
SANTA CLARA UNIVERSITY
Department of Computer Engineering

Date:

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Daniel Charles Weeks

ENTITLED

Process Modeling Language Design

and

Model Verification

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Adviser

Thesis Reader

Chairman of Department

PROCESS MODELING LANGUAGE DESIGN
AND

MODEL VERIFICATION

BY

DANIEL CHARLES WEEKS

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Engineering
in the School of Engineering of
Santa Clara University, 2004

Santa Clara, California

PROCESS MODELING LANGUAGE DESIGN
AND

MODEL VERIFICATION

Daniel Charles Weeks

Department of Computer Engineering
Santa Clara University, 2004

ABSTRACT

Process oriented activities are present in many daily activities in that everything from getting
prepared for work in the morning to baking a cake has a series of steps that are completed to
accomplish some goal. While these processes are trivial, many that are involved in daily life are far
more complicated. For example, the steps needed to complete a loan application are not readily
known or understood to many because of the complexity of the process. Banks and agencies must
collaborate and use a specific criteria to determine who is approved. As processes become more
complex and people are added to the equation, the exact workings of the process become difficult
to understand. At some point, the complexity of the process requires formalization to eliminate
confusion.

To formalize a process, the important aspects must be extracted and described in an unambiguous
manner. In order to achieve this level of specification, there must be some form of notation to which
the description adheres. In addition, many of these processes, such as applying for a loan, are used
repeatedly and the ability to automate the process would be advantageous. A notation for clearly
describing processes that can also be used for both a better understanding and automation of the
process would be an ideal solution.

There are two common approaches to conjoin notation and automation. The first method is
to start with notations that already exist, such as programming languages, and extend them to
describe processes. This method introduces a number of problems, the first being the complexity
of the notation. For someone to model a process, they must first understand the intricacies of the
language on which the modeling language is built. Another concern is that the strict interpretation
of most programming languages can make some process-related concepts difficult to express. We
propose an alternative solution that addresses these issues.

By looking at the conceptual aspects of modeling a process and deriving a language based on
these concepts, we have developed a language that is specifically designed for describing processes.
There are a number of advantages to this approach in that complexities introduced by combining
programming languages with modeling languages are alleviated which results in a more concise
language specification. Finally, there is significantly less of a learning curve. Despite the many
benefits, there are some disadvantages to this method such as the lack of tool support. In order
to provide this functionality, we have developed a static analyzer that examines process models in
order to identify possible errors based on concepts that are specifically attuned to processes.

This thesis explores the concept of process modeling in conjunction with the design, development,
and implementation of the process modeling language, pml, and the static analyzer, pmlcheck. Our
examples demonstrate how these tools can be applied to describe and minimize errors in a process
model. The objective of this thesis is to illustrate the advantages of process modeling and how it
can be achieved through the use of pml and pmlcheck.

Table of Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Approach . 3

2 Processes and Modeling 5

2.1 Process Definition . 5
2.2 Control Flow . 6
2.3 Task Properties . 7
2.4 Modeling Goals . 8
2.5 Modeling Paradigms . 9

3 Process Modeling Languages 11

3.1 Language Goals . 11
3.2 Graphical Language Approach . 12
3.3 Programming Language Approach . 13
3.4 Process Language Approach . 15

4 Language Design 19

4.1 Language Fundamentals . 19
4.1.1 Resources . 20
4.1.2 Attributes . 21
4.1.3 Expressions . 22

4.2 Control . 22
4.2.1 Sequence . 22
4.2.2 Iteration . 23
4.2.3 Selection . 25
4.2.4 Branch . 26

4.3 Advanced Language Features . 27
4.3.1 Qualifiers . 27
4.3.2 Process Linking . 30

4.4 Advanced PML Example . 31
4.4.1 Abstract Peptide Model . 31
4.4.2 Adding Resources and Dependencies . 33
4.4.3 Detailed Specification Model . 36

5 Tool Motivation 40

5.1 Why Tools Are Needed . 40
5.2 Modeler Errors . 41

5.2.1 Modeling Errors at High Levels of Abstraction 41
5.2.2 Effects of Modeling Errors on Dependencies 41

iv

5.2.3 Effects of Modeling Errors on Control Flow 42
5.2.4 Modeling Errors in Detailed Specifications . 43

5.3 Process Errors . 44
5.3.1 Resources Within Processes . 44
5.3.2 Process Errors in Control Flow . 45

5.4 Tool Goals . 45

6 Tool Design and Implementation 47

6.1 Analyzing and Representing a Process Model . 47
6.1.1 Checking for Errors Local to a Task . 47
6.1.2 Analyzing Resource Dependencies . 48
6.1.3 Evaluating Expressions . 48
6.1.4 Model Representation . 49

6.2 Process Model Representation with PML . 49
6.2.1 Model Translation . 49

6.3 Analysis and Verification of PML Process Models . 52
6.3.1 Implementing Refinable Error Checking . 52
6.3.2 Reducing and Simplifying the Process Specification 53
6.3.3 Checking for Local Resource Specification Errors 55
6.3.4 Dependency Checking . 56
6.3.5 Evaluating Expressions . 60

7 Analysis and Results 62

7.1 The Netbeans Requirements and Release Process . 62
7.2 Refining the Netbeans process . 63

7.2.1 Analysis Local to Actions . 63
7.2.2 Verification of Resource Dependencies . 66
7.2.3 Consolidating Resources . 67

7.3 Revised Netbeans Model . 68
7.4 Finalized Netbeans Model . 69

8 Related Work 70

8.1 Existing Modeling Languages . 70
8.2 Process Model Analysis . 71
8.3 Process Validation . 72

9 Conclusion 74

9.1 Open Issues . 75

A Initial Netbeans Requirements and Release Model 79
A.1 Model Specification . 79

B First Revision of Netbeans Model 82
B.1 Model Specification . 82
B.2 Linking Specification . 85

C Final Revision of Netbeans Model 86
C.1 Model Specification . 86
C.2 Linking Specification . 90

v

List of Figures

6.1 Graph representation of a sequence . 50
6.2 Graph representation of an iteration . 50
6.3 Graph representation of a selection . 51
6.4 Graph representation of a branch . 51
6.5 Software process model from Section 4.3.1 . 51
6.6 Tree representation of a resource . 52
6.7 Tree representation of a complex expression . 54
6.8 Tree after reducing negation . 54
6.9 Canonicalized tree from Figure 6.8 . 55

vi

List of Tables

7.1 Summary of actions in the Netbeans process model 64
7.2 Summary of errors indicated by pmlcheck . 65
7.3 Summary of errors in revised model . 69

vii

List of Algorithms

1 Algorithm for checking that required resources are provided 58
2 Checking that provided resources are required . 59
3 Algorithm for checking that expressions are satisfied 61

viii

Chapter 1

Introduction

1.1 Motivation

Processes that occur regularly in daily life range in complexity from trivial activities, such as baking

a cake, to complex activities, such as getting approval for a loan. Tasks that are required in a simple

process are intuitively understood or easily derived by the person performing the process. However,

more complex processes are not intuitive and require careful consideration and detailed analysis of

each task. In complex processes, a significant amount of time is spent discerning what the next task

is and how to transition from the current task to the next. Being able to unambiguously describe a

process removes the uncertainty involved in performing the process.

A process description [Klingler, 1994] characterizes the important aspects of a process from

which a model of the process can be derived. This model is called a process model. The purpose of

a model is to reflect the control-flow of the process without incorporating nonessential properties.

Though it is possible to have many different descriptions that satisfy the requirements of a process,

a concise representation of a complex process is generally preferred. An unclear representation may

be misleading while a concise and complete representation can disambiguate unclear aspects of the

process.

1

In addition to disambiguating a complicated process, having a written notation for process de-

scription provides the ability to analyze the process by checking for errors. Having the ability to

validate a process before enactment increases quality and ensures correctness. One must take into

consideration that processes are designed starting with abstract concepts and are iteratively refined

into detailed process descriptions. Therefore, the notation used to describe processes needs to re-

flect this evolutionary development cycle, but still provide valuable information about the process

at every level of abstraction.

A concise and clear description is not the only advantage of process modeling. Processes are

generally repeatable and having the ability to automate the process increases efficiency. Full au-

tomation may not be possible because of the high level of the process description and the necessary

human interaction, but some task-related responsibilities can be removed, such as determining when

a loan application has been approved and sending confirmation. Automation provides the facility

to guide the process through its life-cycle, only stopping for human interaction when necessary.

In order to check models for errors and to automate processes, a formal notation is required to

specify the model. Necessary syntactic and semantic rules qualify this form of formal notation as a

language. Without these rules, the language is ambiguous, which introduces a level of uncertainty

into the process model. The objective of the language is to be as expressive as an unstructured

description, but changing the representation into a more useful format [Conradi and Liu, 1995].

The design of the language constrains how and where the process model can be applied. If the

language is too complicated or strict, it may not be expressive or flexible enough to be useful in

a broad range of applications. If the language definition is too loose, it may not have the ability

to provide meaningful analysis or automation. Between these extremes exists the potential for a

language that is expressive, flexible, and simple enough to provide meaningful feedback and assist

in process development.

This thesis is motivated by the need to define process modeling techniques that will increase the

efficiency of process design through model specification, language design, and methods for analyzing

2

process models.

1.2 Approach

There are currently many efforts to successfully describe, validate, and automate processes [Agostini

and Demichelis, 2000; Cass et al., 2000; Pinheiro da Silva, 2001; J. M. Rib, 2000; Dami et al., 1998],

but these approaches do not provide efficient solutions. Through research into process description,

validation, and automation, we have developed a philosophy based on process design. This thesis

illustrates the essential aspects required for successful process modeling.

We define and describe the objectives and requirements of process modeling based on process

related activities. Then we examine different paradigms of process modeling and the advantages

and disadvantages of each approach. These paradigms are divided by the techniques employed in

finding efficient process models. The rule-based or logical paradigm [Klingler et al., 1992] describes

processes through dependencies and goals. The actual control of the process is then derived from

these specifications. Another common approach is a control-based or imperative approach [Sutton,

1990], which defines the control of the process and then validates the dependences within the process.

We implement the latter approach because it is more intuitive to process description in that it gives

the modeler control of task organization.

In addition to these modeling paradigms, there are a variety of approaches to how process

modeling languages are constructed. A popular method is to design the modeling notation as an

extension of an existing programming language. Though this design inherits many properties of its

base language, we argue that using an underlying language is counterproductive to the objectives of

simplicity and clarity. Instead, we construct an entirely new language based on the fundamentals of

process modeling. However, this approach introduces new challenges in automating and analyzing

process models for errors. We describe methods for solving these challenges through techniques of

identifying and eliminating process related errors.

3

To illustrate how this philosophy of process design can be implemented, we designed pml, a

stereotypical process modeling language, which fulfills specified objectives and requirements that

we derive from examining processes. Based on this language notation, we describe an approach to

understanding process related errors and analyzing process models. Using the software development

process for Netbeans, an Integrated Development Environment for Java programmers, we present

techniques for describing, refining, and analyzing process models.

4

Chapter 2

Processes and Modeling

2.1 Process Definition

People are continuously involved with process related activities on both a conscious and unconscious

level. Some processes are so trivial that they are completed without even thinking about the events

that take place, such as getting ready for work in the morning. However, even this process is more

involved than it originally appears. Some common tasks that a person might perform include the

following:

• Making bed

• Taking a shower

• Getting dressed

• Eating breakfast

• Brushing teeth

These tasks are performed so often that they are second-nature, but this list has already made

some important assumptions about this process. There are dependencies between these steps that

determine the order in which they are performed. It makes little sense to get dressed before taking

5

a shower. There is a similar dependency between eating and brushing teeth. These dependencies

are significant factors in determining the order in which the tasks can be completed.

Despite the limitations that dependencies put on task ordering, there are still many ways in

which these tasks can be performed. Some of the tasks have interdependencies, but others remain

independent, which allows for some variation in how the process is described. Instead of the order

given previously, the tasks can be arranged as:

• Eating breakfast

• Brushing teeth

• Making bed

• Taking a shower

• Getting dressed

This ordering achieves the same result as the first, but sets of dependent tasks are rearranged

without breaking their interdependencies. In fact, there are many possible arrangements of tasks

for this process that will all achieve the same result without violating any dependencies. However,

this is a very simple example of a process. More complex processes have tens to hundreds of tasks

that need to be performed and each task has specific dependencies that must be fulfilled. As the

number of tasks increases the dependencies become more intricate and difficult to track.

2.2 Control Flow

The order that tasks in a process are performed is referred to as the control, or control-flow of the

process. The example of getting prepared for work in the morning is a very simple process, but

there are more complex aspects of this process that must be taken into consideration. One such

consideration is that the person performing this process has more options than originally indicated.

For example, if the person was short on time, they may have to choose between eating and showering

in order to get to work on time. This represents a choice that has to be made during the performance

6

of the process. People make these types of decisions all the time while performing tasks. A common

activity in processes is selecting between various tasks that can be performed and is an essential

component in control flow.

Many tasks or series of tasks in a process need to be repeated, such as tying a tie. When tying a

tie, if the length of the tie is not correct when the knot is complete, then the tie must be undone and

retied. This task can be done just once or many times based on the need to fulfill some requirement.

This sort of situation occurs frequently within processes.

Another control related activity is being able to perform tasks concurrently. If there is more than

one person performing a process, then it is possible for them to perform independent tasks at the

same time. Concurrency provides the ability to do two things simultaneously, but to satisfy this,

the order of the concurrent tasks must be independent. If there exists a dependency, then one task

must be finished before the other can begin, which effectively eliminates any efficiency gained by

concurrency. With complex processes, concurrency is important for efficiency because many people

can be involved in a process and if they each have to wait for the others to complete tasks, then

efficiency is lost.

Each of these control properties are integral to performing processes. Without these concepts,

a process would only allow tasks to be completed sequentially in a predefined order. However,

processes are rarely a strict sequence of tasks, and are generally a complex mixture of decisions,

concurrent actions, and iterations.

2.3 Task Properties

Tasks are simply some action or activity that is performed during the execution of a process. These

are the building blocks for a process, but even they are complex and have a collection of properties

associated with them. At a high enough level of abstraction, tasks are simple and their actual

meaning is inferred. However, to gain more insight into the process, tasks have to be inspected more

7

carefully.

Tasks have three basic aspects:

Actors For a task to be performed, someone or something must perform the task. This is the actor

of the task. In large processes, there may be many actors who have to work on a single task.

Requirements Before a task can begin, certain conditions must be met. This usually means that

something has to be available for the task to be performed. If the task is to brush your teeth,

then a toothbrush is required. Without this, the task cannot be performed. Requirements

impose dependencies upon the order in which tasks can be executed [Sutton, 1995a; Sutton,

1995b]. If some required item is not ready, then the task must wait until it is provided.

Products When a task is complete, some activity has been performed and the result is some form of

product. For example, when you brush your teeth, the resulting product is clean teeth. These

products have a direct relation with requirements because what one task produces, some other

task may require. This results in a complex set of relations between tasks within a process.

These three elements constitute the internals of most tasks. Understanding the relationships

between these tasks is a fundamental goal of examining processes. In simple cases, these relations

are well understood, but complex cases pose a more difficult problem. When the number of tasks in

a process grows to the point that it is difficult to keep track of the interrelationships between them,

an automated method of tracking dependencies is needed.

2.4 Modeling Goals

Process modeling provides a means to control the growing complexity of processes. Understanding

and checking all of the dependencies that occur within complex models is a difficult task. If the

conceptual and procedural aspects of a process can be captured and represented in a model, then

tools can be designed to automatically check the models [Joeris and Herzog, 1999]. The objective of

8

modeling is not to recreate every minute aspect of the process, but instead, to extract the meaningful

properties of the process and imitate the behavior of the actual process [Armenise et al., 1993].

The ability to model processes before performing them allows errors to be caught before they are

manifested in the performance of the process, which might result in a complete redesign of the

process.

In addition to finding problems in a process, modeling allows the process designers to explore

many different designs before enactment. Complex processes may be too costly to actually implement

and perform in order to find the best design. Modeling allows the modeler to easily modify the

process and determine if the changes are effective.

Once a proper model has been created, the model can serve as a guide through the actual process

[Cugola and Ghezzi, 1998]. This automation of error checking ensures that the process described is

the same process that is being performed. In addition to ensuring the process is carried out correctly,

the process is repeatable with a high degree of accuracy.

2.5 Modeling Paradigms

There are many methods to approach the problem of modeling processes and different paradigms

provide numerous views about what properties of processes are important. One common paradigm

is rule-based or logical modeling [Dami et al., 1998; Klingler et al., 1992; Junkermann et al., 1994].

