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Abstract—Bluetooth Low Energy (BLE) is a widely-used low-
power wireless standard in the Internet of Things (IoT) domain.
This standard provides a set of advertisement channels, which
are primarily used for device discovery, connection initiation,
and information broadcast. Beacon transmission over these ad-
vertisement channels is the enabler of applications such as indoor
positioning, product advertisement, and medical monitoring.
Meanwhile, the performance and accuracy of these applications
highly depend on the characteristics of communication over
advertisement channels. Unfortunately, the existing literature
does not offer an extensive characterization of these channels
under various operational conditions. In this paper, we address
this research gap through conducting extensive experiments in
four different environments. We study the effect of environment
and interference on noise floor and signal propagation, and we
present a model for noise floor and extract the parameters of log-
normal path loss model. The proposed models, in particular, can
be directly used in simulation tools for modeling BLE wireless
channels as well as applications such as indoor positioning.

Index Terms—Bluetooth Low Energy (BLE), Log-Normal Shad-
owing Model (LNSM), multi-path fading, Bluetooth beacon,
channel modeling, simulation.

I. INTRODUCTION

As the Internet of Things (IoT) strives to connect every
object to the Internet [1], a variety of wireless technologies
are involved to obtain this goal. To fulfill the requirements of
IoT, an applicable technology must be low-power, available,
inexpensive, reliable, and provide mechanisms to support
coexistence. To this end, Bluetooth Low Energy (BLE) is
a widely-adopted standard that satisfies the aforementioned
requirements.

Introducing iBeacon by Apple in 2013 [2] expanded the
application domain of BLE through adding advertisement and
localization capability. Nowadays, Indoor Positioning System
(IPS) is one of the major applications of BLE. It is reported
that 75% of top US retailers have already deployed beacons
in their facilities, and 84% of international airports will be
using BLE beacons by 2019 [3]. Commercial products like
StickNFind [4], TrackR [5] and Estimote [6] exploit BLE
beacons. These products offer various types of services such as
patient monitoring, navigation in shopping malls, broadcasting
information in train stations or museums, and finding lost
items. In 2016, the global market for indoor positioning service

was $5.22 billion and it is expected to grow up to $40.99
billion by 2022, with an annual growth rate of 42.0% [7].

Although various wireless channel models exist for Blue-
tooth classic [8], 802.11 [9]–[12] and 802.15.4 [13], [14]
standards, the wireless channel of BLE has not been in-
vestigated thoroughly as it is a relatively new standard. In
particular, the models proposed for Bluetooth classic are not
applicable to BLE because of the differences in their physical
layer implementation. For example, the channel bandwidth and
modulation used by BLE and Bluetooth classic are different.
As BLE is particularly suitable for IoT applications, its wire-
less channel characterization is important due to two reasons:
First, applications such as IPS perform range estimation based
on the signal strength received from beacon sources. Second,
the accuracy of the wireless channel model used by simulation
tools directly affects the performance of protocols developed.

In this paper, we focus on the characterization of BLE
Advertisement Channels (ADV_CHs) and propose models for
various environments. Specifically, the contribution of this
paper is three-fold: First, this research is the first experimental
evaluation of BLE’s ADV_CHs in various environments con-
sidering a variety of influential factors, including interference,
environmental size, and the existence of obstacles and reflec-
tive objects. Second, we study the effect of 802.11 interference
on the stability of noise floor perceived by BLE devices on
the three advertisement channels. Third, the obtained results
are used to extract the parameters of Log-Normal Shadowing
Model (LNSM) under various conditions. We also highlight
the shortcomings of LNSM and identify areas of future re-
search. The proposed models enable the research community
to integrate accurate channel models of BLE’s ADV_CHs in
various applications (such as IPS) and simulation tools to
achieve realistic performance evaluations.

The remainder of this paper is organized as follows. A brief
overview of BLE’s physical layer is presented in Section II.
In Section III, the methodology of research including LNSM,
noise floor definition, experimental setup, and experimental
parameters, are explained. Section IV presents and analyzes
the obtained results. Section V elaborates the background of
the research on BLE ADV_CHs. Finally, we conclude the
paper in Section VI.ISBN 978-3-903176-05-8 © 2018 IFIP
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Fig. 1: The 2.4GHz frequency band shared by BLE and 802.11. The red
channels are the advertisement channels used by BLE beacons.

