Scala: A Functional,
Object-Oriented
Language

COEN 171
Darren Atkinson

What is Scala?

® Scala stands for Scalable Language

It was created in 2004 by Martin Odersky.
It was designed to grow with the demands of its users.
It was designed to overcome many criticisms of Java.

It is compiled to Java bytecode and is interoperable with
existing Java classes and libraries.

It is more of a high-level language than Java, having higher-
order containers and iteration constructs built-in.

It encourages a functional programming style, much like ML
and Scheme.

It also has advanced object-oriented features, much like
Java and C++.

Using Scala

e Using Scala is much like using Python or ML, and is
not as unwieldy as using Java.

® The Scala interpreter can be invoked directly from

the command line:

$ scala
Welcome to Scala 2.11.8

scala> println("Hi!")

® The Scala interpreter can also be given a file on the
command line to execute:

$ scala foo.scala

Scala Syntax

® Scala has a Java-like syntax with braces.
® The assignment operator is simply =.
® Strings are built-in and use + for concatenation.
® |ndexing is done using () rather than [].
® The first index iIs index zero.
® Parameterized types use [] rather than < ».
® A semicolon is inferred at the end of a line.

® However, since it is functional, everything is an
expression and there are no “statements”.

Scala Types

® |n Java, the primitive types are not objects and
wrapper classes must be used.

® Tnteger for int, Boolean for bool, etc.

® |n Scala, everything is an object including the more
“primitive” types.
® The Scala types are Int, Boolean, String, etc.

® However, the Scala primitives are transparently
converted to Java types by the Scala compiler.

® So, “boxing” and “unboxing” of types is automatic.

Type Inference

e | ike ML, Scala performs type interference, so it is
not always necessary to declare the types of objects.

e Unlike ML, Scala’s type interference is local, rather
than global, so some type declarations are needed.

® |n particular, parameters (but not return values)
need to have their types declared.

def sub(x: Int, y: Int) = x -y

Variables vs. Values

® Variables are declared using the var keyword.

® However, Scala encourages functional programming
and also supports values declared using val.

® Variables can be reassigned to many times. Values
can only be assigned to once.

import scala.collection.mutable.Set

val movies = Set("Vertigo", "Topaz", "Rope")
movies += "Psycho"

movies = Set("Jaws", "Munich") // error!

Mutable vs. Immutable

® Scala encourages functional programming through
iImmutable objects.

® Arrays are mutable objects.

A scala> val x = Array(1,2,3)
> x: Array[Int] = Array(1,2,3)

scala> x(@) = 10

® | ists are immutable objects.

List(1,2,3)
List(1,2,3)

scala> val y
y: List[Int]

scala> y(0) = 10 // error!

Functional Programming

e Anonymous functions are called “unnamed literals.”

val increase = (x: Int) => x + 1

® Functions can be higher order, and a number of
common utility functions are provided.

val x = List(1,2,3,4)
val y = x.filter(x => x > 2)
val z = x.map(x => x + 1)

e Curried functions are permitted.

def steph(x: Int)(y: Iny
val incr = steph(1)_

1

r placeholder

Object-Orientation

e \We've already seen that arrays and lists are objects
that can have methods invoked.

e All operators are actually methods and vice versal!

val x = 1.+(2)
val y = List(1,2,3)
val z = y filter (x => x > 2)

® Scala also support classes, inheritance, and
overriding inherited methods.

class Rational(n: Int, d: Int) {

val num n
val dem d

override def toString = num + "/" + dem

Conclusion

Scala is a functional, object-oriented language.
It has a Java-like syntax.

Everything is an object, much like Smalltalk.
Operators can be overloaded, much like C++.
Functions are first-class values, much like ML.
It does type inference, much like ML.

Container classes are built-in, much like Python and
other scripting languages.