This method relies on rules to describe the tasks and then generates a model from the dependencies

specified in the tasks. This method does have advantages. One advantage is that the modeler only

has to worry about the individual tasks because the control of the process is the result of tools used

to generate the model. Another advantage is that when the model is created, the dependencies can

be fulfilled. However, there are a significant number of drawbacks that make this method less than

ideal.

The most obvious problem with this method is that the modeler has difficulty controlling the

9

order of tasks in the process. If two steps are independent, but the modeler wants them to be

performed in a sequence, then a false dependency must be introduced in order to achieve the desired

results, which adds a layer of complexity that should be unnecessary. We feel this method also is

counterintuitive to how people think about processes. The order in which tasks are performed is a

primary concern when defining a process. Therefore, it should be within the power of the modeler

to control the flow of the process.

Another disadvantage of logical modeling is that it can produce undesirable results especially

at high levels of abstraction. The rules required to provide control to a process are too low-level

to adequately control an abstract model. If no rules are specified, then it is difficult to generate a

model that accurately depicts the process at a high-level. For example, the high level description

presented for waking up in the morning could be generated in any possible order, which means that

each task could be set to run concurrently. However, this is not an accurate model because there

are dependencies that this type of modeling cannot illustrate without detailed specification.

The paradigm that we use is control-based [Cass et al., 2000; Sutton et al., 1997], which resolves

many of the problems inherent in the rule-based paradigm. In this approach, the control is specified

by the modeler, which allows her to describe the flow of control in the process. This method can

be used to model abstract processes, detailed processes, and every layer of abstraction between the

two [Kaiser et al., 1993]. At a high level of abstraction, such as the process of waking up in the

morning, the control is sequential, which allows the modeler to imply the dependencies without

actually having to specify them. If it is later decided that the model should be more specific, the

actual dependencies can be introduced. This method is more intuitive and reflects the steps that

humans take when describing a process.

10

Chapter 3

Process Modeling Languages

3.1 Language Goals

Although there are many different approaches to process modeling, there is a general consensus

about the goals of modeling languages. These goals embody how a language should capture the

aspects of a process in order to represent the processes properly. The most common goals are:

Simplicity: The complexity of the language should not prevent a person without strong technical

background from using the language. A non-technical person should be able to model a

process, such as the one described in Section 2.1, without being encumbered by the syntactic

or semantic requirements of the language.

Flexibility: The language can be applied in a variety of applications. The concept of processes

covers a wide variety of domains and a language should not be limited to a single area of

application. This language should be able to describe business processes, software processes,

or any other form of process equally.

Expressiveness: Being able to accurately reflect a process is essential in order to get any useful

information about the process.

11

Comprehensibility: The language should represent a process in such a way that the model can

be easily understood.

Enactability: The language should enable the model to mimic the actual execution of a process.

This automation of the process should not affect other goals of the language by introducing

control constructs that have no relevance to the actual process.

Though these goals have been repeatedly defined and examined, many language implementations

disregard these goals in an effort to achieve some additional functionality [Cugola and Ghezzi, 1998].

3.2 Graphical Language Approach

Though formal notations generally refer to written languages, there are approaches that use a graph-

ical representation to model a process [Dami et al., 1998; Cass et al., 2000; Minas and Hoffmann,

2001]. The advantage to a graphical approach is that the process is displayed as a graph or flow

chart that can be easily followed. However, the attractiveness of the graphical display eventually

erodes as the detail of the model increases. In order to represent properties that are essential to a

process, the graphical approach must introduce some visual symbols to represent these properties.

As the model becomes more detailed, these symbols compound until they clutter the display and

distract from the actual model. With the introduction of symbols, a key is required to understand

their meaning, which is an added level of complexity that is not necessary in written languages. In

addition, the graph of a large and complex model can span a considerable area, which introduces a

considerable physical distance between sections of the process. These problems deal with the actual

layout of the model, but there are more inherent problems to this approach.

Graphical language approaches are generally built on top of a written modeling language, and

the addition of a graphical layer may introduce problems when translating the graphical model of

the process to a written model. This extra step adds an extra level of complexity, which allows for

the possibility of introducing errors into the process. Though the graphical language is designed

12

to have the same expressiveness that the written language has, there is always the possibility of

misinterpretation or misrepresentation of some section of the process. Therefore, the graphical

language approach has a dependency on both the process modeling language it is built upon, and

the method of translation to the lower-level language. This compounds the problems of both the

written and graphical languages, which can result in an complicated and error prone modeling

technique.

3.3 Programming Language Approach

The most common approach to designing a process modeling language is to build the language

on top of an existing programming language. There are strong ties between concepts in process

modeling and programming which makes a programming language seem like the ideal notation

for process modeling. A stereotypical example of this language design approach is the language

APPL/A [Sutton, 1990; Sutton et al., 1995]. This language is designed as an extension to the

programming language Ada [Barnes, 1998] and was developed as a supplement to Ada because it

has well established support for many of the constructs needed for a modeling language such as

concurrency and iteration. Building upon Ada allowed for the reuse of a significant amount of

research already applied to solve similar problems.

There many advantages to using this bottom-up approach to language design. APPL/A was able

to take advantage of features such as concurrency, iteration, modularity, information hiding, and

exception handling that are integrated into Ada. Another important feature is the ability to do

mathematical operations. Expressions are native to the language, which provides a wide variety of

numeric operations and comparisons. In addition, the existing compilers provide type checking and

error checking capabilities. Other modeling constructs such as relations and tasks were effectively

implemented using Ada constructs of packages and tasks, though tasks have a different meaning

between the two languages. Using Ada as a framework for a process modeling language allowed the

13

language designers to base their efforts on well established constructs and implementations. Despite

numerous advantages, there are some fundamental concerns raised by this language design approach.

Though the use of an underlying programming language has obvious benefits, it compromises

many of the goals of modeling languages. Ada 95 has ninety-eight keywords specified in its grammar

and building a language upon this means introducing even more keywords. The result is that from the

very first stage in the design of a modeling language, the language is complex, not simple as intended.

A person who is modeling a process may not need to know the meaning of all of the keywords in

Ada, but they must recognize them in order to avoid using them. Using a keyword unintentionally

could result in checking errors caused by the lower level language that would confuse the modeler

because they have no relevance to problems in the actual model. This places an additional burden on

the modeler to understand aspects of two languages, the modeling language and the programming

language.

Building on a programming language places limitations on the expressiveness of the modeling

language. Process related activities may not be expressible in the underlying programming language

and therefore cannot be expressed in the modeling language. Ada has a requirement that concurrent

tasks that need to communicate must synchronously meet, which is called a rendezvous. This

constrains the modeling language because asynchronous activities exist in processes. The primary

concern with this limitation is that it is not a problem with the modeling language. Instead, it is a

limitation imposed by the language on which it was developed.

The representation of the process model in this style of modeling language can also be confusing.

To understand how the process will be enacted depends on the underlying language and how the

process will execute once it is compiled. What may seem intuitive at the modeling level, may not be

reflected at the programming language level, which introduces the potential for misrepresentation

of the process within the inter-operation of the two languages.

Existing tools that support the language can also be problematic. The error checking capabilities

of the Ada complier are designed for checking errors in computer programs. However, the errors that

14

can occur in a process are based on a different criteria than those of programming language. While

compilers are designed to examine programs for static errors, processes are dynamic in nature and

many of the useful features of static checking, such as type checking, are not essential for process

models. This limitation of the tool is not because of an oversight in the modeling language design,

but a conceptual difference between processes and programs.

The primary concern of this style of language design is that it relies on a language paradigm that is

not explicitly designed for process modeling. Programming languages are designed for computation.

Considerable research has gone into developing programming languages, but their target applications

are not the same as process modeling languages. Though there are many similar concepts between

programming and process modeling, there are subtle differences that separate the two fields. These

subtle differences prevent the two from interacting in a mutually beneficial manner. Therefore, a

new language design is needed that focuses on and represents the concepts of process models rather

than relying on programming languages, which are a product of a different domain research.

3.4 Process Language Approach

The language design approach that we propose is based on a philosophy derived from the fundamental

concepts in process modeling described in Chapter 2. Instead of using existing languages to reflect

processes, we examine the requirements of process modeling languages and design a language based

on those principles. The result of our approach is the modeling language pml [Atkinson and Noll,

2003; Noll and Scacchi, 2001]. This language is a process modeling language that we developed

without any external support by existing languages and though it does not have the support of a

well established programming language, the benefits of this approach outweigh the losses.

This top-down approach to language development has many advantages that address problems

inherent in the bottom-up approach. One advantage is that the initial level of complexity of the

design is considerably less because there is no reliance on a lower-level programming language. The

15

pml grammar incorporates only thirteen keywords, which is a significant simplification compared to

the hundred or more keywords in similar languages. This simplification of the language has many

implications: the language is much easier to learn, which makes it more attractive to those who do

not have a background in programming, and modelers do not have to worry about understanding

restrictions of an underlying language that could result in modeling errors.

Another positive aspect of this language is that the syntax is very straightforward. Using a

programming language imposes the syntax of the programming language on the modeling language.

However, pml is not subject to this restriction, which allows for a very simple syntax. In pml, all

statements follow the form: keyword [identifier] { . . . }. This syntax is very simple and helps to

eliminate the confusion of complicated grammars. The only consideration is about what statements

can be nested inside other statements, but nesting is generally shallow.

Another problem that this language design addresses is the difficulty in achieving the right

level of expressiveness. Modeling languages built on programming languages are restricted by the

underlying language, but not having that restriction allows for a much more adaptable grammar.

pml incorporates a language construct called a qualifier, which is not a keyword in the language,

but is a user-defined specification that enumerates the characteristics or qualities of a resource,

which allows the modeler to emphasize, constrain, or modify resources in the process model without

complicating the grammar. This also increases the expressiveness of the language by allowing the

modeler to specify how the resource should be treated.

The simplicity of the grammar has a direct correlation to the understandability of language.

Because the language has a simple syntax, the resulting models are easier to understand. The

uniform nature of statements allows anyone to follow a process model even if they do not fully

understand the intricacies of the language.

This design approach also makes the process model easier to enact. Instead of relying on a

compiler to generate code that is later executed to enact the process, the actual process model can

be enacted. pml employs an enactment environment to interpret and enact the process model and

16

is designed specifically for execution of process models. Therefore, it understands how to handle

process related activities as opposed to a program that is designed for computation.

Though this approach does address many of the conceptual concerns raised by the programming

language approach, there are many implementation concerns that need to be addressed. The ad-

vantage of using a programming language is all of the support that exists for the language, but

by removing the programming language, the advantage is lost. pml does not inherit the tool and

language support that benefit other modeling languages. Therefore, these tools must be recon-

structed, but this allows for the tools to be redesigned in a way that reflects processes rather than

programming.

One feature that pml does lose by not extending a programming language is mathematical sup-

port. Mathematical concepts are essential to programming languages and have considerable support

because they are designed for computational purposes. Complicated mathematical expressions are

trivial for a programming languages, but adding support for this in a process modeling language like

pml would require extensive work for a feature that would rarely be used. Therefore, pml supports

only a small subset of math, which allows representation of mathematical quantities, but limits the

computational ability of the language. This restriction forces the modeler to work at a higher level

of abstraction than a programmer would, which prevents the model from becoming too detailed.

Another feature that programming languages provide and must be recreated is the ability to

check for errors, but this loss is not as detrimental as it may appear. The type of checking that a

programming language performs does not reflect the type of errors that are common in a process

model. Redesigning the way that checking is done requires significant effort, but the result is a tool

that implements the concepts of a process model rather than a program. Even in the context of a

process modeling language with programming language support, this tool could be a useful addition.

Finally, the actual means of enacting the process model is lost. A programming language can

compile a process model and execute it on a computer. However, pml does not natively support

this functionality. The specification of the language does not translate directly to code, and the

17

constructs that were added to make the language more expressive and flexible, like the qualifier,

make translation to a programming language infeasible. Though creating an interpreter requires

additional effort, the interpreter would also be designed under the philosophy of process modeling

rather than programming.

A process modeling language can inherit many features by extending a programming language.

Though these features seem to complement the modeling language, they actually complicate the

language while providing a false sense of achievement. Programming languages are well researched,

but they are designed for problems that are conceptually different than those found in process

modeling. Though the two language paradigms share many of the same concepts, they are enough

fundamental differences that they should be treated separately.

18

Chapter 4

Language Design

4.1 Language Fundamentals

The language goals specified in Section 3.1 define the framework on which pml was designed. Using

the software engineering waterfall process described in [Pressman, 1992], we will illustrate how these

design decisions were arrived at and implemented. The syntax for defining a process in pml is

simply:

proce s s i d e n t i f i e r { . . . }

The evolutionary nature of this language allows for a very trivial definition of a process model:

proce s s wate r f a l l mode l { }

While this is a syntactically legal pml model, little information can be derived from it other than

the fact that a process exists. Any other information drawn from the model at this point is based

on intuition from the name of the process. However, this is the basis for a refineable model, which

will eventually result in a detailed recreation of the process.

The most fundamental component of a process is a task or action, which are terms that can be

used interchangeably. The pml syntax for an action is:

19

ac t i on i d e n t i f i e r { . . . }

With just the process and action statements it is possible to make a non-trivial model of the waterfall

process:

proce s s wa t e r f a l l {
ac t i on ana lyze { }
ac t i on des ign { }
ac t i on code { }
ac t i on t e s t { }

}

This high-level description provides information about what steps need to be completed and the

order in which they should be performed. Though there is little detail about any of these steps, the

model has enough information for a basic understanding of the waterfall development process.

4.1.1 Resources

Resources are an essential component to creating a process model that does more than just reiterate

the steps in a process. The ability to describe the flow of resources allows the modeler to recreate

a variety of dependencies that occur within a process. In early development of the language, pml

incorporated a specific set of constructs for specifying the relationship between actions and their re-

sources, such as inputting, outputting, requiring, and providing resources. Inputting and outputting

resources illustrated that the resource’s origin is from an environment external to the process, while

requiring and providing resources concerned resources within the process. However, after careful

analysis of task structure, it was clear that defining the source of a resource is not necessary to an

action. The only postulate for an action is that the resource is available when the process enters or

exits the action. Though constructs for defining inputs and outputs to the process may be utilized

by external tools, they have no meaning within the language and were removed for simplicity. The

new specification allows actions in pml to require and provide resources, which reflects the action’s

need for or the production of a resource, but gives no indication of its origin or destination. Using

these constructs, we can modify the current example to provide more information about the actual

internals of an action:

20

ac t i on ana l y s i s {
r equ i r e s { f unc t i on && behavior && performance && i n t e r f a c e }
prov ides { ana l y s i s && ana lys i s documentat ion }

}

This statement illustrates the conditions that must be met for this action to be performed and

to terminate. Entrance to the action is not possible unless the function, behavior, performance,

and interface are available and exiting is not possible without analysis and analysis documentation.

Using these predicates, a modeler can reconstruct the dependencies that exist within a process.

4.1.2 Attributes

Resources alone are not enough to provide the detail needed for an accurate model. While many

actions in a process may require a resource, there are specific qualities or characteristics of the

resource that are essential and cannot be described by the resource’s name. We previously stated

that the action analysis:

prov ides { ana lys i s documentat ion }

However, introducing a new resource to describe the fact that the analysis portion of the docu-

mentation is complete, complicates the process. Without being able to modify the properties of a

resource, a new resource needs to be created to describe any change in the process. Therefore, we

provide attributes to solve this problem by describing the state of a resource and thus it would be

more clear to state:

prov ides { documentation . a n a l y s i s }

While analysis documentation is a abstract resource created to describe the result of an action,

documentation is a concrete resource that will persist throughout the process as new sections of

the documentation are added. Attributes provide a means to describe changes to resources without

having to create spurious resources.

21

4.1.3 Expressions

Finally, attributes alone cannot always adequately describe specific qualities and states of resources

or their properties. Actions often rely on attributes having specific values and as the model becomes

more detailed, constraining the state of resources and attributes provides more explicit control over

the process. By adding expressions the model transitions to another level of detail and can represent

state:

prov ides { documentation . a n a l y s i s == ”complete ” }

This statement clearly emphasizes that the attribute has a specific state, but it is important to

understand the actual meaning of the expression. Declaring that an attribute has a specific state

does not bind the attribute to that state or change the value of the property. In fact, nothing in the

model actually changes any resource or attribute. Expressions assert that some relation is true at a

specific point in the enactment of the model. Any form of binding or changes to state happen during

the execution of an action and are not illustrated in the model. The details of how the internals of

the action are being performed has no relevance to the predicates of the model.

