
Scala: A Functional,
Object-Oriented

Language
COEN 171

Darren Atkinson

What is Scala?
� Scala stands for Scalable Language

� It was created in 2004 by Martin Odersky.

� It was designed to grow with the demands of its users.

� It was designed to overcome many criticisms of Java.

� It is compiled to Java bytecode and is interoperable with
existing Java classes and libraries.

� It is more of a high-level language than Java, having higher-
order containers and iteration constructs built-in.

� It encourages a functional programming style, much like ML
and Scheme.

� It also has advanced object-oriented features, much like
Java and C++.

Using Scala
� Using Scala is much like using Python or ML, and is

not as unwieldy as using Java.

� The Scala interpreter can be invoked directly from
the command line:

� The Scala interpreter can also be given a file on the
command line to execute:

$ scala
Welcome to Scala 2.11.8

scala> println("Hi!")

$ scala foo.scala

Scala Syntax
� Scala has a Java-like syntax with braces.

� The assignment operator is simply =.
� Strings are built-in and use + for concatenation.

� Indexing is done using () rather than [].
� The first index is index zero.
� Parameterized types use [] rather than < >.
� A semicolon is inferred at the end of a line.

� However, since it is functional, everything is an
expression and there are no “statements”.

Scala Types
� In Java, the primitive types are not objects and

wrapper classes must be used.
� Integer for int, Boolean for bool, etc.

� In Scala, everything is an object including the more
“primitive” types.
� The Scala types are Int, Boolean, String, etc.

� However, the Scala primitives are transparently
converted to Java types by the Scala compiler.
� So, “boxing” and “unboxing” of types is automatic.

Type Inference
� Like ML, Scala performs type interference, so it is

not always necessary to declare the types of objects.

� Unlike ML, Scala’s type interference is local, rather
than global, so some type declarations are needed.

� In particular, parameters (but not return values)
need to have their types declared.

def add(x: Int, y: Int) = {
x + y

}

def sub(x: Int, y: Int) = x – y

No return needed

Variables vs. Values
� Variables are declared using the var keyword.

� However, Scala encourages functional programming
and also supports values declared using val.

� Variables can be reassigned to many times. Values
can only be assigned to once.

import scala.collection.mutable.Set

val movies = Set("Vertigo", "Topaz", "Rope")
movies += "Psycho"

movies = Set("Jaws", "Munich") // error!

Mutable vs. Immutable
� Scala encourages functional programming through

immutable objects.

� Arrays are mutable objects.

� Lists are immutable objects.

scala> val x = Array(1,2,3)
x: Array[Int] = Array(1,2,3)

scala> x(0) = 10

Type inference

scala> val y = List(1,2,3)
y: List[Int] = List(1,2,3)

scala> y(0) = 10 // error!

Functional Programming
� Anonymous functions are called “unnamed literals.”

� Functions can be higher order, and a number of
common utility functions are provided.

� Curried functions are permitted.

val increase = (x: Int) => x + 1

val x = List(1,2,3,4)
val y = x.filter(x => x > 2)
val z = x.map(x => x + 1)

def steph(x: Int)(y: Int) = x + y
val incr = steph(1)_ Parameter placeholder

Object-Orientation
� We’ve already seen that arrays and lists are objects

that can have methods invoked.

� All operators are actually methods and vice versa!

� Scala also support classes, inheritance, and
overriding inherited methods.

val x = 1.+(2)
val y = List(1,2,3)
val z = y filter (x => x > 2)

class Rational(n: Int, d: Int) {
val num = n
val dem = d
override def toString = num + "/" + dem

}

Immutable

Conclusion
� Scala is a functional, object-oriented language.

� It has a Java-like syntax.

� Everything is an object, much like Smalltalk.

� Operators can be overloaded, much like C++.

� Functions are first-class values, much like ML.

� It does type inference, much like ML.

� Container classes are built-in, much like Python and
other scripting languages.

