
Comparing Extreme Programming to Traditional
Development for Student Projects: A Case Study

John Noll and Darren C. Atkinson

Department of Computer Engineering
Santa Clara University

Santa Clara, CA 95053-0566 USA
{jnoll,atkinson}@cse.scu.edu

Abstract. We conducted an experiment attempting to compare XP with a tradi-
tional approach to student software engineering projects. We tasked two groups
of student teams with producing a simple room reservation system, one group
following a traditional development process, the other using XP. We observed lit-
tle actual difference between the products delivered by either process. However,
in our opinion this is due to certain deficiencies in the way XP was realized in
this instance, rather than fundamental flaws in the process itself.

1 Introduction

Our experience with Software Engineering project courses over the past three years
showed that student project teams following traditional development processes do not
consistently produce good products or documentation. Extreme Programming, with its
iterative development cycle, emphasis on delivering value, and lean documentation re-
quirements, seemed like a viable alternative. Because Extreme Programming is driven
by delivering value to the customer, we hypothesized that this would help students fo-
cus on the product, rather than the individual deliverables, and therefore result in better
products.

In the fall quarter of 2002, we conducted an experiment to try to confirm this hy-
pothesis.

2 Method

The undergraduate Software Engineering course at Santa Clara University is a tradi-
tional ten week survey course, involving twice weekly lectures, a weekly lab session,
and a term-long development project. We divided the class into four teams of six to
eight developers; students were assigned randomly to teams. Each team was tasked
with developing a web-based room reservation system that could be used to schedule
classrooms in several buildings for courses and seminars. All teams were aware that
they were part of an experiment to compare traditional methods with XP.

Two teams followed a “traditional” development process, based on Boehm’s An-
choring Milestones [1]. These teams had three deliverables: a design document, due at



the end of the third week; an initial operational product, due at the fifth week; and a
final product, due the tenth week.

The other two teams followed Extreme Programming, with two releases compris-
ing four one-week iterations. Production code was written using pair programming dur-
ing the weekly two and one-half hour lab session; we required unit tests to be written
before the lab session. The Teaching Assistant served as the “customer” for all four
teams, while one of us (Noll) served as the XP coach. We conducted a brief (half hour)
overview of XP for the XP teams, covering iterations and releases, test-first design, and
the relationship between the customer and developers. We then proceeded directly into
the first Planning Game.

3 Results

Neither of the traditional teams could install their first release on any of the target plat-
forms; one team could not even demonstrate a working product on their development
platform, and could not offer an explanation why. Both XP teams delivered first release
products with minor bugs in their installation scripts; once these were corrected, both
products functioned but exhibited significant failures.

All four teams managed to deliver an installable product for the second release.
The XP teams delivered relatively robust products with minimal features (completing
three of eight stories) during acceptance testing, although the products suffered from
sloppy and difficult to use user interfaces. The traditional teams delivered more features
(equivalent to all eight stories), but much less robust code.

Overall, none of the delivered products, from either XP or traditional teams, could
be considered suitable for the intended application.

4 Observations

In their study of an industrial XP team, Farell, Narang, Kapitan, and Webber observed
that a split between customer and developers occurred, resulting in an attitude among
developers that they had to “protect their interests” from customers; they also observed
that not having detailed acceptance tests early in the development process resulted in
developers making assumptions about features, and a “trial and error” cycle between
customer and developers trying to achieve closure on stories [2].

Both of these observations are entirely consistent with our experience. When faced
with missing or ambiguous requirements, our students seemed prone to making as-
sumptions that suit their desires, rather than seeking clarification from the customer.
This was despite the fact that the customer was always available during lab sessions.
According to one student, “No one wants to make changes, and we challenge you [the
customer] when you request changes because we need to make sure they are worth to
you the effort they will require from us.”

Students also had difficulty with the concept of collective ownership: they were very
reluctant to fix problems in code written by others. This seemed to be a social rather
than technical problem: most were familiar enough with the entire code base to have



the expertise to fix a problem, but seemed to feel that this would violate some principle
of responsibility (“you broke it, you fix it”).

The XP teams were reluctant to apply continuous integration. We frequently ob-
served pairs “hoarding” finished code rather than integrating and testing it. This often
resulted in a mass integration at the end of the lab period, producing confusion when
inevitable problems with the build arose.

This may have been due to a lack of confidence that the features completed were
actually finished; although they passed the unit tests, developers still seemed to think
problems remained. They did not seem to make the connection between integration
testing and discovering these problems.

5 Conclusions

Despite the inconclusive results of our experiment, we still believe that XP has potential
as a pedagogical software process for software engineering project courses. We feel
that the failure of our XP teams to produce significantly better products was due to two
deficiencies in our application of the process: an insufficiently strong customer, and
inadequate introduction to XP’s values and practices. Consequently, we would adopt
the following changes in future applications of XP in the classroom:

1. Provide a strong customer by having the professor play this role. This will ensure
there is no misunderstanding of who is responsible for defining requirements, and
that the customer has sufficient authority to insert himself into the development
process when necessary.

2. Devote more class time to discussing the differences between XP and traditional
software processes, in an attempt to increase student understanding of the reasons
for various XP (and traditional) practices. Without adequate explanation of the rea-
sons for XP’s practices, students seemed inclined to dismiss XP as more difficult,
restrictive, and therefore lacking merit. As Lappo [3] observed, it is difficult to
appreciate the benefits of XP without first experiencing the pitfalls of other devel-
opment processes.

References

1. Boehm, B.W.: Anchoring the software process. IEEE Software13 (1996) 73–82
2. Farell, C., Narang, R., Kapitan, S., Webber, H.: Towards an effective onsite customer prac-

tice. In Succi, G., Marchesi, M., eds.: Proceedings of the Third International Conference on
Extreme Programming and Agile Processes in Software Engineering, Alghero, Sardinia, Italy
(2002) 52–55

3. Lappo, P.: No pain, no XP – Observations on teaching and mentoring extreme programming
to university students. In Succi, G., Marchesi, M., eds.: Proceedings of the Third International
Conference on Extreme Programming and Agile Processes in Software Engineering, Alghero,
Sardinia, Italy (2002) 35–38