4.2 Control

pml has four mechanisms, based on the control related activities described in Section 2.2, to describe

the control of a process. These control flow constructs reflect process related activities and describe

the ordering of steps in a process.

4.2.1 Sequence

A sequence is the most basic form of control and is the default control mechanism when nothing else

is specified. The actions in a sequence construct are performed in the order that they are specified:

sequence {
ac t i on f i r s t { }
ac t i on second { }

22

ac t i on th i rd { }
}

This construct is the most natural and intuitive form of control for a process. When one thinks

about performing any process, a simple sequence of steps to accomplish the final goal is often the

easiest representation.

4.2.2 Iteration

A condition that occurs quite frequently within processes is the need to repeat certain steps. While

iterating over these steps, there are two concerns that must be addressed: when to go back and

repeat the steps, and when to stop repeating and continue the process. Generally, this decision

is handled by an expression that is evaluated to determine if the steps need to be repeated. This

method works well if the number of repetitions is known when the loop begins, but the dynamic

nature of a process often results in this information being unavailable. An example of this non-

deterministic nature processes is making a cake where the instructions state: add flour, stir mixture,

test for consistency, repeat until mixture is thick and consistent. There is no indication of how

many times the steps in the process need to be repeated and the judgment of when the mixture is

ready relies entirely on the person making the cake. Based on this dynamic decision procedure, we

constructed pml to model iterative constructs as they exist in processes and focus on the concerns

of when to exit and when to continue. The syntax for an iteration follows the same structure that

a sequence:

i t e r a t i o n {
ac t i on f i r s t { }
ac t i on second { }
ac t i on th i rd { }

}
ac t i on post { }

When determining which path to take in pml, the predicates of the first action in the loop,

first, and the first action following the loop, post, are the points of interest. When the last action

in a loop is complete, the loop determines how to proceed based on whether or not the requirements

23

in the first action of the loop and the first action following the loop are satisfied. There are four

possible scenarios:

• If the requirements for the first action in the loop are met, but not for the first action following

the loop, then the loop is reentered.

• If the requirements for the first action following the loop are met, but not for the first action

in the loop, then the loop is exited.

• If the requirements for the first action in the loop and the first action following the loop are

met, then it up to the person performing the process to choose which action is taken.

• If the requirements for the first action in the loop and the first action following the loop are

not met, then the process waits until one of the other conditions is true.

At first this dynamic decision procedure may appear to be inconvenient because processes may

need to wait for a human to choose the proper path, but it actually allows the process to be more

dynamic by providing multiple options when they exist and suppressing them when only one path is

available. Additionally, there are many conditions in processes that are based on human judgment

and cannot be evaluated by a machine.

With this control construct we can describe additional information about the waterfall process.

In theory, the waterfall process should enter each task and proceed directly to the next task in

sequence until the final task is completed and the product is ready. However, in reality, there are

many factors that can cause problems to occur within the process, such as errors found in the code,

which results in redesign and additional coding. To illustrate this behavior we can state:

i t e r a t i o n {
ac t i on des ign { }
ac t i on code { }
ac t i on t e s t i n g { }

}

This high-level example describes how testing can result in redesign, recoding, and retesting until

the product is actually complete.

24

4.2.3 Selection

Another activity that occurs regularly in processes is choosing between possible paths. Selecting

one of many paths requires that a decision be made about which direction to take. The selection

construct in pml defines possible paths of execution with only one being performed:

s e l e c t i o n {
ac t i on cho i c e 1 { }
ac t i on cho i c e 2 { }
ac t i on cho i c e 3 { }

}

The decision procedure for determining which path to take is handled in a similar manner to

iterations. In this case, the predicates of the first actions in each possible path are the focus. The

requirements for the first action in each path are evaluated and the result is one of three possible

conditions:

• If the requirements for only one of the actions in the selection are satisfied, then that path is

taken.

• If the requirements for two or more actions in the selection are satisfied, then the person

performing the process must choose which path to take.

• If none of the requirements of the action in the selection are met, then the process waits until

one of the other conditions is true.

This construct is derived directly from how a person would consider possible paths by examining

what paths are available and choosing the path that best serves their needs. This type of decision

in process models cannot always be automatically determined and therefore must rely on human

interaction to choose which path to take. Though it is possible to simply choose the first available

path, therefore avoiding human interaction, there might be external considerations about which path

should be taken that an automatic procedure cannot foresee.

25

4.2.4 Branch

The branch construct specifies concurrency of actions within a process:

branch {
ac t i on path 1 { }
ac t i on path 2 { }
ac t i on path 3 { }

}

Concurrency is usually employed as an optimization, which is generally performed implicitly

and does not have a decision procedure associated with it. Each path must be performed, which

removes any need for human interaction related to control. However, there are problems that arise

from using concurrency in a process model. In Section 3.3 we noted that APPL/A was limited by

its inability to express asynchronous rendezvous because of the constraints of Ada. pml does not

restrict the way that a rendezvous is handled. Instead, the tools that interpret pml must implement

which method is used. We realize that this introduces an ambiguity as to what will actually happen

at a rendezvous, but processes do not adhere to the strict nature of programming languages and the

dynamic nature of processes requires that the decision be left to the modeler.

Relying on synchronous rendezvous has a significant disadvantage in that many processes require

asynchronicity. However, artificial constraints in an asynchronous implementation can be introduced

to recreate a synchronous rendezvous:

branch {
ac t i on path 1 { prov ides { r 1 } }
ac t i on path 2 { prov ides { r 2 } }

}
ac t i on post { r e qu i r e s { r 1 && r 2 } }

In this example action post requires resources from both paths, so they must both complete before

the process can continue. Though this does allow both branching methods to be represented, intro-

ducing artificial dependencies into the model complicates the model with artifacts that only relate

to solving control related problems.

The waterfall model states that testing should be done after the code is written, but writing

tests is often started at the same time as coding, so that tests can be prepared as the code is written

26

rather than having to wait until the code is complete. To represent this we can change our model

to:

branch {
ac t i on code { }
ac t i on wr i t e t e s t s { }

}

4.3 Advanced Language Features

With the language features of pml mentioned in the previous section, a model can be constructed

that will portray the control and flow of resources within the process. For many models, this

information is enough to extract meaningful feedback from the process. However, more complicated

and detailed models require additional features. The evolutionary nature of pml allows for more

precise constructs to be used to refine the model to embody the specifics of a process and allow

processes to interact.

4.3.1 Qualifiers

Though attributes and expressions provide methods for describing properties and states of resources,

not every quality of a resource can be expressed in this manner. There are aspects of a resource that

are extrinsic to the resource and apply to how the resource is handled, modified, and restricted. For

example:

ac t i on code {
r equ i r e s { des ign && funding }

}

This action has two requirements that consist of some tangible resource. However, the two re-

sources are profoundly different and must be treated in different ways. The design is an inexhaustible

resource in that it can conceivably be used over and over again without losing any of its substance

or quality. However, funding is exhaustible and can only be used until the funding is gone. Repre-

senting this difference in a model is a difficult task. Some languages provide keywords associating

27

a resource with being consumed by an action [Klingler et al., 1992]. Though adding keywords will

make modeling a specific situation, such as this one, much easier, there are many possible situations

that cannot be conceived of while designing the language.

Attempting to enumerate all of the possible factors that affect resources by introducing terms

into the language to describe how a resource should be treated is infeasible because it is not possible

to characterize every quality a resource could possess. There are a number of situations that are

difficult to describe and adding a language construct to clarify how each situation should be handled

explicitly violates our goal of simplicity and the expressiveness of the language would rely on how

many situations we could envision. One such situation was related to the iteration construct. In

Section 4.2.2 we describe an iteration over the design, code, and test stages of the waterfall, but

it is difficult to describe the role of resources within this construct and an interesting question was

posed: If the coding phase produces code and an executable during each iteration, are they the

same resources or are they new ones? Intuitively, the code is still relatively the same because only

small modifications were made, but the executable could be entirely new and not the same as the

executable from the previous iteration. Therefore, we needed a way to describe that a resource can

change or be replaced.

A similar problem occurs when creating a new resource. Providing more information about how

a resource was created is not possible with the basic language constructs of pml. For example, code

does not spontaneously appear in the coding stage, but is derived from the design, but it is not

possible to illustrate this quality of the code without additional levels of specification.

To alleviate these problems, we introduced a construct called a qualifier into pml. The qualifier

is used to describe characteristics or qualities of a resources that are beyond the scope of the regular

syntax of the language. With this construct we can state:

(par t i a l l y consumed) funding

In this example partially consumed is a user-defined quality of the resource funding. This lan-

guage feature also supports multiple layers of qualifiers, such as:

28

(new) (generated) executab l e

With this construct, the model can better represent the process, but there are some difficulties

associated with using a qualifier. For the process to be enacted, the environment must understand

how to handle the qualifier if it has a direct impact on the execution of the process. This means

that additional functionality must be provided to interpret the meaning of a qualifier. Using the

language features of pml, we now present a detailed waterfall process model:

proce s s wa t e r f a l l {
ac t i on ana lyze {

r e qu i r e s { f unc t i on && behavior }
r e qu i r e s { performance && i n t e r f a c e }

prov ides { requ i rements }
prov ides { documentation . a n a l y s i s == ‘ ‘ complete ’ ’ }

}
ac t i on des ign {

r e qu i r e s { requ i rements }
r e qu i r e s { documentation . a n a l y s i s == ‘ ‘ complete ’ ’ }

prov ides { des ign }
prov ides { documentation . des ign == ‘ ‘ complete ’ ’ }

}
branch {

ac t i on code {
r e qu i r e s { des ign }
r e qu i r e s { documentation . des ign == ‘ ‘ complete ’ ’ }

prov ides { documentation . code == ‘ ‘ complete ’ ’ }
prov ides { (der ived) code && (new) executab l e }

}
ac t i on w r i t e t e s t s {

r e qu i r e s { requ i rements && des ign }
r e qu i r e s { documentation . des ign == ‘ ‘ complete ’ ’ }

prov ides { t e s t c a s e s }
}

}
ac t i on t e s t {

r e qu i r e s { code && t e s t c a s e s && executab l e }

prov ides { code . t e s t ed }
}

}

This example is one of many possible models of the waterfall development process. Even this

model can be refined to include more detail to meet the needs of the person performing the process,

such as adding scheduling, funding, and project specific information. However, this model can be

applied to any waterfall development process without modification because it is at a high enough

level to describe the general process, but low enough to capture the essential control and resources

29

of the process.

4.3.2 Process Linking

In Section 4.1.1 we mentioned that pml had previously implemented an input and output construct

to illustrate where resources were located. Though these features were removed from the language

because they did not address language specific issues, external tools rely on this information to have

a better understanding of the process. For example, an enactment environment may want to know

which resources are inputs to the process and which resources are products of the process so that

they can be linked to other related processes. After considering the impact of including constructs

within the language to specify these inputs and outputs, we decided that it would complicate and

detract from the cohesiveness of the language to include constructs that were not language specific.

Therefore, we constructed an external utility to handle process inputs and outputs while maintaining

the structure of the pml grammar.

The syntax for inputs and outputs is:

input { . . . }

output { . . . }

This additional utility of the language can be used with the waterfall model to describe some inputs

to the process such as:

input { t im e l i n e && funding }

Using inputs and outputs makes the environment aware of resources that can be linked to other

processes. In this example the time line and funding for the project are external to the process,

which means that these resources were created by another process or were defined prior to the

entering the process.

In order to tie two separate processes together, information must be passed between the two

processes. Separate processes do not have access to the internals of other processes, so they must

30

communicate through resources passed between them. Once declared, the environment can deter-

mine how the processes relate to each other.

The problem with linking processes in this fashion is that the environment must construct a path

of execution based on the inputs and outputs of several processes. This introduces a logical paradigm

on top of a control based paradigm. There are advantages and disadvantages to constructing process

execution logically. One advantage is that a second language is not needed to describe how the

processes interact. The dependences at this level are arguably simpler than those contained within

a process. However, mixing the two paradigms complicates the enactment process.

4.4 Advanced PML Example

So far we have examined how processes can be modeled using pml, but we have only provided trivial

examples. In this section, we will explore a complicated process and illustrate the evolutionary nature

of the language along with the facilities provided to deal with unforeseen problems. While processes

in business and engineering are commonly used for modeling, we aim to expand the scope of process

modeling beyond traditional modeling topics.

The model that we present is related to chemistry and was developed with the aid of a chemistry

student performing research using peptides. Peptides are chains of two or more amino acids and

have a variety of applications within the field of chemistry relating to metabolic functions, but the

application of peptides are not relevant to this example. The process we will model is the actual

building of a peptide, which implements a variety of language features from pml.

4.4.1 Abstract Peptide Model

Initially, we can say very little about the actual process for building a peptide. Without an explana-

tion of what the process entails, all we can describe is that it is actually a process. This is a trivial

aspect of modeling, but can be described by pml as:

31

proce s s pep t i d e s yn th e s i s { }

Providing useful detail to this model requires some understanding of the process of synthesizing a

peptide.

Building a peptide requires two components: a resin, and amino acids. The resin acts as an

anchor to which the first amino acid attaches after which additional amino acids are added to form

a chain of two or more acids. However, the resin must be prepared before an amino acid can be

added, which is referred to as swelling the resin. The amino acid must also be prepared before

it can be added to the resin or to another acid, which is called activating the amino acid. Once

these steps have been performed the amino acid can be added to the chain. Adding an acid to the

chain can introduce impurities in the peptide, so the chain must be purified by a step that is called

flow-washing. Once purified, the amino acid must be deprotected by removing the tail section of the

chain (this section is known as the BOC group) so that another amino acid can be added, which is

accomplished by a process called cleaving the BOC group. This step can also introduce impurities,

so the chain must be flow-washed again. These steps, with the exception of swelling the resin, must

be performed for each acid that is added to the chain. When the amino acid chain is complete,

the resin needs to be removed to free the peptide, but before the resin can be removed, it must be

deswelled to prepare it for removal. Once deswelled, the resin can be cleaved from the amino acids.

The final step is to lyophilize, or dry, the peptide so that it can be used in experiments.

By looking at the steps in the description, we were able to make an abstract, but informative

model of the process:

proce s s pep t i d e s yn th e s i s {
ac t i on s w e l l r e s i n { }

i t e r a t i o n {
ac t i on ac t i va t e amino ac id { }
ac t i on add amino acid { }
ac t i on f low wash { }
ac t i on c l eave boc g roup { }
ac t i on f low wash { }

}

ac t i on d e sw e l l r e s i n { }
ac t i on vacuum pump { }
ac t i on c l e av e p ep t i d e { }

32

ac t i on l y o p h i l i z e p e p t i d e { }
}

At this level, the model articulates the tasks and the control of the process. Though there is not

enough information for a complete understanding of the process, the order of the tasks is clear and

the visual presentation is much more precise than a standard written explanation. While this is

enough information to achieve an understanding of the process, further description will lend to a

much more precise understanding of synthesizing a peptide.

4.4.2 Adding Resources and Dependencies

The next step in designing a process model is building the dependencies by describing the resources

that are needed by each task. At this point, we are confronted with determining what level of

detail is needed for resources. This poses an interesting problem because the resources that are

used in making a peptide can be described at many different levels. Chemistry experiments, such

as synthesizing a peptide, often rely on very hazardous materials that require the use of protective

gear. Having to specify every piece of protective equipment, such as goggles and gloves, is tedious

and not necessarily related to the actual process of building a peptide. However, depending on the

target audience of the model, this information could be helpful. The same applies for tools used in

building the peptide. If a step requires that a solution be stirred, it is up to the modeler to decide if

the step should require a stirring stick. While a stirring stick is obviously needed to perform a task,

the use of such a tool is so intuitive that it may not be material to the task. Therefore, a primary

concern in developing the model is deciding how much detail is actually necessary.

