
Analyzing the Resource Utilization of
AES Encryption on IoT Devices

Pedro Sanchez Munoz⇤, Nam Tran†, Brandon Craig‡, Behnam Dezfouli§, and Yuhong Liu¶
Internet of Things Research Lab, Department of Computer Engineering, Santa Clara University, USA
⇤psanchezmunoz@scu.edu, †nvtran@scu.edu, ‡bcraig@scu.edu, §bdezfouli@scu.edu, ¶yhliu@scu.edu

Abstract—With the prosperity of the Internet of Things (IoT),

the implied security issues demand heightened attention. How-

ever, conventional cryptographic security solutions often lead to

heavy computations and high energy costs, which can hardly be

afforded by resource-constrained IoT edge devices. Therefore, it

is essential to retrieve real testing data and investigate the trade-

off between information security and its resource consumption

on IoT edge devices. This paper explores the duration and en-

ergy consumption of the Advanced Encryption Standard (AES),

implemented through both software and hardware with various

key and buffer size settings on two resource-constrained IoT edge

devices. In particular, we observe that (1) compared to software,

the hardware implementation is more sensitive to buffer size

settings and only consumes lower overall time and energy when

the buffer size is sufficiently large; (2) the security premium

provided by an increase in key size leads to increased resource

consumption in all cases; and (3) comparing the two IoT boards,

the CYW board, which is designed with faster default CPU

clock rate and more memory, consumes fewer resources overall

than the BCM board. These observations not only help advance

the understanding of the trade-off between IoT devices’ security

needs and resource consumption, but also shed light on future

improvement of light-weight security designs.

I. INTRODUCTION

As of 2016, there were approximately 6 billion connected
Internet of Things (IoT) edge devices world-wide and there
will be 20 billion connected by 2020 [1]. These IoT edge
devices can be found in a variety of “smart” objects such
as smart heaters, fridges, cars, lights, doors, and other ev-
eryday products. The IoT edge devices which typically host
a variety of sensors for temperature, pressure, humidity, light,
motion and acceleration are frequently resource-constrained in
a multitude of ways. For example, many of them are battery-
powered. Their processing power is often designed to be just
sufficient for the task at hand so that they can be mass-
produced while minimizing costs. They often heavily rely
on threading on a real-time operating system to extract all
possible performance out of their hardware. On the other hand,
the amount of data produced by these sensors at this scale is
staggering. This data is valuable for analysis and predictions,
but the security implications are worrisome. As time passes,
these devices will increasingly be used as interfaces to the real
world, such as medical monitoring on a patient or navigation
systems in a car [2]. The security risks are suddenly made real
and potentially life-threatening.

There are a variety of challenges to be addressed with
respect to securing the IoT world. One of the most critical
security challenges is the pervasive trade-off between data

security and device performance, especially given that the
typical IoT edge device is resource-constrained. Security im-
plementations must share the processing power, scheduling
time, and energy available to the board. The more security
demanded, the more time and energy required by the device.
It is of utmost importance to understand and compare the time
and energy consumption of existing security solutions in order
to streamline their use in the IoT market.

Although research has been conducted to evaluate the trade-
off between different security choices and their resource
consumption on IoT boards [3]–[8], many of these studies
focus on more powerful devices such as mobile phones or
custom FPGA implementations. In addition, the studies using
resource-constrained IoT devices are often ad hoc and only
focus on specific testing platforms, making it difficult to be
generalized.

This paper seeks to evaluate the time and energy efficiency
required to perform AES encryption on two state-of-the-art
platforms with various settings. These are modern, resource
-constrained, IoT edge devices. By analyzing the real data
collected from our testing platform, this work brings an update
to the field’s understanding of the performance metrics for
modern IoT edge devices running the AES algorithm through
either software or hardware implementations. Note that our
hardware acceleration is provided by a Cypress Semiconduc-
tor “cryptography core” available on certain production IoT
platforms, specifically the CYW board that we use, in contrast
to the implementations in other work that use FPGA devices,
such as one by Mali et al. [7]. Furthermore, this paper will shed
light on further improvement of lightweight security designs
for resource-constrained IoT edge devices in the future.

The rest of this paper is organized as follows. Section II out-
lines an overview of previous works that establishes a baseline
for comparison with our results. Section III briefly introduces
the basics of AES. In Section IV, the evaluation methodology
is discussed in detail, which includes the characteristics of
the two testing platforms, the customized energy measurement
tool developed by a previous work, and the design choices
made to obtain clear and reliable data. The experimental data
is analyzed in Section V, followed by the conclusion in Section
VI.