II. WIRELESS COMMUNICATION USING BLE

High power consumption is one of the most well-known
challenges of wireless technologies for IoT. Although Blue-
tooth was originally used for file sharing and audio streaming,
in 2010, Bluetooth Special Interest Group (SIG) made a
remarkable change in its protocol stack and introduced BLE.
The new standard paved the way towards new IoT applications
such as IPS.

Among other changes, BLE employs a new physical layer
design, which results in lower energy consumption. In contrast
with Bluetooth classic which uses 79 channels each 1MHz
wide, BLE uses 40 channels each 2MHz wide. BLE employs
Gaussian Frequency Shift Keying (GFSK) modulation, and the
transmit power is within -20 to +20dBm. BLE classifies the
channels into two groups: advertisement channels (ADV_CHs)
and data channels, as Figure 1 shows. ADV_CHs are respon-
sible to broadcast advertisement Protocol Data Units (PDUs),
and data channels are only used for data exchange. Based
on the broadcasted PDU over ADV_CHs, the device either
establishes a connection and switches to the data channels, or
continues a one-way information sharing. The unique channel
assignment of ADV_CHs tries to minimize interference with
802.11. As Figure 1 shows, the placement of these chan-
nels minimizes interference with channel 1, 6, and 11 of
802.11b/g/n standard, which are the widely-used and non-
overlapping channels in the allocated frequency spectrum of
this standard [15].

RF signals sent through ADV_CHs experience path loss
and multipath effect, which result in signal attenuation and
variations, respectively. Path loss and multipath are caused
by factors such as obstacles, noise floor, and signal reflection
off the walls and objects. Both path loss and multipath affect
the performance of applications such as IPS. For example,
IPS relies on the received signal strength value of the signals
received to estimate the distance from the sources of beacon
broadcast. If the estimation is not accurate, the triangulation
algorithm fails to compute an accurate location. Accordingly,
it is essential to characterize and model ADV_CHs to facilitate
the design and development of reliable beacon-based applica-
tions.

III. METHODOLOGY: MODELING AND EXPERIMENTATION

In this Section, we explain the path loss model used as well
as the experimentation methodology employed.

A. Log-Normal Shadowing Model (LNSM)

As mentioned earlier, signal path loss is an essential char-
acteristic of wireless channels. To this end, various models
have been proposed to compute the strength of the signal
received from a transmitter sending d meters away. This value
is usually referred to as received signal strength (RSS). The
three well-known models of signal decay are [16]: (i) free-
space propagation model, (ii) two-ray model, and (iii) log-
normal shadowing model (LNSM). The free-space propagation
model simply represents received signal power in an obstacle-
free environment. In the two-ray model, in addition to the line-
of-sight (LoS) signal, the ground reflected signal is included
as well. Both of these models represent signal strength as
a fixed function of distance. This representation results in
a circular communication range, which is referred to as the
unit disk graph model. However, as existing studies indicate
[13], RSS around a sender shows variations that are best
modeled through a normal distribution. These variations are
caused by the signals reflected off the walls and objects in the
environment. LNSM represents path loss and signal variations
as follows:

PL(d) = PL(d0) + 10� log10

(
d

d0

)
+N(0; �ch) (1)

where PL(d) represents path loss at distance d, PL(d0) is
the path loss at the reference distance d0, � is the path loss
exponent that indicates the rate at which path loss increases
versus distance d, and N(0; �ch) is a zero-mean Gaussian ran-
dom variable with standard deviation �ch. In other words, �ch

represents the standard deviation of signal power fluctuations
caused by multi-path.

The parameters of LNSM depend on both environmental
factors (e.g., obstacles, reflective surfaces, and humidity) and
characteristics of RF transceiver (e.g., frequency band, trans-
mit power, and modulation scheme). Consequently, empiri-
cal measurements are necessary to extract these parameters.
However, as environmental factors do not stay unchanged over
time, we need to estimate the variations of signal power over
time. To this end, we applied the trust region reflective least
squares [17] curve fitting algorithm.