In this example, we assume that noting equipment that is standard for a laboratory is non-

essential to the process of building the peptide unless it has an important role throughout the

process. Many of the resources that are needed by steps in this process are chemicals that are used

for performing actions such as flow-washing or activating amino acids. In addition, there are tools

that are necessary, such as vacuums that are used to remove extraneous chemicals. Understanding

33

what these chemicals are (such as TFA, DMF, etc.) or the exact operation of a certain piece of

equipment is not necessary to modeling the process. However, they are essential resources and by

adding this information, the resulting model is:

proce s s pep t i d e s yn th e s i s {
ac t i on s w e l l r e s i n {

r e qu i r e s { TFA && DMF && r e s i n }
r e qu i r e s { s c i n t i l l a t i o n v i l e && vacuum }

prov ides { sw e l l e d r e s i n }
}

i t e r a t i o n {
ac t i on ac t i va t e amino ac id {

r e qu i r e s { DIEA && HBTU && amino acid }

prov ides { ac t i va t ed amino ac id }
}
ac t i on add amino acid {

r e qu i r e s { ac t i va t ed amino ac id }
r e qu i r e s { s c i n t i l l a t i o n v i l e && sw e l l e d r e s i n }

prov ides { r e s in amino ac id complex }
}
ac t i on f low wash {

r e qu i r e s { DMP && vacuum }
r e qu i r e s { r e s in amino ac id complex }

prov ides { pu r i f i e d r e s i n am ino a c i d c omp l ex }
}
ac t i on c l eave boc g roup {

r e qu i r e s { TFA && pur i f i e d r e s i n am ino a c i d c omp l ex }
r e qu i r e s { vacuum }

prov ides { depro t e c t ed r e s in amino ac id comp l ex }
}
ac t i on f low wash {

r e qu i r e s { DMP && vacuum }
r e qu i r e s { depro t e c t ed r e s in amino ac id comp l ex }

prov ides { pu r i f i e d d ep r o t e c t ed r e s i n am ino a c i d c omp l ex }
}

}

ac t i on d e sw e l l r e s i n {
r e qu i r e s { pu r i f i e d d ep r o t e c t ed r e s i n am ino a c i d c omp l ex }
r e qu i r e s { MEOH && CH2CL2 && vacuum }

prov ides { de swe l l ed r e s i n amino ac id comp l ex }
}
ac t i on vacuum pump {

r e qu i r e s { de swe l l ed r e s i n amino ac id comp l ex }
r e qu i r e s { vacuum pump }

prov ides { dr i ed de swe l l ed r e s i n am ino ac i d comp l ex }
}
ac t i on c l e av e p ep t i d e {

r e qu i r e s { dr i ed de swe l l ed r e s i n am ino ac i d comp l ex }
r e qu i r e s { HF && HF cleavage dev ice }

prov ides { c rude pept ide }

34

}
ac t i on l y o p h i l i z e p e p t i d e {

r e qu i r e s { c rude pept ide && MEOH && dry i c e && l y o p h i l i z e r }

prov ides { l y o ph i l i z e d p e p t i d e }
}

}

Clearly this revision of the model is more complicated than the first, but it provides essential

information about what is needed and produced at each step in the process. However, this model

exhibits problems discussed in Section 4.1.2 where new resources are being created at every ac-

tion to describe changes that take place. Though the model is comprehensible, it does not reflect

the changes to resources in the process. The majority of actions in this model are modifying the

resin amino acid complex rather than creating a new resource, but with just resources, it is not

possible to represent these types of changes.

Choosing what objects are represented as resources can be challenging because of how they relate

to other resources and how they change throughout the process. The scintillation vile, resin, and

amino acids have a complex relationship because each resource begins as a separate entity, but as the

process progresses, they are combined. The scintillation vile holds the resin and amino acids as they

are being fused together, so the modeler is faced with the problem of describing this relationship.

In this situation, it makes sense to create a new resource to describe the combination of these

components to simplify the model and to describe how the resources are being collectively modified.

Many actions later in the model do not contribute additional objects to this combined resource, but

modify some property, so it does not make sense to create a new resource each time the resource is

altered.

The control specification of the model also appears to have problems. Amino acid chains can

have two or more amino acids linked together, but there is no specification of how long the chain is

or how many times the iteration should be repeated and in what order the amino acids should be

added to the compound. In addition, the amino acid resource is ambiguous in that it could mean

that the same amino acid is added each time or it could mean a new acid is added. There are various

35

methods for dealing with these problems. One method is to eliminate the iteration construct and

explicitly specify the steps to add each amino acid, but this is an inelegant solution. If each addition

of an amino acid means that the same steps must be rewritten then the resulting model will be much

longer than necessary. If this is were the only possible solution, then pml would not have the level

of expressiveness needed to model this process. Another possibility is that it is improper to treat

this situation as one would a loop in programming.

One of the objectives of the process model is to represent the actual process and guide the

person performing the process. However, this does not mean that the model should be so detailed

that it can foresee every course of action. If this were the case, then it would be a programming or

work-flow problem. Though it is possible that a machine could be designed to replicate each step

in the process of making a peptide, it would only be able to make the peptides that it was designed

to make. The general process for making a peptide is much more abstract, which is why human

interaction is necessary. Therefore, the process should not necessarily be concerned with how many

and in what order amino acids should be added because that is the responsibility of the person

synthesizing the peptide. pml is designed to model the process, not force the enactor to strictly

follow a defined number of instructions. Enacting a process is a collaborative effort between the

model and the person performing the process and both have certain responsibilities that must be

fulfilled for the process to be completed.

4.4.3 Detailed Specification Model

In Section 4.4.2 we noted that the first revision of the model did not provide adequate representation

of the process, though it did illustrate the flow of resources and dependencies. Using language

constructs from pml, such as attributes, expressions, and qualifiers, we can eliminate spurious

resources and reduce the ambiguity of the model.

Initially, we attempted to use attributes to replace statements, such as:

prov ides { sw e l l e d r e s i n }

36

with a more precise notation:

prov ides { r e s i n . s t a tu s == ‘ ‘ swe l l ed ’ ’ }

Though this clearly depicts that the resin was only modified rather than transformed into a new

resource, it introduces a number of conceptual problems. If the status attribute of the resin is

describing that resin is swelled, then how does changing the attribute affect the resource? If we

wanted to change the state from swelled to deswelled, then it is obvious that we want to replace

the attributes value. However, if we wanted to change the state from swelled to purified, then there

could be two desired results: either the status is no longer swelled or the state is both swelled and

purified. Trying to consolidate these two possible interpretations produces a confusing model, so

we developed a more intuitive solution that eliminates this confusion. Instead of relying on one

attribute to describe the state of a resource, a variety of attributes should be used. Therefore, if we

want to specify that the resource has two properties simultaneously we can state:

prov ides { r e s i n . swe l l ed == ‘ ‘ true ’ ’ && r e s i n . p u r i f i e d == ‘ ‘ true ’ ’ }

While using attributes in this manner solves the problem of spurious resources, describing how

the scintillation vile, resin, and amino acids are combined and how the amino acids should be treated

within the iteration requires the use of qualifiers. Qualifiers allow additional specification of qualities

of resources and how they should be handled in the process. In this example, we want to illustrate

that the scintillation vile, resin, and amino acids are combined to form a new resource. One solution

is to declare that the new resource is derived from other resources:

ac t i on add amino acid {
r equ i r e s { amino acid . a c t i va t ed == ‘ ‘ true ’ ’ }
r equ i r e s { s c i n t i l l a t i o n v i l e && r e s i n . swe l l ed == ‘ ‘ true ’ ’ }

prov ides { (der ived) r e s in amino ac id complex }
}

Applying the same construct to the amino acid problem we can state:

ac t i on ac t i va t e amino ac id {
r equ i r e s { DIEA && HBTU && (new) amino acid }

prov ides { amino acid . a c t i va t ed == ‘ ‘ true ’ ’ }
}

37

This extra level of specification does not actually modify the resource, but describes a quality of the

resource, such as an amino acid being new to the chain.

Combining all of these enhancements results in a very detailed model of the process, but this

does not mean that more detail is not possible. This level of detail was chosen because it describes

the process by including resources that are necessary for the process and abstracts less important

aspects. Much more detail could be provided about resources and the properties they have, but

there is a point where the detail can overshadow the process, which reduces the comprehensibility

of the model. After applying all of these enhancements, the resulting model is:

proce s s pep t i d e s yn th e s i s {
ac t i on s w e l l r e s i n {

r e qu i r e s { TFA && DMF && r e s i n }
r e qu i r e s { s c i n t i l l a t i o n v i l e && vacuum }

prov ides { r e s i n . swe l l ed == ‘ ‘ true ’ ’ && s c i n t i l l a t i o n v i l e }
}

i t e r a t i o n {
ac t i on ac t i va t e amino ac id {

r e qu i r e s { DIEA && HBTU && (new) amino acid }

prov ides { amino acid . a c t i va t ed == ‘ ‘ true ’ ’ }
}
ac t i on add amino acid {

r e qu i r e s { amino acid . a c t i va t ed == ‘ ‘ true ’ ’ }
r e qu i r e s { s c i n t i l l a t i o n v i l e && r e s i n . swe l l ed == ‘ ‘ true ’ ’ }

prov ides { (der ived) r e s in amino ac id complex }
}
ac t i on f low wash {

r e qu i r e s { DMP && vacuum }
r e qu i r e s { r e s in amino ac id complex }

prov ides { r e s in amino ac id complex . p u r i f i e d == ‘ ‘ true ’ ’ }
}
ac t i on c l eave boc g roup {

r e qu i r e s { TFA && pur i f i e d r e s i n am ino a c i d c omp l ex }
r e qu i r e s { vacuum }

prov ides { r e s in amino ac id complex . deprotected == ‘ ‘ true ’ ’ &&
res in amino ac id complex . p u r i f i e d == ‘ ‘ f a l s e ’ ’ }

}
ac t i on f low wash {

r e qu i r e s { DMP && vacuum }
r e qu i r e s { r e s in amino ac id complex . p u r i f i e d == ‘ ‘ f a l s e ’ ’ }

prov ides { r e s in amino ac id complex . p u r i f i e d == ‘ ‘ true ’ ’ }
}

}

ac t i on d e sw e l l r e s i n {
r e qu i r e s { r e s in amino ac id complex . p u r i f i e d == ‘ ‘ true ’ ’ &&

res in amino ac id complex . deprotected == ‘ ‘ true ’ ’ }

38

r e qu i r e s { MEOH && CH2CL2 && vacuum }

prov ides { r e s in amino ac id complex . de swe l l ed == ‘ ‘ true ’ ’ }
}
ac t i on vacuum pump {

r e qu i r e s { r e s in amino ac id complex . de swe l l ed == ‘ ‘ true ’ ’ }
r e qu i r e s { vacuum pump }

prov ides { r e s in amino ac id complex . d r i ed == ‘ ‘ true ’ ’ }
}
ac t i on c l e av e p ep t i d e {

r e qu i r e s { r e s in amino ac id complex . d r i ed == ‘ ‘ true ’ ’ }
r e qu i r e s { HF && HF cleavage dev ice }

prov ides { (der ived) pept ide . crude == ‘ ‘ true ’ ’ }
}
ac t i on l y o p h i l i z e p e p t i d e {

r e qu i r e s { pept ide . crude == ‘ ‘ true ’ ’ && MEOH && dry i c e && l y o p h i l i z e r }

prov ides { pept ide . l y o ph i l i z e d == ‘ ‘ true ’ ’ }
}

}

39

Chapter 5

Tool Motivation

5.1 Why Tools Are Needed

Using a process modeling language to recreate an actual process is a complex procedure because the

modeler must extract important information about tasks, resources, and control in such a way that

the model will properly reflect the process. However, the resulting model often contains errors that

can be attributed to two sources: the process and the modeler. Errors that are contained within

the process are problematic in that they represent some inefficiency or mistake in the process that

could result in any number of problems including slow performance or even preventing the process

from continuing after it reaches a certain point. Problems introduced by the modeler represent

human error by either improperly representing the process, or making a typographical error that

has repercussions throughout the process. With the help of tools that look for these errors, models

can be more efficient and accurate.

Previously we noted that modeling languages implemented using programming languages have

inherited tool support for checking errors in models, but these tools are not specifically designed for

process related errors. Compilers perform type-checking, look for undeclared variables, and other

syntactic errors. The problem with using these methods is that they do not represent the kind of

40

errors that occur in a process model. Therefore, we need to explore the types of errors that might

occur in a process and how they would be reflected in a model.

5.2 Modeler Errors

When a model for a process is developed there are a number of errors that can be introduced by the

modeler that result in an improper representation of the process. Understanding how these errors

are introduced and what implications they have on the model will provide the means to detect the

errors and provide meaningful feedback. Without eliminating these errors, it is difficult to discern

between errors created by the modeler and errors in the process. In order to improve the quality of

the process, the model first must correctly represent the process at which point the actual process

can be examined by means of the model. Therefore, we must examine what common errors are

made in modeling a process and how they can be extracted from the model.

5.2.1 Modeling Errors at High Levels of Abstraction

The evolutionary nature of process modeling may result in a series of problems related to the many

levels of abstraction that the model must pass through before arriving at a detailed representation

of the process. The first level of abstraction in a model is a list of tasks that must be performed. At

this level, the errors that can be introduced by a modeler are simple and include problems such as

syntax errors caused by misunderstanding of the language structure or typographical mistakes such

as misspellings. These errors have a very limited impact on the model and are easily recognizable

because of the lack of information present at such a high level of abstraction.

5.2.2 Effects of Modeling Errors on Dependencies

Transitioning to a lower level of abstraction incorporates adding resources to the model which begins

the development of dependencies and makes a considerable number of errors related to modeling

41

possible. Errors at this stage of development already have a significant impact on the model.

While syntactic errors are still problematic, misspellings and dependency errors cause more difficult

problems. If the name of a resource is misspelled and another step in the model needs that resource,

the dependency will be broken because the task was expecting the resource to have a different name.

A modeler might forget to state that a step has requirements or that it provides something. These

types of errors manifest themselves as broken dependencies and extraneous steps in the model.

Similarly, if a modeler fails to note what a step requires, but does note what it produces, then it

appears that the step is creating some resource out of nothing. Though some steps in a process may

only rely on abstract concepts or ideas that would not be properly represented by a requirement,

this type of mistake is generally a problem that is introduced as an oversight. The same type of

concern is raised when a step requires resources but a product for the task is not specified. In this

situation, the model represents a step in the process that needs resources but does not produce

anything useful to the process and is also a common oversight when transitioning from a high level

of abstraction to a more detailed level.

5.2.3 Effects of Modeling Errors on Control Flow

Dependencies at low levels of abstraction have a direct impact on the control of the process, which can

lead to difficulties in trying to satisfy both control flow and dependencies put in place by the modeler.

If the modeler wants to specify that two steps in the process are concurrent, but unintentionally

creates a dependency that would prevent concurrency, such as having the first concurrent thread rely

on a product of the second concurrent thread, then the model would not represent the real process.

In the worst case scenario it is possible to introduce a circular dependency between two concurrent

steps which would result in preventing the process from continuing from that point. This type of

error is the result of either not understanding the dependencies of the process or over-specification

of concurrency within the process.

Other control flow aspects of a model are compromised by common modeling errors. If there

42

are many possible paths in the process, but only one can be taken, then fulfilling dependencies is

critical for the modeler. If the modeler notes that a step after a path selection ends depends on

a product that is produced during the path selection, then all possible paths must produce that

resource or the modeler has introduce the potential for a stall in the process. As possible paths

become more numerous and more complicated, it is difficult to track what is produced and where it

will be available.

5.2.4 Modeling Errors in Detailed Specifications

Once a process model has been effectively implemented at a level of resource specification, it is

possible to transition to a lower level of abstraction that will illustrate constraints on the state

of objects within the process. This level of abstraction is the most detailed and also the most

error prone. All of the modeling errors previously mentioned still apply at this level, but there are

additional problems that can be introduced. When transitioning to a detailed specification, the

modeler must keep track of dependencies between the properties of resources as well as the resources

themselves. The addition of properties to the model can disrupt the dependencies that were in place

at higher levels of abstraction. For example, if the requirements for a step in the model are altered

to include the state of a property, but the model fails to specify that the property was introduced

by an earlier step, then the dependency between the two steps is broken.

There is also the potential to introduce errors by unintentionally creating inconsistent states

within the model. If the property of a resource is specified to be greater than five, but later requires

it to be less than ten, then there is the possibility that the actual value of the property will not

fulfill the requirement of a step. This type of mistake is subtle and easy to overlook, but can have

catastrophic effects and possibly stall the process. Identifying these types of errors can help to avoid

misrepresenting the process, which could lead to confusion because the process itself can contain

similar errors.

43

5.3 Process Errors

One of the goals of process modeling is to use the model to find errors in the actual process and

eliminate them to make the process more efficient, but process related errors are closely related to

modeling errors except their source is the from inefficiencies in the process rather than mistakes

made in the representation. Understanding how process related errors are manifested in the model

and how they differ from modeling errors will create a foundation for recognizing and extracting the

errors from both the process and the model.

5.3.1 Resources Within Processes

Modeling a process at high levels of abstraction is generally simple because there are few constraints

about what is correct and we are only bound by intuitive interpretation of the process. The highest

level of abstraction usually incorporates naming the tasks that must be performed and providing

a basic control for the process. The only process related errors that can occur at this level is the

misspecification of the control flow in the process. However, there are no constructs at this level

that would show that a problem has been introduced, but as the model is refined, the errors will

become apparent.