II. RELATED WORK

The study of cryptographic performance on IoT devices has
been previously explored on other platforms. For example,

Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2018, Hawaii, USA



Potlapally et al. [5] focus on battery life, a critical constraint
of devices. Their study provides a comprehensive analysis
of Security Sockets Layer (SSL) and the underlying cryp-
tographic algorithms. They demonstrate that cryptographic
algorithms have significant impact on battery life and memory
consumption. Though outdated, the conclusions provide an
idea of where cryptographic algorithms stood with respect to
performance and thus serve as a reference point to measure
their improvement. A relevant conclusion drawn is that AESs
energy consumption increases with the chosen key size. Simi-
larly, Salama et al. [4] also examine an 8% increase of energy
and encryption duration between the 128-bit and 192-bit key
size options, and a 16% increase between 128-bit and 256-bit
key sizes.

There are some studies comparing the performance of
hardware and software implementations of AES. For example,
Mali et al. [7] test a hardware implementation of AES on an
FPGA versus a software implementation. They conclude that
hardware is faster with respect to encryption and decryption,
23 and 29 times respectively. However, they also find that soft-
ware’s key expansion is 1.88 times faster than hardware and
that the most costly operation in using hardware acceleration
is the Direct Memory Access (DMA) transfer.

Diehl et al. [6] investigate AES’s “lightweight” software
versus hardware cryptography across a diverse set of platforms
and specifications. A conclusion is reached that software
implementations typically use 10% less energy than their
corresponding hardware versions during operation. However,
the increased throughput of custom hardware allows it to have
a reduced overall energy requirement and be the ultimate best
option for situations where long-term energy consumption is
constrained.

Panait et al. [3] measure the performance of an AES
implementation on the ATmega128RFA1 microcontroller. The
microcontroller features a 16 MHz CPU that is equipped with a
hardware accelerated cryptography engine that performs AES
128-bit encryption. The ATmega128RFA1 device is purposely
chosen to obtain a benchmark for wireless sensor nodes,
low-power devices that operate independently. These nodes
often operate without an external power source, so accom-
plishing device longevity makes minimal energy consumption
a priority. Energy and time metrics are obtained on the
ATmega128RFA1 for the CFB AES mode in both software
and hardware AES-128 implementations. A noteworthy ob-
servation for our evaluation is that average power consumed
is independent of the plaintext size for both styles of imple-
mentation. Also, hardware and software AES implementations
on the ATmega128RFA1 consume nearly an equal amount of
energy.

Hodjat et al. [8] propose a variety of design decisions to
maximize throughput/area for a hardware AES implementa-
tion. The main decision is to implement pipelining indepen-
dently for both key expansion and the encryption rounds.
While their contributions with respect to minimizing area are
valuable given the small space on IoT edge devices, they
also provide optimization with respect to power consumption.

Specifically with regards to the key expansion, they point
out that the round keys do not change as frequently as data.
Therefore, their design only calculates the round keys for each
session rather than for each encryption.

As a summary, there are few studies focusing on the
resource consumption of cryptography algorithms on resource-
constrained IoT edge devices. In addition, the studies using
resource-constrained IoT edge devices are either outdated or
often ad hoc and platform specific, resulting in inconsistencies
in some of their conclusions, such as the comparison between
hardware and software implementations.

Therefore, in this work, we focus on providing an updated
set of measurements with respect to energy and encryption
duration on two popular IoT platforms. Specifically, to ensure
the generality of the observations made from this work, we
choose one of the platforms as best suited for computation-
heavy workloads, and the other for low-cost and scalable
applications. The technical differences between the two are
explored more thoroughly in section IV. Furthermore, we
also test how design differences influence AES performance
by examining different key sizes as 128/192/256 bits and
buffer sizes as 16/128/512/2048 bytes. The experiment re-
sults quantify the pervasive trade off between security and
resources. In addition, we involve both hardware and software
implementations of AES to compare their performance. The
ultimate goal is to help future designs of lightweight security
solutions by providing real performance data for resource-
constrained IoT devices.

III. AN OVERVIEW OF ADVANCED ENCRYPTION
STANDARD

Currently, the Advanced Encryption Standard (AES) is one
of the most widely used symmetric key cryptosystems in IoT
edge devices. Given its widespread usage, it is critical for
AES to be fast and energy-efficient. In this section, a brief
introduction on AES is provided with major focuses on its
resource consumption and security benefits1. AES is composed
of two main parts: key schedule and round transformation.