B. Noise Floor

When external factors are neglected, the noise floor of a
transceiver is modeled through computing its noise figure,
which is a function of temperature and noise bandwidth. On
the other hand, interference shows temporal variations and
affects the RSS perceived from a receiver’s point of view.
In fact, the signal to interference-and-noise ratio (SINR)
perceived by a receiver is modeled as SINR = S=(N + I),
where S is the signal power, N is noise figure, and I is
interference. In order to estimate RSS accurately, we need
to measure both noise figure and interference in various
environments. To this end, we used a receiver to collect RSS
samples when no other BLE node is transmitting. RSS samples
in an interference-free environment represent noise figure, and
RSS samples in an environment with 802.11 devices represent
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Fig. 2: Experimental environments: (a) is an open field park with line-of-sight (LoS) transmission, (b) is a forest with blocked LoS, (c) is a classroom located in
a university building, and (d) is a corridor at the same university building. Environment (c) and (d) include random people movement during experimentation.

noise figure plus interference level. In this paper, we refer to
the term N + I as noise floor. After computing the noise floor
of various environments, we estimate the actual signal power
received from a sender through subtracting noise floor from
the signal power received. Therefore, RSSdB = Pr �N�I =
Pt � PL(d) �N � I , where Pt and Pr are transmission and
reception power, respectively.

C. Environments

We have conducted extensive experiments in four different
environments. Figure 2 shows these environments. As it can be
observed, there are two outdoor environments and two indoor
environments, as follows:

– Environment (a). A park with LoS transmission, free of
obstacles and operating wireless devices.

– Environment (b). A forest with low foliage density,
selected to observe the effect of trees and plants between
the sender and receiver. The environment is free of
interference signals.

– Environment (c). A classroom located in a university
building. The benches and chairs do not block Line-of-
Sight (LoS) transmission. However, to represent a real-
world scenario, we did not avoid people movement during
the experimentation. Additionally, several 802.11 APs
operate in this area.

– Environment (d). A corridor located on the third floor
of the university building. There are windows on the two
sides of the corridor. Furthermore, along the left side of
the corridor there are three rooms in which 802.11 APs
are operating. Similar to the environment (c), random
student movement happened during the experimentation.

For simplicity, we refer to the environments by the labels
shown in Figure 2. Table I summarizes the characteristics of
these environments based on our measurements. In this table
"Number of Locations" refers to the number of experimenta-
tion points used in that environment.

D. Hardware Setup

We used nRF52840 SoC [18] as the BLE sender and
receiver. This platform supports low-power wireless technolo-
gies such as BLE 5.0, ANT, IEEE 802.15.4, and 2.4GHz
proprietary protocols. The SoC includes an ARM Cortex-M4

Table. I: Environmental Parameters

Parameter Environment

(a) (b) (c) (d)

Ambient Temperature [°C] 11.0 14.8 21.0 21.1
Relative Humidity [%] 58.1 53.4 48.9 49.0
Area [m2] Open Open 18×12 31×1.8
Number of Locations 11 11 15 15
Packet Size 9Byte 9Byte 9Byte 9Byte
Beacons/Distance 1000 1000 1000 1000
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Fig. 3: Communication scenario: (1): Sniffer captures 40,000 noise floor
samples in a single ADV channel. (2): Sniffer sends a trigger packet to the
transmitter and configures (using a wire link) the receiver to listen to a certain
ADV channel. (3) Transmitter starts sending packets on the specified ADV
channel and the receiver collects the packets. This process repeats for all the
ADV channels.

processor with 1MB flash memory and 256KB RAM. The
BLE transceiver of this platform presents receiver sensitivity
-95dBm and supports transmit powers in range -20 to +8dBm.
Note that sensitivity does not represent the minimum signal
level detectable; instead, it indicates that if the received power
of an input signal is -95dBm, bit error rate 10�3 is achieved
during communication.

Our testbed setup includes three boards: sender, receiver,
and sniffer. Each node is placed on a tripod with height 1
meter. The broadcaster and receiver exchange 1000 packets for
each distance-channel configuration. Before exchanging pack-
ets between the broadcaster and receiver, the sniffer is used to
measure the noise floor. To this end, before each experiment,
in each environment a total of 40,000 samples were collected.
The inter-sampling interval is 9�s. After measuring the noise
floor, the sniffer sends a trigger message to the sender to start
packet broadcast (Figure 3).