Once resources and dependencies are introduced to the model, errors in the process are easier to

find and result from a variety of sources. If something is created in the process but is never used, there

is extra work being done that can be eliminated. For example, if a company is producing documents

that are never used, then there is no reason to expend the effort in creating them. Another problem

is that some step in the process may be waiting for a resource that will never be available, such as a

loan application that requires a credit approval form that does not exist. These errors are intrinsic

to the process and represent the type of problems that process modeling can eliminate.

44

5.3.2 Process Errors in Control Flow

Much like the modeling errors that impact the process model, actual errors in the process being

modeled can have control errors. These fall into the same categories as the errors that a modeler

can introduce. The process can be trying to perform concurrent steps that have interdependencies

that prevent them from being fully concurrent. If there are multiple paths that can be taken, the

process may not be producing all of the necessary resources that are used in later stages of the

process.

5.4 Tool Goals

The primary objective of a tool designed to analyze a process model is to examine the model for the

types of errors illustrated in Section 5.2 and Section 5.3. In order to fulfill this objective, there are a

number of requirements that a tool must fulfill and failing to meet these requirements is detrimental

to the tool’s usefulness.

Meaningful Feedback: Meaningful feedback is necessary for a modeler to understand what is

wrong with the model and determine if the root cause of the error the model or process. The

tool should attempt to constructively map the errors in the model to conceptual errors in the

real process. Having a tool that simply reports that there are unfulfilled dependencies provides

only limited help in diagnosing the problem with the model. If the tool can identify what steps

and resources are affected in the process, then the modeler has much more information about

the root cause and should be able to extrapolate the errors in the model to errors in the

process.

Analysis Refinement: The evolutionary nature of process modeling languages requires that tools

that support the language should operate at each level of refinement in the development of

the process model. If the analysis tool is reporting resource and dependency errors when the

model is at a higher level of abstraction, then the analyzer has failed to meet the evolutionary

45

requirements of the language by giving errors that are not related to context of the model.

Therefore, supplementary tools need to be adjustable in order to compensate for the various

levels of specification in a process model.

Proper Level of Detail: An analysis tool that provides too much or too little detail about errors

in the model is difficult to apply to development. If there is not enough detail, then it is difficult

to discern what the problem is and how it affects the model. However, if the level of detail is

too high, then users will be discouraged by the number of extraneous errors and warnings that

appear when the tool is used. Therefore, it is important to provide the capability to target

some aspect of the analysis while ignoring others in order to get the proper level of detail.

Ease of Use: If the analysis tool is cryptic, slow, or difficult to use, then it will deter users from

utilizing it to aid their model development. The tools associated with the language should

reflect principles of the language such as simplicity and flexibility. Failing to meet these

requirements can result in a tool that analyzes correctly, but is never used because of poor

design and inability to meet the demands of the language.

46

Chapter 6

Tool Design and Implementation

6.1 Analyzing and Representing a Process Model

In Chapter 5, we described errors that can be introduced and how these types of errors are manifested

within a model. To develop a means to check for these types of errors automatically requires

understanding of these errors affect the model and developing a proper structure for representing

the model that will allow for effective analysis.

6.1.1 Checking for Errors Local to a Task

In the previous chapter, we uncovered errors caused by a failure to express what resources a task

produces or requires. As a model specification becomes more detailed, failure to note the needed

resources is one of the first problems that can occur. These errors are local to a task in the model,

which means that information from other tasks are not necessary to determine if something is

missing. The only consideration for these types of errors is to determine that each task both produces

and requires at least one resource. If a task fails to accomplish this, then the modeler should be

notified to inform him that there is a possible inconsistency in the model. However, as mentioned in

Section 5.2.2, it is possible that this condition is intentionally introduced by the modeler to represent

47

a step that does not rely on resources. This type of condition is relatively rare and it is not possible

for an automatic tool to determine the modeler’s intentions in this type of situation and therefore

should be considered an error.

6.1.2 Analyzing Resource Dependencies

Another problem described in Section 5.2.2 is requiring resources that are not available or producing

a resource that is never used. As resource dependencies are integrated into the model, errors of this

nature become a concern and tracking these types of errors requires information related to the

dependencies created in the model. To ensure that a resource is available to a specific task, previous

tasks must be examined to determine that the resource exists. If a resource is being provided, then

the tasks following the current task must be examined to determine if the produced resource is ever

used by another task. This type of analysis requires that the representation the model takes will

provide information about the order in which the tasks occur.

The complexity of this problem is compounded by the various control flow constructs that exist

within modeling languages. If there are paths that are performed concurrently, then it is important

to check other paths for resources that are being used or produced. Selections between multiple

paths can create a situation where a resource is only available if the proper path is chosen. These

problems must be taken into consideration when analyzing the model to prevent the tool from falsely

assuming the availability of resources.

6.1.3 Evaluating Expressions

The addition of expressions to a modeling language complicates the level of checking that must be

performed. In Section 4.1.3 we explained that expressions merely assert the value of some property,

which makes evaluating expressions very difficult. The actual value of a property is never defined by

the language, but are determined by the actual tasks being performed in the process. This means

that the model will only represent as much information about the value of properties as the modeler

48

specifies. The result is that a tool will have difficulty tracking the value of a property if the model

does not provide specific information about how the property is changing. For example, if a task

asserts some property of a resource to be five, and a later task asserts that the same property is

greater than four, it is not possible for the tool to determine if the actual value of the property is

still five, or if it was changed. The advantage of this type of checking is that a model that passes

all of these types of checks is very well described, but the disadvantage is that the modeler may

consider the level of description too detailed to incorporate expressions into the model.

6.1.4 Model Representation

Based on the type of error checking involved in analyzing a process model, we can determine the

information that is necessary to perform these checks. A process model can be mapped to a variety

of data structures such as trees, hash tables, sets, or graphs. Independent of what structure is used

to describe the model, there are certain aspects that must be preserved. The checks that are local to

a task require information about each task and what resources are used and produced. Dependency

checks rely on control based information to track dependencies throughout the process. Therefore,

components that are essential to this type of checking include: being able to associate resources with

the tasks that use and produce them, knowledge of the structure of the model including what nodes

come before or after other nodes, and control based information describing concurrency, iteration,

and path selection. Using this information as a framework, there are many approaches to check for

these types of errors.

6.2 Process Model Representation with PML

6.2.1 Model Translation

pml is designed to translate a process model into a format that incorporates all aspects of the model

and based on the structure of processes, the most intuitive representation is a graph. The procedure

49

for mapping from a pml model to a graph is relatively simple; the nodes of a graph represent

actions constructs and the edges represent the flow of control. The language constructs designed for

describing control flow are interpreted and constructed into a graph in a syntax-directed, bottom-up

manner. Figures 6.1 – 6.4 illustrate the graph translation of pml control flow constructs.

sequence {
ac t i on f i r s t { }
ac t i on second { }
ac t i on th i rd { }

}

first

second

third

Figure 6.1: Graph representation of a sequence

i t e r a t i o n {
ac t i on f i r s t { }
ac t i on second { }
ac t i on th i rd { }

}
ac t i on post { }

first

second

third

post

Figure 6.2: Graph representation of an iteration

Figure 6.5 illustrates how the waterfall process described in Section 4.3.1 would be mapped from

a pml model to a graph that can be used to analyze the process. The graph is directed and contains

additional links between nodes designed to assist in traversing the graph.

Each action node describes the resources that are used and produced through the provides and

requires properties. A tree structure is used to describe resources and expressions. In addition,

conjunctions and disjunctions of expressions and resources are described using the same structure.

Figure 6.6 illustrates how a qualified resource with an attribute is constructed from the pml gram-

50

s e l e c t i o n {
ac t i on cho i c e 1 { }
ac t i on cho i c e 2 { }
ac t i on cho i c e 3 { }

} choice_1 choice_2 choice_3

selection

join

Figure 6.3: Graph representation of a selection

branch {
ac t i on path 1 { }
ac t i on path 2 { }
ac t i on path 3 { }

}

branch

rendezvous

path_1 path_2 path_3

Figure 6.4: Graph representation of a branch

code write_tests

branch

design

analysis

waterfall_process

test

rendezvous

Figure 6.5: Software process model from Section 4.3.1

51

mar. Expressions, conjunctions, and disjunctions extend the tree to join resources together through

common parents.

()

resource attribute

qualifier

Figure 6.6: Tree representation of a resource

There are a number of concerns addressed by this method of representation. One consideration

was that more than one tool would need a representation of the process model. Having a structure

that facilitates only one tool is inefficient and possibly detrimental in that tools that choose to map

the model to some other structure may improperly represent the model or fail to capture all the

necessary information. Having a common and complete representation available ensures that any

tool support will have a common view of the model.

6.3 Analysis and Verification of PML Process Models

In order to automate these types of checks on pml models, we have developed pmlcheck ; a tool for

analyzing the dependencies and structure of the model in an effort to uncover inconsistencies. This

tool implements the graph mapping of a process model described in the previous section to traverse

the model and look for common modeling and process errors.

6.3.1 Implementing Refinable Error Checking

One of the objectives of an automated analysis tool described in Section 5.4 is the ability to check a

process at many levels of abstraction. Pmlcheck currently provides four conceptual levels of checking:

Syntax: This level of checking is provided as a means to ensure that the process model is well-

formed, but it does not provide any meaningful feedback about the process itself.

52

Resource Specification: As a process model is refined from an abstract specification to include

resources, the first check that should be performed is that the resources for each action in the

process model have been specified.

Dependency: Introducing resources into the model creates dependencies between actions. At this

level, the dependences can be examined to determine if any were omitted or misrepresented.

Expression: Once resource dependencies have been established, the next step is to evaluate the

properties of resources throughout the process model to determine if they are consistent.

Pmlcheck is not strictly limited to providing information at these levels of refinement and within

each conceptual level there are a variety of checks that are performed and pmlcheck can focus

analysis on a particular point of interest. This flexibility was intentionally designed to reflect the

evolutionary nature of process specification and the pml language while providing the modeler with

control over information gathered by the tool.

6.3.2 Reducing and Simplifying the Process Specification

When the pml model is translated to a graph, the resource trees are constructed directly from the

model without any form of reduction. By doing this, resource trees match the exact representation

given in the model, but this is not the most efficient format for performing analysis. Reducing the

complexity of expressions decreases the possible cases for determining if expressions match. Pmlcheck

performs two methods of reduction on every expression tree in the model to simplify analysis.

The first method of reduction is designed to reduce negations expressions in expression trees. A

complex expression that incorporates negation might look something like:

! ((q) a . b != c . d | | ! (a . b >= (q) e . f))

The tree constructed from this expression is represented in Figure 6.7

Through applying DeMorgan’s Law and manipulating the signs in the expression, it is possible

to effectively eliminate negations. The objective of this operation is to push the negation as far

53

||

!

.

a b .

e f

c

.

d.

a b

!

()

q

!=

q

() >=

Figure 6.7: Tree representation of a complex expression

down in the expression tree as possible, thus alleviating the need to handle them at various levels

in the tree structure. Reducing Figure 6.7 results in the tree illustrated in Figure 6.8.

()

q .

e f

.

a b

&&

==

q

()

c

.

d.

ba

>=

Figure 6.8: Tree after reducing negation

The second method of reduction is canonicalizing the expressions to simplify analysis. When

designing pmlcheck, we considered two forms of canonicalization. The first option was to restructure

the trees so that resources would always appear on the left hand side of an expression and numbers

and strings would appear on the right hand side. Because these expressions are merely assertions and

not performing assignments, the expressions are symmetric, which allows for manipulation of the

trees without fear of introducing inconsistencies. However, performing this type of canonicalization

is ineffective in this language because the semantics allow for resources to be present on both sides of

an expression. In addition, the weak semantics of pml allow for strings and numbers to be present

on both sides of an expression. Reducing expression trees with this approach does not significantly

reduce the complexity of evaluating these expressions.

54

The other canonicalization method is to reduce the number of operators by reforming the trees

and altering the existing operators, but without altering the meaning of the expression. Pmlcheck

reduces the number of operators from six to four, which significantly reduces the number of com-

parison cases. The operators ≥ and > are replaced with < and ≤ respectively after swapping the

children of the expression tree node. By performing this method of of canonicalization on Figure 6.8,

the resulting tree is provided in Figure 6.9

&&

==

q

()

c

.

d

()

q .

e f

.

a b.

ba

<=

Figure 6.9: Canonicalized tree from Figure 6.8

6.3.3 Checking for Local Resource Specification Errors

In Section 6.1.1, we noted that inconsistencies are introduced into a model because of a failure to

specify requirements for a task. In pml, this translates to the failure to require or provide a resource

in an action. These types of errors fall into four categories:

Miracle: This situation is when an action requires no resources, but provides a resource.

Black Hole: When an action requires resources, but does not provide any.

Transformation: The most common operation of an action is to modify a resource. Having an

action that provides a resource that it did not require means that the action created a new

resource rather than modifying an existing one and is considered a transformation.

Empty: When an action does not specify any resources to be required or provided.

55

Each of these scenarios is an indicator that something has been left out of the process model and

is a projection of problems in the process. Because of the design and structure of the pml graph,

these types of checks are almost trivial to implement. Pmlcheck accomplishes this by traversing

the graph of the process examining each action node and based on the presence of resources, issues

notifications to the modeler. The only exception to looking strictly at the availability of resources

is when a resource has a qualifier.

In Section 4.3.1 we noted that there are cases where a new resource is created and we want

to explicitly state that it is not an error. Using qualifiers provides the ability to state that a

transformation should occur. We provide a predefined qualifier, derived, that will suppress a warning

in the case of a transformation, but this is only one of many uses for a qualifier. Recall that it is

not possible to enumerate all possible qualifiers and how they should be handled, which is why

we provide the person analyzing the process model the capability to implement their own qualifier

checking through an abstraction. Though adding additional checking is a more complicated feature

of pmlcheck, it allows the analysis tool to match the flexibility of the language.

6.3.4 Dependency Checking

Tracing dependencies through a process model is much more complicated than simple specification

checks. Control flow constructs and the level of specification of a resource play an important role

in determining whether or not resources are available. Pmlcheck implements two types of resource-

based dependency checks: assuring that resources required by an action are provided, and provided

resources are required by an action. These two checks encompass model inconsistencies noted in

Section 5.2.2 and Section 5.3.1. Another key component to understanding how pmlcheck performs

these operations is how resources are treated within the model.

Resources in pml can be specified in two ways: as an individual resource, or a resource ac-

companied by an attribute. If a resource is provided or required without an attribute, then the

existence of the resource is the only concern. However, if an attribute is provided with a resource,

56

then the resource must exist in order to have an attribute associated with it. Pmlcheck describes

the availability of a resource to exist as one of three possible states: specified, partially specified,

and unspecified. If a resource is specified, then the resource exists as does any attribute associated

with it. Being partially specified means that the resource component exists, but the attribute does

not. If neither the resource nor the attribute exist, the resource is unspecified. These states are the

foundation for dependency-based checks in pmlcheck.

Initially, we tracked the availability of resources using a single value to express the state at any

point in the process, but after examining various models, it became clear that more information

needed to be gathered. Not only does a resource have a level of specification, it has an availability

within the process graph. If a resource is provided in one path of a selection statement, the resource

is only possibly available later in the process. Therefore, pmlcheck reflects the status of a resource

through two values: the level of specification and the availability of the resource. The availability of

a resource can also be expressed as one of three states: true, maybe, and false.

The first check performed by pmlcheck is to ensure that resources that are required by an action

are provided in an earlier action. Algorithm 1 describes the basic procedure for determining if

a required resource exists. The function is-provided() examines the structure of the resource tree

provided by a node and determines whether the required resource has been specified. This algorithm

assesses the availability of a resource by looking at the current node and its predecessor to determine

if a dependency has been fulfilled. By using the φS function, the current node can determine the

status of a resource’s specification at a specific point in the process and, similarly, the φA function

determines the availability of the resource. φS and φA use a decision procedure based on the

context of the current node to determine what the resulting status of the resource is. For example,

φS(unspecified, specified) in the proper context will result in partially specified. A similar decision

procedure is used for control flow constructs such as branches and selections, where all predecessors

of the branch or selection are examined. This check is accomplished by performing a breadth first

search of the graph in order to achieve a reversed traversal of the control flow of the process graph.