A. Key Schedule

Key schedule is a process that derives round keys from
the cipher key. In particular, the cipher key, with size Nk,
is the key that the user interacts with. These round keys
are used in round transformations in order to perform AES
encryption/decryption. Note that the increasing key size re-
quires more rounds of key scheduling and thus greater resource
consumption.

The key schedule contains four major components as: (1)
WordSub (i.e., fW ), which maps an input word (4 bytes)
to an output word, (2) RotWord (i.e., fR), which returns 4
bytes permuted cyclically such that the bytes (a, b, c, d) would
become (b, c, d, a), (3) round constants (i.e., Rc) which are
defined such that the ith round constant is a word containing
2i-1 followed by zeros, and (4) dependencies over past round
keys. Note that i starts at 1, not 0.

1For more details, the interested reader is encouraged to refer to [9], [10].



The first round key is exactly the cipher key. Let the next
round key be w[i]. In general, the equation used to get the
next round key is:

w[i] = w[i� 1]� w[i�Nk] (1)

For words in positions that are multiples of N k, w[i� 1] is
replaced in equation 1 by:

w[i� 1] = Rc[i]� fW (fR(w[i� 1])) (2)

B. Round Transformations

The round transformation process uses round keys to per-
form AES encryption/decryption. A complete encryption is
defined as the final state after round transformations are
performed for each round key. As a result, an increase in the
number of round keys will cause more round transformations
and increase the resources consumed for a complete encryp-
tion.

The round transformations are composed of four functions:
ByteSub, ShiftRow, MixColumn and AddKey. These functions
operate on the state, which is a rectangular array of four rows
and N k columns, for which each element is a byte.

The ByteSub function returns a byte from a corresponding
input byte. The ShiftRow Function cyclically shifts rows of the
state over different offsets. Specifically, the first row (i.e., r0) is
never shifted. The remaining rows are shifted cyclically based
on N k where the last row (i.e., r3) will be shifted the most.
The MixColumn function provides a mapping over which the
state’s columns will be “mixed” by application of an XOR.
Note that in the final round, the MixColumn step is excluded
in order to better support hardware acceleration. The AddKey
function simply returns the current round key XOR with the
state.

AES provides certain desirable properties that contribute
to its security. The ByteSub/WordSub functions provide non-
linearity with their use of a multiplicative inverse over a finite
field. Although it is often done using an S-Box (lookup table),
the same property is achieved. The ShiftRow function provides
diffusion across rows and the MixColumn function provides
diffusion across columns. In combination and over multiple
rounds, these functions provide full diffusion such that each
output bit is dependent on every input bit. The AddKey func-
tion provides secrecy/key dependency over the corresponding
round keys. These properties provide security against a variety
of attacks including linear cryptanalysis [11]. Its keyspace is
considered too large for brute-force attacks to be practical. It is
also simple, which allows for the use of hardware acceleration
and also mitigates the risk of implementation vulnerabilities
[9].

IV. METHODOLOGY

In this section, we discuss the IoT edge devices that are used
as our testing platforms, our customized energy measurement
platform, and the evaluation parameters in detail.

TABLE I
TESTING PLATFORMS AND FEATURES

Device CYW43907 (CYW) BCM4343 (BCM)

MCU ARM Cortex R4 ARM Cortex M4
Word Size 32-bit 32-bit

Clock Frequency 320 MHz 100 MHz
SRAM 2 MB 128 KB

A. Testing Platforms

The features of the two IoT edge devices employed in
this work are summarized in Table I. In particular, we use
CYW43907 (CYW) [12] as the first testing platform. It is
an embedded wireless system-on-a-chip (SoC) manufactured
by Cypress Semiconductor. Featuring an ARM Cortex-R4
applications processor, it is optimized for IoT computation-
heavy applications. In addition, we also use BCM4343 (BCM)
[13] as the second testing platform, which is another SoC
proposed for IoT but offers less processing power from its
ARM Cortex-M4 processor.

It should be noted that the CYW board’s price is higher than
that of the BCM board as it has a faster default CPU clock
rate, more memory, more I/O, and an on-board cryptography
engine with support for hardware-accelerated AES. The BCM
does not boast such an engine and therefore does not sup-
port hardware-accelerated AES. There are use cases for both
boards. The CYW board is better suited for computation-heavy
tasks due to its extra resources. The BCM board is better for
large-scale deployments due to its reduced cost. This contrast
between devices allows us to analyze AES performance across
both computation-heavy and scalable IoT scenarios.

