualization will shed more light
on a number of issues that we have just begun to explore
here, such as control over precision and performance, cus-
tomization of the slicing computation, improved query ca-
pabilities, and strategies that tradeoff batch precomputation
with on-demand computation.

Acknowledgements
We are very greatful to GrammaTech, in particular Paul An-
derson, Tim Teitelbaum, and Jolene O’Connor, for their quick
and thoughtful help with CodeSurfer throughout this project.

REFERENCES
[1] H. Agrawal. On slicing programswith jump statements.

In Proceedings of the SIGPLAN ’94 Conference on Pro-
gramming LanguagesDesign and Implementation, pages
302–312, June 1994. SIGPLAN Notices 29(6).

[2] L. O. Andersen. Program Analysis and Speicialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994. DIKU report
94/19.

[3] D. Atkinson. Personal Communication, 2000.

[4] D. C. Atkinson and W. G. Griswold. Effective whole-
program analysis in the presence of pointers. In ACM
SIGSOFT ’98 Symposium on the Foundations of Soft-
ware Engineering, November 1998.

[5] T. Ball and S. Horwitz. Slicing program with arbitrary
control flow. In First International Workshop of Auto-
mated and Algorithmic Debugging (AADEBUG ’93),
pages 206–222. Springer–Verlag, May 1993.

[6] J. D. Choi and J. Ferrante. Static slicing in the pres-
ence of goto statements. ACM Transactions on Pro-
gramming Languages and Systems, 16(4):1097–1113,
July 1994.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.ACM
Transactions on Programming Languages and Systems,
13(4):451–490, October 1991.

[8] M. J. Harrold and N. Ci. Reuse-driven interprocedural
slicing. In Proceedings of the 1998 International Con-
ference on Software Engineering, April 1998.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26–
60, January 1990.

[10] D. Liang and M. J. Harrold. Towards efficient and ac-
curate program analysis using light-weight context re-
covery. In Proceedings of the 2000 International Con-
ference on Software Engineering, June 2000.

[11] A. Podgurski and L. A. Clarke. A formal model of
program dependences and its implications for software
testing, debugging, and maintenance. IEEE Transac-
tions on Software Engineering, SE-16(9):965–979,1990.

[12] A. Rountev and S. Chandra. Off-line variable substi-
tution for scaling points-to analysis. In Proceedings of
the SIGPLAN 2000 Conference on Programming Lan-
guages Design and Implementation, June 2000.

[13] M. Shapiro and S. Horwitz. The effects of precision on
pointer analysis. In Fourth International Symposium on
Program Analysis, September 1997.

[14] B. Steensgaard. Points-to analysis in almost linear time.
In Proceedings of the 23rd ACM Symposium on Princi-
ples of Programming Languages, pages 32–41, St. Pe-
tersburg Beach, FL, January 1996.

[15] M.Weiser. Program slicing. IEEE Transactions on Soft-
ware Engineering, SE-10(4):352–357, July 1984.

12



[16] S. H. Yong, S. Horwitz, and T. Reps. Pointer analysis
for programs with structures and casting. In Proceed-
ings of the SIGPLAN ’99 Conference on Programming
Languages Design and Implementation, May 1999.

13