57

Algorithm 1 Algorithm for checking that required resources are provided

for N ∈ nodes[G] do

for R ∈ requires[N] do

for V ∈ nodes[G] do

visited[V] := false

available[V] := unknown

specification[V] := unknown

end for

check-if-provided (R,N,N)
end for

end for

function check-if-provided (R,N, S) do

visited[N] := true

available[N] := unknown

specification[N] := unknown

if N 6= S then

specification[N] = is-specified (R, provides[N], N)
if specification[N] 6= unspecified then

available[N] := true

end if

end if

if specification[N] 6= specified and available[N] 6= true then

for P in predecessors[N] do

if visited[P] 6= true then

check-if-provided (R,P, S)
availale[N] := φA(available[N], available[P])
specification[N] := φS(specification[N], specification[P])

end if

end for

end if

end function

58

The second check is to ensure that a resource provided by a node is required by a node in the

process follows a similar algorithm to Algorithm 1 and is described in Algorithm 2. This algorithm

performs a breadth first search of the process graph following the control flow of the process looking

for a node that requires the provided resources. The availability of the resource is computed in the

same manner as the previous check using φS .

Algorithm 2 Checking that provided resources are required

for N ∈ nodes[G] do

for R ∈ provides[N] do

for V ∈ nodes[G] do

visited[V] := false

available[V] := unknown

specification[V] := unknown

end for

check-if-required (R,N,N)
end for

end for

function check-if-required (R,N, S) do

visited[N] := true

available[N] := unknown

specification[N] := unknown

if N 6= S then

specification[N] = is-specified (R, provides[N], N)
if specification[N] 6= unspecified then

available[N] := true

end if

end if

if specification[N] 6= specified and available[N] 6= true then

for P in predecessors[N] do

if visited[P] 6= true then

check-if-required (R,P, S)
availale[N] := φA(available[N], available[P])
specification[N] := φS(specification[N], specification[P])

end if

end for

end if

end function

In Section 4.3.2, we described the need to specify the inputs and outputs to a process. In many

cases the initial and final nodes in a process either make use of a resource that does not preexist in

the process or produces an object that is really an output of the process and is therefore never used

59

by another action. Pmlcheck allows the suppression of warnings created by these inconsistencies by

making use of the linking file. This allows the modeler to specify inputs and outputs of a process

which are converted into resource trees and appended to a node representing the beginning of the

process for inputs and a similar node for outputs at the end of the process. These nodes are available

for the checking algorithm to determine if the resources they contain satisfy a requirement being

checked.

6.3.5 Evaluating Expressions

Evaluating expressions follows a similar procedure for checking dependencies but is directed toward

the satisfiability of the expressions specified in the model. Earlier we stated it is rare to have all

the information needed to properly assure that all expressions are fulfilled. Therefore, we provide

expression checking as a best-effort check that may result in spurious warnings. However, that does

not mean that a model cannot contain enough detail to fully express the state changes of a resource

using expressions. A model with inconsistent expressions may perform correctly, but having the

expressions properly defined increases the chances of proper completion.

In order to evaluate these types of expressions a function, is-satisfied(), was designed to compare

two expressions and determine if one expression satisfies another. There are three possible results of

this function: never satisfied, sometimes satisfied, and always satisfied. An expression that is never

satisfied is a contradictory expression, such as comparing r.a == 0 and r.a == 1. Expressions were

some values satisfy the expression, but others do not, are sometimes satisfied, such as r.a ≥ 0 and

r.a > 0. When two expressions are equivalent, the expression is always satisfied.

Algorithm 3 describes the a method for checking expressions, which is very similar to Algorithm 1

in information tracking and traversal of the graph. The function φE has a similar operation to φA

and φS in that the current state of an expressions satisfiability is determined using the value from

the current and previous nodes.

60

Algorithm 3 Algorithm for checking that expressions are satisfied

for N ∈ nodes[G] do

for E ∈ requires[N] do

for V ∈ nodes[G] do

visited[V] := false

available[V] := unknown

satisfied[V] := unknown

end for

check-if-satisfied (E,N,N)
end for

end for

function check-if-satisfied (E,N, S) do

visited[N] := true

available[N] := unknown

satisfied[N] := unknown

if N 6= S then

satisfied[N] = is-satisfied (E, provides[N], N)
if satisfed[N] 6= always then

available[N] := true

end if

end if

if satisfied[N] 6= always and available[N] 6= true then

for P in predecessors[N] do

if visited[P] 6= true then

check-if-provided (E,P, S)
availale[N] := φA(available[N], available[P])
satisfied[N] := φE(satisfied[N], satisfied[P])

end if

end for

end if

end function

61

Chapter 7

Analysis and Results

One of the primary goals of modeling a process is to acquire more information about inconsistencies

in resources and performance. In Chapter 5 we examined the motivation for analyzing models and

in Chapter 6 we determined the type of problems that exist in model and how they can be detected.

The objective of this chapter is to illustrate how a model checker can be utilized to guide refinement

of a process model through verification.

7.1 The Netbeans Requirements and Release Process

Netbeans is an IDE for Java developers based on an open source development model. The process

used by the Netbeans team is different than a traditional software process because it is centered on

distributed development. In open source projects such as this, the actual coding of the system is

external to the requirements and release of the product and the software development process is not

concerned with how the code is written because the authors develop in a variety of environments.

The decentralized nature of open source development relies on the guidance of a defined process

to provide cohesion to releases of the software. Therefore, the Netbeans team uses their process to

define the requirements and perform tasks that relate to the release without prescribing how the

62

actual coding should be performed.

The development process for Netbeans has two components: eliciting requirements and releasing

the next version of the software. The first stage entails detailing what features should be included

in the next version of the software and the second is based on establishing that the code is ready

for release and generating a deliverable. Each stage is comprised of a series of tasks related to

fulfilling the next stage in development. The Netbeans development process is not self-contained

because it relies on the previous revision of the process to continue. Though many software projects

are terminated when the product is finalized, a release for Netbeans signifies a specific level of

achievement of the software, but development continues to proceed.

The initial description of the Netbeans process was developed in conjunction with the Netbeans

team and is given in Appendix A.1. For clarity and to facilitate the analysis of the process, we have

removed any additional information from the process that is not necessary for the verification tool

to operate. Table 7.1 provides a summary of the actions involved in the Netbeans process.

7.2 Refining the Netbeans process

Analysis of this model consisted of two levels of refinement in order to capture inconsistencies at

different levels of abstraction. On first inspection of the model it is clear that the model is in a

very basic state in that it includes control and resources, but no attributes or expressions. Through

verification using pmlcheck, we demonstrate how to improve the quality and consistency of the model

by removing errors without adversely affecting the underlying process.

7.2.1 Analysis Local to Actions

The first application of pmlcheck reveals a significant number of errors in the process and are

summarized in Table 7.2. Each of these errors is representative of a error in the model, the process,

or the analysis tool. Empty, miracles, and black hole errors generally indicate that resources are

63

Netbeans Requirements and Release Process
Requirements Stage ReviewRoadmap

SetReleaseDate
ReviewNetBeansVisionStatmenet
ReviewUncompletedMilestonesFromPreviousRelease
ReviewIssuzillaFeatureRequests
CompileListOfPossibleFeaturesToInclude
CategorizeFeaturesProposedFeatureSet
SendMessageToCommunityForFeedback
ReviewFeedbackFromCommunity
ReviseProposalBasedOnFeedback
PostFinalDevelopmentProposalToNetBeansWebsite
AssignDevelopersToCompleteProjectMilestones
SetFeatureFreezeDate
SetMilestoneCompletionDates

Release Stage EmailSolicitationForReleaseManager
WaitForVolunteer
CollectCandidacyNominations
EstablishReleaseManagerConsensus
AnnounceNewReleaseManager
SolicitModuleMaintainersForInclusionInUpcomingRelease
ChangeBuildBranchName
MakeInstallTar
BuildBinaryReleases
UploadInstallTarFilesToWebRepository
UpdateWebPage
MakeReadmeInstallationNotesAndChangelog
SendReleaseNotificationToCommunity
ExecuteAutomaticTestScripts
ExecuteManualTestScripts
ReportIssuesToIssuezilla
UpdateStandingIssueStatus
PostBugStats
ExamineTestReport
WriteBugFix
VerifyBugFix
CommitCodeToCvsCodeRepository
UpdateIssuezillaToReflectChanges
CompleteStabilization

Table 7.1: Summary of actions in the Netbeans process model

64

Initial Inconsistencies
Empty 2
Miracle 2
Black Hole 6
Transformation 32
Unprovided 24
Not Consumed 20

Table 7.2: Summary of errors indicated by pmlcheck

missing from the specification. For example, the action CompleteStabilization is the final action

in the model, but it does not require anything and does not produce anything. However, this

action is clearly included to finalize the product and make it available, but any information about

what resources are required has been omitted. The action WaitForVolunteer also does not contain

resources, but for a different reason. This action is an artificial action created to represent what the

process is doing in preparation for the next action to take place. It is not essential for the process

because the next action must be ready before the process can continue, so it can be removed without

adversely affecting the rest of the model.

Miracles and Black Holes pose a problem similar to Empty actions. Though actions such as

ReviewNetBeans and SendMessageToCommunityForFeedback were initially specified as not pro-

viding anything, they do contribute to the process. ReviewNetBeans may not provide anything

new, but it does affect a property of the road-map and should reflect those changes by providing

NetBeansRoadmap.Reviewed. The action SendMessageToCommunityForFeedback would intuitively

imply that feedback is gathered from the community and thus should provide CommunityFeedback

as a resource. These type of oversights are a misrepresentation of the process, and the errors that

pmlcheck provides helps to locate the root cause of these inconsistencies.

Pmlcheck reports that there are a significant number of transformations being performed in the

process, but this report has two possibilities: the transformation is correct and the tool should

not consider the created resource as an error, or the transformation is indicative of a change to a

resource that was not specified as a requirement to the action. The only possible way to determine

65

the actual meaning is to carefully inspect the process model. Action SetReleaseDate is an obvious

situation where the tool is improperly reporting an inconsistency because the release date is derived

from the road-map. In Section 4.3.1 we describe a method for qualifying resources in order to

notify tools about how they should be treated. By qualifying the created resource as (derived)

ReleaseDate, pmlcheck will understand that the resource is intended to be available at this point

in the process. Action ReviseProposalBasedOnFeedback is an example of where a transformation

is improper. This action is modifying two resources PotentialRevisionsToDevelopmentProposal

and RevisedDevelopmentProposal, but these relate to a single resource: DevelopmentProposal.

By consolidating these resources to a single resource and using attributes, we can reconstruct the

action and describe it more accurately as:

ac t i on ReviseProposalBasedOnFeedback {
r equ i r e s { DevelopmentProposal . Po t en t i a lRev i s i on s }
prov ides { DevelopmentProposal . Revised }

}

Representing the task in this form removes unnecessary resources and clearly depicts how the resource

is being affected.

7.2.2 Verification of Resource Dependencies

Pmlcheck is reporting that there are a number of resources that do not exist before they are used or

are created but never used. This type of error can be caused by a number of problems with the model

specification. One possibility is that the modeler over looked the creation of a resource. In this model,

the action ReviewFeedbackFromCommunity requires FeebackMessagesOnMail, but this resource

does not exist prior to this point in the process. Action SendMessageToCommunityForFeedback

seems to indicate the presence of feedback, so it would stand to reason that feedback would be cre-

ated, but it has not been specified. By redefining this action to provide feedback when the messages

are sent to the community, the model will more accurately represent the process and eliminate the

dependency error.

Though a report of an unprovided resource can mean a misrepresentation of process, it can also

66

be indicative of a resource that should preexist the process. Action ReviewNetBeans requires the

NetBeansRoadmap, but this is the first action in the process which means the resource cannot be

specified prior to its use. In Section 4.3.2, we noted that there is a utility to indicate that a resource is

an input to the process and will be considered available even though it is not specified in the process

itself. Identifying the resources that should be considered inputs to the process and specifying them

using a linking file will allow the modeler to concentrate on resource dependency problems within

the process.

Pmlcheck also reports resources that are provided by an action but are not used later in the

process. One possible cause for this error is that a task later in the process has been misspecified and

does not note that it requires a certain resource. For example, action ReportIssuesToIssuezilla

provides IssuezillaEntry, but this resource is never used in the process. The following action

looks at standing issues, but does not explicitly require this resource.

As with unprovided resources, it is also possible that the analysis tool is catching errors for

resources that are intended to be outputs to the process, such as a release notice. In the same way

that an input can be specified, the linking file will notify pmlcheck of resources that are intended to

be outputs of the process. Identifying these types of resources will prevent the analysis tool from

improperly reporting errors.

7.2.3 Consolidating Resources

In Section 4.1.2, we discussed how changing a resource is often accompanied by the creation of new,

but only slightly different resources. By identifying the common resource and applying attributes to

indicate the changes, it is possible to construct a more cohesive model of the process. For example

actions:

ReviewFeedbackFromCommunity

ReviseProposalBasedOnFeedback

PostFinalDevelopmentProposalToNetBeansWebsite

AssignDevelopersToCompleteProjectMilestones

67

all rely on some variation of the development proposal and by extracting small changes and com-

bining them into a single resource, the model becomes more intuitive. In addition to clarifying the

model, this change brings forth a more critical problem: nowhere in the specification of the pro-

cess is the development proposal created. The first indication of a development proposal is in action

ReviewFeedbackFromCommunity which provides PotentialRevisionsToDevelopmentProposal, but

prior to this action there is no development proposal, so it is difficult to discuss potential revisions

to a nonexistent proposal.

7.3 Revised Netbeans Model

After applying the types of changes described in the previous section along with some cosmetic

changes of names throughout the process, we arrive at the model given in Appendix B.1 with

Appendix B.2 as a linking description. Applying pmlcheck a second time reveals that the number of

reported errors is much lower than in the original model and the results are surmised in Table 7.3.

Examining these remaining errors reveals that many were the result of changes made to the process

including trivial errors resulting from case-sensitivity and misspellings.

Other errors consist of overlooking inputs and outputs to the process. Resources such as the

Changelog and InstallationNotes were not included in the outputs and are still indicated as

errors. Identifying what is considered an input or output can be difficult because the resource may

be required in a later step but was simply overlooked. Though marking it as an output will suppress

the warning message from pmlcheck, it is important to ensure that the error is not indicative of

another type of problem. For example, resource IssuezillaEntry in ReportIssuesToIssuezilla

might be considered an output, but it is being used by the following task. Marking it as an output

would prevent the error message, but does not actually solve the problem. Restructuring the resource

to be handled as an attribute to the Issuzilla Issue Repository would eliminate the error without

creating extraneous outputs to the process.

68

Remaining Inconsistencies
Empty 0
Miracle 0
Black Hole 0
Transformation 1
Unprovided 7
Not Consumed 12

Table 7.3: Summary of errors in revised model

7.4 Finalized Netbeans Model

Correcting the mistakes found in the previous revision results in the model given in Appendix C.1

with Appendix C.2 as the linking file. This model produces no errors from the analysis tool, which

ensures that the tool is satisfied with the way the dependencies are built. Though this does not

indicated that there are no problems in the process, the problems that have indicators have been

effectively removed.

69

Chapter 8

Related Work

Process modeling language development, analysis, and enactment is an active field in software engi-

neering, but despite numerous approaches to process improvement, no single solution has emerged

as a standard.

8.1 Existing Modeling Languages

There are many existing modeling languages designed to model software processes and each approach

addresses different aspects of modeling based on the designers particular approach. Some languages

emphasize the design aspect of modeling a process while others closely resemble work-flow systems

by focusing on automation.

APPL/A [Sutton, 1990] is a process enactment language designed as a superset of the Ada

programming language to maximize automation. Many features of Ada including concurrency,

abstraction, and encapsulation are inherited by the language to facilitate related concepts in process

modeling. Features specific to modeling that are not implemented in the underlying programming

language, such as triggers and relations, are constructed as extensions to the language. In addition,

existing tool support provides the language with error checking and the ability to be compiled and

70

executed. APPL/A is designed for automation and execution as opposed to other languages that

focus on analysis and design.

The modeling language JIL [Sutton and Osterweil, 1997] aims to recreate many of the function-

alities of languages such as APPL/A, but without the underlying programming language. JIL is

designed with a combination of proactive and reactive control constructs allowing the modeler to

define the control flow, or have it determined by the interpreter. High-level constructs designed to

reflect software development products and relations are integrated in the language. Exception han-

dling, inspired by APPL/A, is integrated in the language to provide reactive control of the process.

A graphical extension, Little-JIL [Cass et al., 2000], attempts to simplify the process of designing

by providing a clear graph based description of the model.