B. Energy Measurement Tool

This subsection explores the high-performance Energy Mea-
surement Platform for Wireless IoT Devices (EMPIOT) pro-
posed in a previous work [14]. Featuring a sampling rate of
approximately 1000 Hz, EMPIOT is accurate to 0.4 µW in its
energy measurement. This tool can run on a variable power
source without compromising accuracy. Most impressively, the
EMPIOT platform is known to boast less than 3% of energy
measurement error for IoT devices using 802.15.4 or 802.11
wireless standards. This capable and accurate measurement
platform is used to collect all energy data presented in this
work.

Fig. 1 and Fig. 2 illustrate EMPIOT’s components and
interconnections with IoT boards. The RaspberryPi controlling
EMPIOT provides user interface through a monitor, with
keyboard and mouse inputs similar to a computer. In particular,
the SoC being measured interfaces with the RaspberryPi.
The SoC is connected via two general-purpose input/output
(GPIO) pins. The output signals from the SoC GPIO pins act
as triggers to the measurement sequence on the Raspberry
Pi. Once activated by a starting trigger, the device measures
the values of current (resolution of 100 µA) and voltage
(resolution of 4 mV) through the tested SoC.



Fig. 1. Components of the EMPIOT Energy Measurement Platform

Raspberry Pi
(Controlling and Collecting Power 

Measurements)

EMPIOT
(Energy Measurement Platform 

for IoT Devices)
CYW943907

or
BCM94343

GPIO

GPIO

Start Measurement

USB
IoT Board Power

USB
Stop Measurement

GPIO

Logic Analyzer

Start/Stop Time Measurement

Fig. 2. Interconnection with the EMPIOT Energy Measurement Platform

It should be noted that the limitations of EMPIOT are also
considered. Although EMPIOT can run on a variable power
source without compromising accuracy, to ensure consistent
sampling, the wall outlet connecting to the energy measure-
ment platform remains unchanged throughout the tests. Also,
it has been shown that during warm-up, the first 5 samples
measured after initialization are not accurate. As such, there
is a 3 millisecond delay implemented between the initialization
of the EMPIOT platform and the collection of data. All
collected data from a session is stored into a text file stored
within the onboard memory that can be retrieved using a USB
drive.

C. AES Implementation

Cypress Semiconductor's WICED SDK provides a library
of cryptographic implementations [15]. The experiments are
conducted using software and hardware implementations of
AES-CBC from the WICED security library version 6.0.1.
To provide its AES functionality, the WICED security library
uses the mbedtls’ free, open source library. Cipher block-

PT_Block[0]

IV

AES Encrypt

CT_Block[0]

Key

PT_Block[1]

AES Encrypt

CT_Block[1]

Key

…

Fig. 3. AES-CBC Encryption

chaining mode (CBC) is used in all experiments. This mode is
popular since it prevents a given plaintext mapping to a single
ciphertext, while only requiring a single public initialization
vector (IV).

Fig. 3 depicts how AES-CBC encryption works. The im-
plementation requires the use of a context structure to hold
the round keys and buffers for the IV, plaintext blocks (i.e.,
PT Block) and resulting ciphertext blocks (i.e., CT Block).
First, a buffer holding the key is copied into the context
structure. Then, the IV and plaintext buffers are prepared. Note
that the buffers are passed in by address. Finally, these are used
in a function call as arguments to the crypt_cbc() function
which will write the ciphertext at the address provided. It is
found that the only affected variables are the IV, since it is used
in each block encryption, and the ciphertext buffer, which now
holds the corresponding ciphertext.

D. Evaluation Process

In this work, the evaluations focus on a single-threaded
scenario. In a single thread, the performance of AES is tested
across the following parameters: hardware/software implemen-
tations, different key sizes and buffer sizes. The evaluation
follows three steps:

1) Initialization: Before each experiment, an AES-CBC
key size parameter is set to the desired length as 128, 192,
or 256 bits, and a plaintext buffer size parameter is set to the
desired size as 16, 128, 512, or 2048 bytes. A library function
completes the key schedule for all trials.

2) Starting Energy Measurement: The first general GPIO
trigger is enabled at time Ts, signaling the EMPIOT to begin
energy measurement. Using a WICED software or hardware
AES function, AES-CBC encryptions of the same plaintext
buffer are repeated for N times. Please note that although
the overhead of the for loop structure and a linear time
C Standard Library memcpy function that resets the AES
initialization vector (IV) is included, the measurements show
that the time taken by these operations is negligible.