Merlin [Junkermann et al., 1994] is a rule-based language that constructs the process by assessing

the availability of resources and documents associated with process activities. This language is

process-centered, as opposed to enactment-centered, in that it is focused on specifying the elements

of the process and not the control. Using decision procedures similar to PROLOG, the process

is constructed to maximize concurrency. This design was based on the need for flexible process

enactment and the nondeterministic nature of processes.

8.2 Process Model Analysis

Process modeling is conceptually very different from programming but there are many similarities

between analysis of a process model and a software program. Tools such as gcc [Stallman, 1991] and

lint [Johnson, 1978] warn users about inconsistencies within programs such as uninitialized variables

(variables used without being assigned a value). Pmlcheck performs similar analysis such as issuing

warnings if resources are required before being provided. As another example, gcc and lint provide

warnings for variables that are declared but never used. Our tool provides the same conceptual level

of checking applied to process modeling by ensuring that resources that are provided are used at

71

some point in the process. Additionally, optimizations can be applied, such as moving loop-invariant

code outside of a loop.

Analysis of programs represented as graphs is a well-established field including algorithms for

understanding and computing properties of graphs. There are many tools designed to assist pro-

grammers in finding errors in programs and include program slicing tools and assertion checkers.

8.3 Process Validation

Cook and Wolf [Cook and Wolf, 1999] discuss a method for validating software process models

by comparing specifications to actual enactment histories. This technique is applicable to down-

stream phases of the software life-cycle, as it depends on the capture of actual enactment traces for

validation. As such, it complements our technique, which is an upstream approach.

Similarly, Johnson and Brockman [Johnson and Brockman, 1998] use execution histories to

validate models for predicting process cycle times. The focus of their work is on estimation rather

than validation, and is thus concerned with control flow rather than resource flow.

Woflan [van der Aalst, 1999] is a tool for process specification verification based on a set of

process correctness measures derived from properties of Petri-nets. This approach first translates

the process description into an equivalent Petri-net, which is then analyzed for properties of Petri-

nets that imply process properties such as absence of deadlocks. While these properties ensure

that the models are executable, it is not clear how other Petri-net properties relate to real world

processes. In contrast, the inconsistencies that pmlcheck reports are derived from actual experience

with industrial process models [Noll and Scacchi, 2001; Scacchi and Noll, 1997].

Cobleigh, Clarke, and Osterweil [Cobleigh et al., 2000] utilize verification tools such as FLAVORS

[Cobleigh et al., 2002], a finite state verification system, to determine whether the behavior of a

process is consistent with specific properties. This tool operates on both sequential and concurrent

control-flow graphs to exhaustively check properties during process execution.

72

Scacchi’s research employs a knowledge-based approach to analyzing process models. Starting

with a set of rules that describe a process setting and models, processes are diagnosed for problems

related to consistency, completeness, and traceability [Scacchi, 2000]. Conceptually, this work is

most closely related to ours; many of the inconsistencies uncovered by pmlcheck are also revealed by

Scacchi and Mi’s Articulator [Scacchi and Mi, 1997]. Although pml and the Articulator share the

same conceptual model of process activity, there are some important differences. Their approach

is based on knowledge-based techniques, with rule-based process representations and strong use of

heuristics. This is a different approach to process modeling than pml’s which closely resembles

conventional programming language research.

73

Chapter 9

Conclusion

In this work we have presented a philosophy of modeling based on the fundamental elements of

domain-independent processes with the intention of highlighting the essential components of pro-

cesses in order to create informative models for analysis and enactment. We utilized this philosophy

as a framework for designing a high-level language that has the expressive capability to model pro-

cesses at abstract and concrete levels of specification. This language has a number of features such

as qualifiers and process linking that allows flexible development and specification. However, the

consequence of constructing this new language is lack of tool support and modeling processes for

the purpose of improvement requires verification of the model.

In order to provide support for pml, we chose to implement a new method of process checking

based on our research into process structure. The resulting tool, pmlcheck, examines process models

looking for common errors that result from process development and design. By noting inconsisten-

cies in the process, it is possible for modelers to refine a process model until it properly represents

the process. The flexibility of the language and the tool allow for specification and verification at

many levels of abstraction. Using a general approach to process modeling and analysis allows for

the concepts presented in this paper to be applied to a variety of modeling languages and analysis

tools. Though our language and analysis tool provide an implementation of our design philosophy,

74

the process related concepts discussed in this paper supersede the implementation.

The model of the Netbeans process that we examined and refined in Chapter 7 illustrates many

benefits of tool guided analysis. Understanding the resource flow of a process provides useful infor-

mation to improve the specification of a process and to detail areas of ambiguity. Examining the

interaction of resources in the process can also improve the enactability of a model by ensuring that

resource flow is consistent throughout the process. We assert that tools such as pmlcheck provide a

necessary function in the design and development of processes models regardless of the domain.

9.1 Open Issues

Checking for inconsistencies in a model provides some level of assurance that the model is prop-

erly specified, but much more information can be gathered from the process and provides several

opportunities for future work.

Examining the interdependencies between resources and control flow often result in optimizations

that will increase the efficiency of the process. One possible optimization is automatically determin-

ing if two steps in a process can be performed concurrently. If there are no dependences between two

successive tasks (meaning that neither task requires something that the other is providing), then it

is possible to automatically restructure the graph so that the tasks are performed in parallel.

The same method can be applied for detecting and restructuring processes to conform to the

limitations enforced by the dependencies. This means detecting dependencies within concurrent

actions and restructuring the process to explicitly constrain and redesign the control flow to a

sequential operation.

75

Bibliography

Agostini, A. and Demichelis, G. (2000). A light workflow management system using simple process
models. Computer Supported Cooperative Work: The Journal of Collaborative Computing, 9(3–
4):335–363.

Armenise, P., Bandinelli, S., Ghezzi, C., and Morzenti, A. (1993). A survey and assessment of
software process representation formalisms. International Journal of Software Engineering and
Knowledge Engineering, 3(3):401–426.

Atkinson, D. C. and Noll, J. (2003). Automated validation and verification of process models. In
Proceedings of the 7th IASTED International Conference on Software Engineering and Applications.

Barnes, J. (1998). Programming in Ada 95. Addison-Wesley Pub Co.

Cass, A. G., Lerner, B. S., McCall, E. K., Osterweil, L. J., Sutton, Jr., L. J., and Wise, A. (2000).
Little-JIL/Juliette: A process definition language and interpreter. In Proceedings of International
Conference on Software Engineering, pages 754–757.

Cobleigh, J. M., Clarke, L. A., and Osterweil, L. J. (2000). Verifying properties of process defini-
tions. In Proceedings of the ACM SIGSOFT 2000 International Symposium on Software Testing
and Analysis, pages 96–101.

Cobleigh, J. M., Clarke, L. A., and Osterweil, L. J. (2002). FLAVERS: A finite state verification
technique for software systems. IBM Systems Journal, 41(1):140–165.

Conradi, R. and Liu, C. (1995). Process modelling languages: One or many? In Schäfer, W., editor,
Proceedings of 4th European Workshop on Software Process Technology, pages 98–118. Springer–
Verlag.

Cook, J. E. and Wolf, A. L. (1999). Software process validation: Quantitatively measuring the cor-
respondence of a process to a model. ACM Transactions on Software Engineering and Methodology,
8(2):147–176.

Cugola, G. and Ghezzi, C. (1998). Software processes: A retrospective and a path to the future.
Software Process Improvement and Practice, 4(3):101–23.

Dami, S., Estublier, J., and Amiour, M. (1998). APEL: A graphical yet executable formalism for
process modeling. Automated Software Engineering, 5(1):61–96.

J. M. Rib, X. F. (2000). PROMENADE: A PML intended to enhance standardization, expressive-
ness and modularity in software process modelling. Technical report, Universitat De Lleida.

Joeris, G. and Herzog, O. (1999). Towards flexible and high-level modeling and enacting of pro-
cesses. In Proceedings of 11th International Conference on Advanced Information Systems Engi-
neering, volume 1626, pages 88–102.

76

Johnson, E. W. and Brockman, J. B. (1998). Measurement and analysis of sequential design
processes. ACM Transactions on Design Automation of Electronic Systems, 3(1):1–20.

Johnson, S. C. (1978). Lint, a C program checker. In Unix Programmer’s Manual. AT&T Bell
Laboratories.

Junkermann, G., Peuschel, B., Schäfer, W., and Wolf, S. (1994). Merlin: Supporting cooperation
in software development through a knowledge-based environment. In Software Process Modelling
and Technology, pages 103–129. Research Studies Press Ltd.

Kaiser, G. E., Popovich, S., and Ben-Shaul, I. Z. (1993). A bi-level language for software process
modeling. In Proceedings of the 15th International Conference on Software Engineering, pages
132–143. IEEE Computer Society Press.

Klingler, C. D. (1994). A STARS case study in process definition. Technical Report F19628-88-D-
0031.

Klingler, C. D., Neviaser, M., Marmor-Squires, A., Lott, C. M., and Rombach, H. D. (1992). A
case study in process representation using MVP-L. In Proceedings of the 7th Annual Conference
on Computer Assurance, pages 137–146.

Minas, M. and Hoffmann, B. (2001). Specifying and implementing visual process modeling lan-
guages with diagen. In Ehrig, H., Ermel, C., and Padberg, J., editors, Electronic Notes in Theo-
retical Computer Science, volume 44. Elsevier.

Noll, J. and Scacchi, W. (2001). Specifying process-oriented hypertext for organizational computing.
Journal of Network and Computer Applications, 24(1):39–61.

Pinheiro da Silva, P. (2001). A proposal for a LOTOS-based semantics for UML. Technical Report
UMCS-01-06-1, Department of Computer Science, University of Manchester, Manchester, UK.

Pressman, R. S. (1992). Software Engineering: A Practitioner’s Approach. McGraw-Hill.

Scacchi, W. (2000). Understanding software process redesign using modeling, analysis and simula-
tion. Software Process Improvement and Practice, 5(2–3):183–195.

Scacchi, W. and Mi, P. (1997). Process life cycle engineering: A knowlege-based approach and en-
vironment. International Journal of Intelligent Systems in Accounting, Finance, and Management,
6(2):83–107.

Scacchi, W. and Noll, J. (1997). Process-driven intranets: life-cycle support for process reengineer-
ing. IEEE Internet Computing, 1(5):42–49.

Stallman, R. M. (1991). GCC Reference Manual. Free Software Foundation, Cambridge, MA.

Sutton, Jr., S. M. (1990). APPL/A: A Prototype Language for Software-Process Programming.
PhD thesis, University of Colorado.

Sutton, Jr., S. M. (1995a). Accounting for purpose in specifying requirements for process programs.
Technical Report UM-CS-1995-076.

Sutton, Jr, S. M. (1995b). Preconditions, postconditions, and provisional execution in software
processes. Technical Report UM-CS-1995-077.

Sutton, Jr., S. M., Heimbinger, D., and Osterweil, L. J. (1995). APPL/A: A language for software-
process programming. ACM Transactions on Software Engineering and Methodology, 4(3):221–286.

77

Sutton, Jr., S. M., Lerner, B. S., and Osterweil, L. J. (1997). Experience using the JIL process
programming language to specify design processes. Technical Report UM-CS-1997-068, University
of Massachusetts.

Sutton, Jr., S. M. and Osterweil, L. J. (1997). The design of a next-generation process language.
In Proceedings of the 6th European Software Engineering Conference, volume 22, pages 142–158.

van der Aalst, W. M. P. (1999). Woflan: A petri-net-based workflow analyzer. System Analysis -
Modelling - Simulation, 43(3):345–357.

78

Appendix A

Initial Netbeans Requirements and Release Model

A.1 Model Specification

process RequirementsAndRelease {
sequence Requirements {

sequence SetPro j ec tTime l ine {
action ReviewNetBeans {

requires { NetBeansRoadmap }
/∗ provides { } ∗/

}
action SetReleaseDate {

requires { NetBeansRoadmap }
provides { ReleaseDate }

}

sequence DetermineProject {
branch SunONEStudioDevelopmentMeeting {

action ReviewNetBeansVisionStatmenet {
requires { NetBeansVisionStatement }
/∗ provides { } ∗/

}
action ReviewUncompletedMilestonesFromPreviousRelease {

requires { PreviousVers ionReleaseDocuments }
provides { Prospect iveFeaturesForUpcomingRelease }

}
action Rev i ewI s suz i l l aFeatureReques t s {

requires { I s s u z i l l a I s s u eR ep o s i t o r y }
provides { Prospect iveFeaturesForUpcomingRelease }

}
}

iteration Estab l i shFeatureSet {
action Compi leL i s tOfPoss ib leFeaturesToInc lude {
requires { Prospec t iveFeature sGatheredFromIs suez i l l a &&

Prospect iveFeaturesFromPrev iousReleases }
provides { FeatureSetForUpcomingRelease }
}
action Categor izeFeaturesProposedFeatureSet {

requires { FeatureSetForUpcomingRelease }
provides { WeightedListOfFeaturesToImplement }

}
action SendMessageToCommunityForFeedback {

requires { WeightedListOfFeaturesToImplement }
/∗ provides { } ∗/

}
action ReviewFeedbackFromCommunity {

requires { FeebackMessagesOnMail }
provides { Potent ia lRevis ionsToDevelopmentProposal }

}
action ReviseProposalBasedOnFeedback {

requires { Potent ia lRevis ionsToDevelopmentProposal }
provides { RevisedDevelopmentProposal }

}
}

action PostFinalDevelopmentProposalToNetBeansWebsite {
requires { RevisedDevelopmentProposal }

79

provides { FinalDevelopmentProposal }
}
action AssignDevelopersToCompleteProjectMi lestones {

requires { RevisedDevelopmentProposal }
/∗ provides { } ∗/

}
}

sequence SetReleaseStageComplet ionDates {
action SetFeatureFreezeDate {

requires { ReleaseDate }
provides { FeatureFreezeDate }

}
action SetMilestoneComplet ionDates {

requires { FeatureFreezeDate && ReleaseDate }
provides { MilestoneComplet ionDates }

}
}

}

sequence Establ i shReleaseManager {
action Emai lSo l i c i tat ionForRe leaseManager {

/∗ requ i res { } ∗/
provides { ReleaseManagerRequest }

}
action WaitForVolunteer {

/∗ requ i res { } ∗/
/∗ provides { } ∗/

}

iteration CollectCandidacyNominations {
action SendCandidacyAnnouncement {

requires { ReleaseManagerRequest }
provides { ReleaseManagerCandidacyAnnouncement }

}
}

action Establ ishReleaseManagerConsensus {
requires { ReleaseManagerCandidacyAnnouncements }
provides { ReleaseManagerDecis ion }

}
action AnnounceNewReleaseManager {

requires { ReleaseManagerDecis ion }
provides { ReleaseManagerAnnoucementToNbdevMailingList }

}
}

action Sol i c i tModuleMainta inersForInc lus ionInUpcomingRelease {
requires { FeatureFreezeDate }
provides { ModuleInclus ionNoticeToNbdevMai l ingList}

}
}

sequence Release {
iteration S t a b i l i z a t i o n {

sequence Build {
action ChangeBuildBranchName {

requires { CvsCodeRepository }
provides { NewBranchForCurrentBuild }

}

iteration MakeInstal lTar {
action MakeInstal lTarForEachPlatform {

requires { DevelopmentSourceForEachPlatform }
provides { In s ta l lExecutab l eTar }

}
}

}

sequence Deploy {
action UploadInstal lTarFi lesToWebRepository {
requires { BinaryReleaseDownloads && WebRepository }
/∗ provides { } ∗/
}
action UpdateWebPage {

requires { ProjectWeb }
provides { UpdatedWeb }

80

}
action MakeReadmeInstallationNotesAndChangelog {

requires { ChangesFromIndividualModules}
provides { README && In s t a l l a t i o nNo t e s && Changelog}

}
action SendReleaseNotificationToCommunityInvitingTheCommunityToDownloadAndTestIt {

/∗ requ i res { } ∗/
provides { ReleaseNot i ce }

}
}

sequence Test {
action ExecuteAutomaticTestScr ipts{

requires { Tes tSc r ip t s && Re l ea s eB ina r i e s }
provides { TestResu l t s }

}

action ExecuteManualTestScripts{
requires { Re l ea s eB ina r i e s }
provides { TestResu l t s }

}

iteration Upda t e I s s u e z i l l a {
action Repo r t I s s u e sTo I s s u e z i l l a {

requires { TestResu l t s }
provides { I s s u e z i l l aEn t r y }

}
action UpdateStandingIssueStatus {

requires { Stand ing I s sueFromI s sue z i l l a && TestResu l t s }
provides { Updat ed I s su e z i l l a I s su eRepo s i t o ry }

}
}

action PostBugStats{
requires { TestResu l t s }
provides { BugStatusReport && TestResultReport}

}
}

sequence Debug {
action ExamineTestReport {

requires { TestReport && BugStats }
/∗ provides { } ∗/

}
action WriteBugFix {

requires { ErroneousSource }
provides { Potentia lBugFix }

}
action VerifyBugFix {

requires { Potentia lBugFix }
provides { WorkingBugFix }

}
action CommitCodeToCvsCodeRepository {

requires { WorkingBugFix && CVSCodeRepsository}
provides { UpdatedSource}

}
action Update I s suez i l l aToRef l ec tChanges {

requires { I s s u e z i l l a I s s u eR ep o s i t o r y }
provides { UpdateIssueStatus }

}
}

}

action Comple t eStab i l i z a t i on {}
}

}

81

Appendix B

First Revision of Netbeans Model

B.1 Model Specification

process RequirementsAndRelease {
sequence Requirements {

sequence SetPro j ec tTime l ine {
action ReviewRoadmap {

requires { Roadmap }
provides { Roadmap . Reviewd }

}
action SetReleaseDate {

requires { Roadmap }
provides { (der ived) ReleaseDate }

}

sequence DetermineProject {
branch SunONEStudioDevelopmentMeeting {

action ReviewNetBeansVisionStatmenet {
requires { VisionStatement }
provides { VisionStatement . reviewed }

}
action ReviewUncompletedMilestonesFromPreviousRelease {

requires { PreviousVers ionReleaseDocuments && Prospec t iveFeature s }
provides { (der ived) Prospec t iveFeature s . Prev iousVers ions == ”complete ” }

}
action Rev i ewI s suz i l l aFeatureReques t s {

requires { I s s u z i l l a I s s u eR ep o s i t o r y && Prospec t iveFeature s }
provides { (der ived) Prospec t iveFeature s . I s s u z i l l a == ”complete ” }

}
}

iteration Estab l i shFeatureSet {
action Compi leL i s tOfPoss ib leFeaturesToInc lude {

requires { Prospec t iveFeature s . I s s u e z i l l a && Prospec t iveFeature s . Prev iousVers ions }
provides { (der ived) Re leaseFeatureSet }

}
action Categor izeFeaturesProposedFeatureSet {

requires { ReleaseFeatureSet }
provides { ReleaseFeatureSet . weighted }

}
action CreateDevelopmentProposal {

requires { ReleaseFeatureSet . weighted }
provides { (der ived) DevelopmentProposal }

}
action SendMessageToCommunityForFeedback {

requires { ReleaseFeatureSet . weighted && DevelopmentProposal && CommunityMailingList }
provides { (der ived) CommunityFeedback }

}
action ReviewFeedbackFromCommunity {

requires { CommunityFeedback && DevelopmentProposal }
provides { DevelopmentProposal . Po t en t i a lRev i s i on s }

}
action ReviseProposalBasedOnFeedback {

requires { DevelopmentProposal . Po t en t i a lRev i s i on s }
provides { DevelopmentProposal . Revised }

}
}

82

action PostFinalDevelopmentProposalToNetBeansWebsite {
requires { DevelopmentProposal . Revised }
provides { DevelopmentProposal . F ina l i z ed }

}
action AssignDevelopersToCompleteProjectMi lestones {

requires { DevelopmentProposal . F ina l i z ed }
provides { (der ived) DeveloperAssignments }

}
}

sequence SetReleaseStageComplet ionDates {
action SetFeatureFreezeDate {

requires { ReleaseDate }
provides { (der ived) FeatureFreezeDate }

}
action SetMilestoneComplet ionDates {

requires { FeatureFreezeDate && ReleaseDate }
provides { (der ived) MilestoneComplet ionDates }

}
}

}

sequence Establ i shReleaseManager {
action Emai lSo l i c i tat ionForRe leaseManager {

requires { CommunityMailingList }
provides { (der ived) ReleaseManagerRequest }

}

iteration CollectCandidacyNominations {
action SendCandidacyAnnouncement {

requires { ReleaseManagerRequest }
provides { (der ived) ReleaseManagerCandidacyAnnouncement }

}
}

action Establ ishReleaseManagerConsensus {
requires { ReleaseManagerCandidacyAnnouncements }
provides { (der ived) ReleaseManagerDecis ion }

}
action AnnounceNewReleaseManager {

requires { ReleaseManagerDecis ion }
provides { (der ived) ReleaseManagerAnnoucementToNbdevMailingList }

}
}

action Sol i c i tModuleMainta inersForInc lus ionInUpcomingRelease {
requires { FeatureFreezeDate }
provides { (der ived) ModuleInclus ionNoticeToNbdevMai l ingList}

}
}

sequence Release {
iteration S t a b i l i z a t i o n {

sequence Build {
action ChangeBuildBranchName {

requires { CvsCodeRepository }
provides { (der ived) BuildBranch }

}

iteration MakeInstal lTar {
action MakeInstal lTarForEachPlatform {

requires { BuildBranch }
provides { (der ived) In s ta l lExecutab l eTar }

}
}

}

sequence Deploy {
action Bui ldBinaryReleases {

requires { BuildBranch && Ins ta l lExecutab l eTar }
provides { (der ived) Re l ea s eB ina r i e s }

}
action UploadInstal lTarFi lesToWebRepository {

requires { Re l ea s eB ina r i e s && WebRepository }
provides { Re l ea s eB ina r i e s . Uploaded }

}

83

action UpdateWebPage {
requires { Webpage }
provides { Webpage . Updated }

}
action MakeReadmeInstallationNotesAndChangelog {

requires { Modules . Changes }
provides { (der ived) README && (der ived) I n s t a l l a t i o nNo t e s && (der ived) Changelog }

}
action SendReleaseNotificationToCommunityInvitingTheCommunityToDownloadAndTestIt {

requires { CommunityMailingList }
provides { (der ived) Re leaseNot i ce }

}
}

sequence Test {
action CreateTes tSc r ip t s {

requires { BuildBranch && ReleaseFeatureSet }
provides { (der ived) Tes tSc r ip t s }

}
action ExecuteAutomaticTestScr ipts {

requires { Tes tSc r ip t s && Re l ea s eB ina r i e s }
provides { (der ived) TestResu l t s . S c r i p tRe su l t s }

}
action ExecuteManualTestScripts {

requires { Tes tSc r ip t s && Re l ea s eB ina r i e s }
provides { (der ived) TestResu l t s . ManualResults }

}

iteration Upda t e I s s u e z i l l a {
action Repo r t I s s u e sTo I s s u e z i l l a {

requires { TestResu l t s . S c r i p tRe su l t s && TestResu l t s . ManualResults }
provides { (der ived) I s s u e z i l l aEn t r y }

}
action UpdateStandingIssueStatus {

requires { I s s u e z i l l a I s s u eR ep o s i t o r y . S tand ing I s sue s && TestResu l t s }
provides { I s s u e z i l l a I s s u eR ep o s i t o r y . Updated }

}
}

action PostBugStats {
requires { TestResu l t s }
provides { (der ived) BugStatusReport && (der ived) TestReport }

}
}

sequence Debug {
action ExamineTestReport {

requires { TestReport && BugStatsReport }
provides { TestReport . Examined }

}
action WriteBugFix {

requires { BuildBranch }
provides { (der ived) Potent ia lBugFix }

}
action VerifyBugFix {

requires { Potentia lBugFix }
provides { (der ived) WorkingBugFix }

}
action CommitCodeToCvsCodeRepository {

requires { WorkingBugFix && CVSCodeRepsository }
provides { CVSCodeRepository . Updated }

}
action Update I s suez i l l aToRef l ec tChanges {

requires { I s s u e z i l l a I s s u eR ep o s i t o r y }
provides { I s s u e z i l l a I s s u eR ep o s i t o r y . Updated }

}
}

}

action Comple t eStab i l i z a t i on {
requires { Re l ea s eB ina r i e s && TestReport && Webpage}
provides { (der ived) F ina lRe l ea se && Webpage . Updated}

}
}

}

84

B.2 Linking Specification

input { Roadmap }
input { VisionStatement }
input { PreviousVers ionReleaseDocuments }
input { I s s u z i l l a I s s u eR ep o s i t o r y }
input { CommunityMailingList }
input { CvsCodeRepository }
input { WebRepository }
input { Webpage }
input { Modules }

output { VisionStatement }
output { Webpage . Updated }
output { I s s u e z i l l a I s s u eR ep o s i t o r y . Updated }
output { CVSCodeRepository . Updated }
output { Fina lRe l ea se }
output { Webpage . Updated }

85

Appendix C

Final Revision of Netbeans Model

C.1 Model Specification

process RequirementsAndRelease {
sequence Requirements {

sequence SetPro j ec tTime l ine {
action ReviewRoadmap {

requires { Roadmap }
provides { Roadmap . Reviewed }

}
action SetReleaseDate {

requires { Roadmap }
provides { (der ived) ReleaseDate }

}

sequence DetermineProject {
branch SunONEStudioDevelopmentMeeting {

action ReviewNetBeansVisionStatmenet {
requires { VisionStatement }
provides { VisionStatement . Reviewed }

}
action ReviewUncompletedMilestonesFromPreviousRelease {

requires { Documentation . Prev iousVers ionRe lease }
provides { (der ived) Prospec t iveFeature s . Prev iousVers ions == ”complete ” }

}
action Rev i ewI s suz i l l aFeatureReques t s {

requires { I s s u z i l l a I s s u eR ep o s i t o r y }
provides { (der ived) Prospec t iveFeature s . I s s u e z i l l a == ”complete ” }

}
}

iteration Estab l i shFeatureSet {
action Compi leL i s tOfPoss ib leFeaturesToInc lude {

requires { Prospec t iveFeature s . I s s u e z i l l a &&
Prospec t iveFeature s . Prev iousVers ions }

provides { (der ived) Re leaseFeatureSet }
}
action Categor izeFeaturesProposedFeatureSet {

requires { ReleaseFeatureSet }
provides { ReleaseFeatureSet . weighted }

}
action CreateDevelopmentProposal {

requires { ReleaseFeatureSet . weighted }
provides { (der ived) DevelopmentProposal }

}
action SendMessageToCommunityForFeedback {

requires { ReleaseFeatureSet . weighted &&
DevelopmentProposal &&
CommunityMailingList }

provides { (der ived) CommunityFeedback }
}
action ReviewFeedbackFromCommunity {

requires { CommunityFeedback && DevelopmentProposal }
provides { DevelopmentProposal . Po t en t i a lRev i s i on s }

}
action ReviseProposalBasedOnFeedback {

requires { DevelopmentProposal . Po t en t i a lRev i s i on s }

86

provides { DevelopmentProposal . Revised }
}

}

action PostFinalDevelopmentProposalToNetBeansWebsite {
requires { DevelopmentProposal . Revised }
provides { DevelopmentProposal . F ina l i z ed }

}
action AssignDevelopersToCompleteProjectMi lestones {

requires { DevelopmentProposal . F ina l i z ed }
provides { (der ived) DeveloperAssignments }

}
}

sequence SetReleaseStageComplet ionDates {
action SetFeatureFreezeDate {

requires { ReleaseDate }
provides { (der ived) FeatureFreezeDate }

}
action SetMilestoneComplet ionDates {

requires { FeatureFreezeDate && ReleaseDate }
provides { (der ived) MilestoneComplet ionDates }

}
}

}

sequence Establ i shReleaseManager {
action Emai lSo l i c i tat ionForRe leaseManager {

requires { CommunityMailingList }
provides { (der ived) ReleaseManagerRequest }

}

iteration CollectCandidacyNominations {
action SendCandidacyAnnouncement {

requires { ReleaseManagerRequest }
provides { (der ived) ReleaseManagerCandidacyAnnouncement }

}
}

action Establ ishReleaseManagerConsensus {
requires { ReleaseManagerCandidacyAnnouncement }
provides { (der ived) ReleaseManagerDecis ion }

}
action AnnounceNewReleaseManager {

requires { ReleaseManagerDecis ion }
provides { (der ived) ReleaseManagerAnnoucementToNbdevMailingList }

}
}

action Sol i c i tModuleMainta inersForInc lus ionInUpcomingRelease {
requires { FeatureFreezeDate }
provides { (der ived) ModuleInclus ionNoticeToNbdevMai l ingList}

}
}

sequence Release {
iteration S t a b i l i z a t i o n {

sequence Build {
action ChangeBuildBranchName {

requires { CvsCodeRepository }
provides { (der ived) BuildBranch }

}

iteration MakeInstal lTar {
action MakeInstal lTarForEachPlatform {

requires { BuildBranch }
provides { (der ived) In s ta l lExecutab l eTar }

}
}

}

sequence Deploy {
action Bui ldBinaryReleases {

requires { BuildBranch && Ins ta l lExecutab l eTar }
provides { (der ived) Re l ea s eB ina r i e s }

}
action UploadInstal lTarFi lesToWebRepository {

87

requires { Re l ea s eB ina r i e s && WebRepository }
provides { Re l ea s eB ina r i e s . Uploaded }

}
action UpdateWebPage {

requires { Webpage }
provides { Webpage . Updated }

}
action MakeReadmeInstallationNotesAndChangelog {

requires { Modules . Changes }
provides { (der ived) README && (der ived) I n s t a l l a t i o nNo t e s && (der ived) ChangeLog }

}
action SendReleaseNotificationToCommunityInvitingTheCommunityToDownloadAndTestIt {

requires { CommunityMailingList }
provides { (der ived) Re leaseNot i ce }

}
}

sequence Test {
action CreateTes tSc r ip t s {

requires { BuildBranch && ReleaseFeatureSet }
provides { (der ived) Tes tSc r ip t s }

}
action ExecuteAutomaticTestScr ipts {

requires { Tes tSc r ip t s && Re l ea s eB ina r i e s }
provides { (der ived) TestResu l t s . S c r i p tRe su l t s }

}
action ExecuteManualTestScripts {

requires { Tes tSc r ip t s && Re l ea s eB ina r i e s }
provides { (der ived) TestResu l t s . ManualResults }

}

iteration Upda t e I s s u e z i l l a {
action Repo r t I s s u e sTo I s s u e z i l l a {

requires { TestResu l t s . S c r i p tRe su l t s && TestResu l t s . ManualResults }
provides { (der ived) I s s u e z i l l a I s s u eR ep o s i t o r y . S tand ing I s sue s }

}
action UpdateStandingIssueStatus {

requires { I s s u e z i l l a I s s u eR ep o s i t o r y . S tand ing I s sue s && TestResu l t s }
provides { I s s u e z i l l a I s s u eR ep o s i t o r y . Updated }

}
}

action PostBugStats {
requires { TestResu l t s }
provides { (der ived) BugStatusReport && (der ived) TestReport }

}
}

sequence Debug {
action ExamineTestReport {

requires { TestReport && BugStatusReport }
provides { TestReport . Examined }

}
action WriteBugFix {

requires { BuildBranch }
provides { (der ived) Potent ia lBugFix }

}
action VerifyBugFix {

requires { Potentia lBugFix }
provides { (der ived) WorkingBugFix }

}
action CommitCodeToCvsCodeRepository {

requires { WorkingBugFix && CvsCodeRepository }
provides { CvsCodeRepository . Updated }

}
action Update I s suez i l l aToRef l ec tChanges {

requires { I s s u e z i l l a I s s u eR ep o s i t o r y }
provides { I s s u e z i l l a I s s u eR ep o s i t o r y . Updated }

}
}

}

action Comple t eStab i l i z a t i on {
requires { Re l ea s eB ina r i e s && TestReport && Webpage}
provides { (der ived) F ina lRe l ea se && Webpage . Updated}

}
}

88

}

89

C.2 Linking Specification

input { Roadmap }
input { VisionStatement }
input { Documentation . Prev iousVers ionRe lease }
input { I s s u z i l l a I s s u eR ep o s i t o r y }
input { CommunityMailingList }
input { CvsCodeRepository }
input { WebRepository }
input { Webpage }
input { Modules . Changes }

output { VisionStatement . Reviewed }
output { Webpage . Updated }
output { I s s u e z i l l a I s s u eR ep o s i t o r y . Updated }
output { CvsCodeRepository . Updated }
output { Fina lRe l ea se }
output { Webpage . Updated }
output { README }
output { I n s t a l l a t i o nNo t e s }
output { ChangeLog }
output { ReleaseManagerAnnoucementToNbdevMailingList }
output { ModuleInclus ionNoticeToNbdevMai l ingList }
output { DeveloperAssignments }
output { MilestoneComplet ionDates }
output { ReleaseNot i ce }

90