3) Completing Energy Measurement: Following the con-
clusion of the N th encryption at time Te, a second GPIO
pin is enabled, signaling the EMPIOT to conclude energy
measurement. Over the interval [Ts, Te], the EMPIOT collects
a record of the board’s instantaneous current and voltage at
approximately every 1/1000 seconds. Representing the total
number of records taken over the interval as M , the following



equation is used to obtain total energy consumption Etotal (J)
over the interval:

Etotal =
MX

i=1

(IiVi + Ii�1Vi�1)

2
(ti � ti�1), (3)

where I and V represent current and voltage respectively. The
product in the summation represents a trapezoid under the IV
versus time curve, whose area is the energy consumed since
the previous sample was taken. For each specific key size and
buffer size, the encryption process is repeated by N = 400,000
times, and the energy consumption per encryption with unit
as µJ/block is calculated as follows:

Ē =
Etotal

N ⇥B
(4)

where B is the number of blocks in the buffer per encryption.
B is calculated by dividing the corresponding buffer size (in
bytes) by 16 bytes (size of a standard AES block).

Please note that in the experiments the above procedure has
been repeated k times and the mean and standard deviation
of Ē are calculated. For the CYW and the BCM boards,
the software implementations of AES with three different key
sizes are tested by repeating the above process. In addition,
as the CYW43907's ARM R4 processor contains an on-chip
cryptography core supporting AES, the process is repeated for
each key size using the hardware AES implementation.

V. EXPERIMENTAL RESULTS

In this section, the performance evaluation results are pre-
sented. First, a discussion is provided with respect to energy
consumption across the platforms. Then, the duration data is
discussed similarly.

A. Energy Consumption

As discussed before, we have collected the energy consump-
tion of three AES implementations (i.e., BCM software, CYW
software and CYW hardware) with different key sizes and
buffer sizes. The results are demonstrated in Fig. 4, Fig. 5 and
Fig. 6.

In particular, Fig. 4, Fig. 5 and Fig. 6 represent energy
consumption (measured in microjoules µJ) for AES with key
size as 128, 192, and 256 bits respectively. Each figure has
three groups of bars from left to right, representing three
AES implementations as BCM software, CYW hardware and
CYW software. Each group contains four bars representing
buffer sizes as 16, 128, 512, and 2048 bytes respectively. It is
important to note that when the energy data is gathered, some
of the results include slight variations across experiments with
the same parameters. The greatest standard deviation is seen in
the energy data for the 2048-byte buffer size implementation
of 256-bit key variant, as shown in Fig. 6, which is 0.44
µJ between experiments. For measurements over other buffer
size/key size implementations, the variations are on the order
of 10-3 µJ to 10-5 µJ, which are negligible. We have shown
the standard deviations through error bars on these figures.

BCM CYW HW CYW SW

Platform

0

1

2

3

4

5

6

7

M
e

a
n

 E
n

e
rg

y 
C

o
n

su
m

p
tio

n
 p

e
r 

B
lo

ck
 (

J)

16 bytes
128 bytes
512 bytes
2048 bytes

Fig. 4. This graph depicts buffer size (bytes) versus mean energy consumption
per block (µJ) for 128-bit key size. As buffer size increases, CYW HW’s
energy consumption becomes much lower than the other platforms’. BCM
SW sees a slight reduction in cost at the smallest buffer sizes while the rest
of the implementations remain relatively unchanged.

BCM CYW HW CYW SW

Platform

0

1

2

3

4

5

6

7

M
e

a
n

 E
n

e
rg

y 
C

o
n

su
m

p
tio

n
 p

e
r 

B
lo

ck
 (

J)

16 bytes
128 bytes
512 bytes
2048 bytes

Fig. 5. This graph depicts buffer size (bytes) versus mean energy consumption
per block (µJ) for 192-bit key size. As buffer size increases, CYW HW’s
energy consumption becomes much lower than the other platforms’. BCM
SW sees a slight reduction in cost at the smallest buffer sizes while the rest
of the implementations remain relatively unchanged.

However, most of them can hardly be seen due to their small
values.

Based on these results, we can make the following obser-
vations. First, from Fig. 4 we observe that for the 16 byte
buffer size, the two software implementations outperform the

BCM CYW HW CYW SW

Platform

0

2

4

6

8

M
e

a
n

 E
n

e
rg

y 
C

o
n

su
m

p
tio

n
 p

e
r 

B
lo

ck
 (

J)

16 bytes
128 bytes
512 bytes
2048 bytes

Fig. 6. This graph depicts buffer size (bytes) versus mean energy consumption
per block (µJ) for 256-bit key size. As buffer size increases, CYW HW’s
energy consumption becomes much lower than the other platforms’. BCM
SW sees a slight reduction in cost at the smallest buffer sizes while the rest
of the implementations remain relatively unchanged.



hardware implementation in terms of using less energy. When
the buffer size increases, the average energy consumption
drops for all the three implementations, but the drop is
especially large for the CYW hardware implementation. The
same observation can be made from Fig. 5 and Fig. 6 as well.
The reasons are as follows. The overall energy costs contain
two parts: (1) the energy for performing encryption over the
buffer, and (2) the energy overhead for initial setup, which is
required for each encryption.

In CYW hardware implementation, as the CPU is required
to program the DMA controller directly for every buffer
regardless of buffer size, a high initial setup cost is required to
prepare the cryptography core to perform encryption. The cost
for performing the AES round transformations over the buffers
is very small in comparison. In contrast, the software imple-
mentation incurs very little constant setup cost besides the
function call overhead and loading parameters into memory;
still it faces a relatively higher linear cost when performing
round transformations over the buffers. Therefore, when the
buffer size is very small, software implementations cost less
energy overall, due to the relatively low setup cost. However,
as the buffer size increases, the high setup cost required by
the hardware implementation becomes less relevant, and the
relatively lower cost of performing round transformations over
the buffer becomes the main factor.

Second, comparing the software AES implementation on
the BCM and the CYW boards, the CYW board requires less
energy regardless of the key sizes and buffer sizes, which
suggests it is particularly designed for energy efficiency when
performing computation-heavy tasks. In contrast, BCM falls
behind quite drastically across all scenarios. It consumes
more energy and, as the next subsection demonstrates, takes
more time in most scenarios. From this, one can conclude
that, despite the lower up-front cost of the BCM platform,
the cost of operation with respect to energy will be higher.
Depending on the use case and intensity, for a sufficiently long
deployment, BCM may consume more energy overall and thus
cost more overall as well. BCM would significantly benefit
from a cryptography core in order to support energy-efficient
encryption, although this would likely interfere with its pursuit
for market share within the low-cost platform market.

Third, comparing Fig. 4, Fig. 5 and Fig. 6, we observe that
as the key size increases, an increase in energy consumption
occurs for all three implementations. For example, based on
the percentage difference between the 128-bit energy total and
the 192-bit energy total, the software implementations face a
higher energy trade-off for an increase in security. When the
AES key length is increased from 128 bits to 192 bits and then
256 bits, 14.0% and 22.8% increases in energy consumption
are observed, respectively, for the CYW software. The BCM
shares a similar result, with increases of 14.9% and 30.4%
respectively. The CYW hardware implementation experiences
a lesser premium for security, with respective increases of
0.6% and 4.0%. This observation aligns with the working
mechanism of AES as a longer key size requires more rounds
of key scheduling and round transformations. For example,

BCM CYW HW CYW SW

Platform

0

5

10

15

20

25

M
e
a
n
 E

n
cr

yp
tio

n
 D

u
ra

tio
n
 p

e
r 

B
lo

ck
 (

s)

16 bytes
128 bytes
512 bytes
2048 bytes

Fig. 7. This graph depicts buffer size (bytes) versus mean encryption duration
per block (µs) for 128-bit key size. As buffer size increases, CYW HW’s
encryption duration becomes much lower than the other platforms’. BCM
SW sees a slight reduction in duration and all other variants remain relatively
unchanged.

the 128-bit key variant will consume less energy than the
256-bit key variant, since the former runs 10 rounds of round
key scheduling/transformations, whereas the latter will run 14
rounds of round key scheduling/transformations.

B. Duration

Similar to energy consumption, we have also gathered the
encryption duration of the three AES implementations with
different key and buffer sizes. The results are shown in Fig.
7, Fig. 8 , and Fig. 9. In particular, Fig. 7, Fig. 8 and Fig. 9
represent encryption duration (measured in microseconds µs)
for AES with key size as 128, 192, and 256 bits respectively.
Each figure has three groups of bars from left to right,
representing three AES implementations as BCM software,
CYW hardware and CYW software. Each group contains four
bars representing buffer sizes as 16, 128, 512, and 2048 bytes
respectively.

It is important to note that when the timing data is gathered,
some of the results include slight variations across experiments
with the same parameters. For measurements over software
implementations, there is consistently no variation between
experiments. For measurements over hardware implementa-
tions, it is found that the standard deviations are on the order
of 10-4 µs between experiments, which is negligible. We have
also marked the standard deviations through error bars on these
figures. But most of them can hardly be seen due to their small
values.

From Fig. 7, Fig. 8 , and Fig. 9, we can observe that as
expected, the CYW cryptography core allows the hardware
implementation to outperform its competitors in terms of time.
As buffer size increases, CYW hardware implementation’s
encryption duration decreases drastically and becomes much
lower than that of other platforms. The high initial setup cost
that has been discussed in the previous subsection on energy
manifests itself again here. As buffer size increases, the CYW
hardware implementation’s setup cost becomes so negligible
that it consumes significantly less time when compared to the
remaining platforms.



BCM CYW HW CYW SW

Platform

0

5

10

15

20

25

M
e
a
n
 E

n
cr

yp
tio

n
 D

u
ra

tio
n
 p

e
r 

B
lo

ck
 (

s)
16 bytes
128 bytes
512 bytes
2048 bytes

Fig. 8. This graph depicts buffer size (bytes) versus mean encryption duration
per block (µs) for 192-bit key size. As buffer size increases, CYW HW’s
encryption duration becomes much lower than the other platforms’. BCM
SW sees a slight reduction in duration and all other variants remain relatively
unchanged.

BCM CYW HW CYW SW

Platform

0

5

10

15

20

25

30

M
e
a
n
 E

n
cr

yp
tio

n
 D

u
ra

tio
n
 p

e
r 

B
lo

ck
 (

s)

16 bytes
128 bytes
512 bytes
2048 bytes

Fig. 9. This graph depicts buffer size (bytes) versus mean encryption duration
per block (µs) for 256-bit key size. As buffer size increases, CYW HW’s
encryption duration becomes much lower than the other platforms’. BCM
SW sees a slight reduction in duration and all other variants remain relatively
unchanged.

The BCM’s significantly longer elapsed time reflects its
inferior processor speed compared to the CYW’s. Again when
examining the percentage increase that comes with each of the
larger key sizes, we observe that both software implementa-
tions experience a 10-15% increase from 128 bits to 192 bits,
and a 20-30% increase from 128 bits to 256 bits. As hinted
by the significantly small energy increase discussed earlier,
the hardware implementation incurs a smaller magnitude time
penalty when using an increased key size.

Recall Dieh et. al’s work finds that the energy consumed
by a hardware chip is significantly greater than the software
implementation, but the hardware chip ultimately achieves a
lower overall energy consumption by virtue of being much
faster with respect to time. In contrast, the CYW hardware
implementation is able to achieve both less energy consump-
tion and less execution time. The experiment results show
that given sufficiently large buffer sizes the CYW hardware
implementation can outperform its software competitors in
both energy and time. The exact buffer size varies by key size.
Based on the data, the buffer size at which CYW hardware
implementation will perform better than software is roughly
64 bytes or four AES blocks.

As can be seen in Hodjat et. al [8], there are major design
choices that must be made that could lead to different results
with respect to hardware chip performance. It is now clear that,
given the technological advances and the results gathered from
this particular implementation of a cryptography core, it is
now possible to take advantage of hardware-accelerated AES
encryption while consuming both less energy and less time.

VI. CONCLUSION

This paper serves to provide an in-depth analysis of three
different implementations of AES on two different IoT boards
with respect to their energy and encryption duration across
available key sizes and buffer sizes. Security algorithms must
share resources with other computational work or I/O, so it is
imperative that these algorithms be efficient to minimize the
overall cost of security such that they can be effectively used
alongside other functionality.

The energy measurements show that in most cases, the
BCM board consumes the most energy, followed by CYW’s
software implementation. Finally, CYW’s hardware implemen-
tation consumes the least energy. However, if buffer size is
too small (i.e., 16 bytes), CYW’s hardware implementation
consumes more energy to encrypt a given block. This is due
to the high constant cost of DMA programming required to
run the cryptography core. So, CYW’s cryptography core can,
for a large enough buffer size, encrypt a message using AES
in less time while consuming less energy than the software
variants. One can use the cryptography core as a pseudo-thread
capable of providing fast, energy-efficient encryption that will
not use application memory and only a constant amount of
CPU time, leaving valuable resources available for other tasks.
Although the BCM platform is clearly trying to minimize up-
front monetary cost, the energy data suggests that, given a
sufficiently long lifespan, it will ultimately cost the user more
in operating energy costs.

Although this work mainly focuses on the analysis of three
implementations across two platforms, the trends shown in
the comparison between different software implementations
and between software and hardware implementations will
likely remain the same with respect to boards with similar
implementations and specifications. To further encourage the
use of security algorithms, these algorithms must be efficient in
order to share resources with other important tasks. This work
shows that hardware acceleration provides a method by which
one can achieve high-efficiency security algorithms. A future
work, similar to Hodjat et. al [8] with a focus on increasing
throughput and minimizing energy consumption, would be an
important contribution towards this goal.

Measurements are only provided for AES encryption in this
work. Key scheduling is discussed only for the reader to un-
derstand its implications on resource consumption. However,
there are many aspects of the algorithm that are not analyzed
with respect to resource consumption in this work, including
but not limited to: key scheduling, modes of operation, par-
allelism, and choice of cryptographic algorithm. A potential
next step would be implementing a multi-threaded scheme of



the same cryptographic functions. Further work with analysis
over any combination of these would provide further data-
driven arguments for minimizing the resource consumption of
security algorithm while maintaining high levels of security.

ACKNOWLEDGMENT

This work has been partially supported by a research grant
from Cypress Semiconductor Corporation (Grant No. CYP-
001).

REFERENCES

[1] R. van der Meulen, “Gartner says 8.4 billion connected “things” will
be in use in 2017, up 31 percent from 2016,” Feb 2017. [Online].
Available: https://www.gartner.com/newsroom/id/3598917

[2] B. Dezfouli, M. Radi, and O. Chipara, “REWIMO: A real-time and
reliable low-power wireless mobile network,” ACM Transactions on

Sensor Networks (TOSN), vol. 13, no. 3, p. 17, 2017.
[3] C. Panait and D. Dragomir, “Measuring the performance and energy

consumption of aes in wireless sensor networks,” Proceedings of the

Federated Conference on Computer Science and Information Systems,
vol. 5, pp. 1261–1266, 2015.

[4] D. S. A. Elminaam, H. M. Abdual-Kader, and M. M. Hadhoud, “Evalu-
ating the performance of symmetric encryption algorithms.” IJ Network

Security, vol. 10, no. 3, pp. 216–222, 2010.
[5] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “Analyzing

the energy consumption of security protocols,” in Proceedings of the

2003 international symposium on Low power electronics and design.
ACM, 2003, pp. 30–35.

[6] W. Diehl, F. Farahmand, P. Yalla, J.-P. Kaps, and K. Gaj, “Comparison
of hardware and software implementations of selected lightweight block
ciphers,” in 27th International Conference on Field Programmable Logic

and Applications (FPL). IEEE, 2017, pp. 1–4.
[7] A. Biasizzo, M. Mali, and F. Novak, “Hardware implementation of aes

algorithm,” Journal of Electrical Engineering, vol. 56, no. 9-10, pp.
265–269, 2005.

[8] A. Hodjat and I. Verbauwhede, “Area-throughput trade-offs for fully
pipelined 30 to 70 gbits/s aes processors,” IEEE Transactions on

Computers, vol. 55, no. 4, pp. 366–372, 2006.
[9] V. Rijmen and J. Daemen, “Advanced encryption standard,” Proceedings

of Federal Information Processing Standards Publications, National

Institute of Standards and Technology, pp. 19–22, 2001.
[10] M. A. Musa, E. F. Schaefer, and S. Wedig, “A simplified aes algorithm

and its linear and differential cryptanalyses,” Cryptologia, vol. 27, no. 2,
pp. 148–177, 2003.

[11] E. Biham and A. Shamir, “Differential cryptanalysis of des-like cryp-
tosystems,” Journal of CRYPTOLOGY, vol. 4, no. 1, pp. 3–72, 1991.

[12] Cypress Semiconductor, “CYW943907AEVAL1F Evaluation Kit.” [On-
line]. Available: http://www.cypress.com/documentation/development-
kitsboards/cyw943907aeval1f-evaluation-kit

[13] ——, “Avnet BCM4343W IoT Starter Kit.” [Online]. Available:
http://cloudconnectkits.org/product/avnet-bcm4343w-iot-starter-kit

[14] B. Dezfouli, I. Amirtharaj, and C.-C. Li, “EMPIOT: An Energy Mea-
surement Platform for Wireless IoT Devices,” Journal of Network and

Computer Applications, 2018.
[15] Cypress Semiconductor, “WICED Studio.” [Online]. Available:

http://www.cypress.com/products/wiced-software


