Ad Hoc Networks 25 (2015) 54-71

journal homepage: www.elsevier.com/locate/adhoc

Contents lists available at ScienceDirect e

m\d Hoc

efworks|

Ad Hoc Networks |

DICSA: Distributed and concurrent link scheduling algorithm
for data gathering in wireless sensor networks

@ CrossMark

Behnam Dezfouli *”*, Marjan Radi*", Kamin Whitehouse ¢, Shukor Abd Razak?,

Tan Hwee-Pink "

2 Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
b Networking Protocols Department, Institute for Infocomm Research (I°R), A*STAR, Singapore 138632, Singapore
“Department of Computer Science, University of Virginia, Charlottesville, VA, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 5 September 2013

Received in revised form 17 August 2014
Accepted 16 September 2014

Available online 27 September 2014

Keywords:

Scheduling algorithm
Interference

MAC

Although link scheduling has been used to improve the performance of data gathering
applications, unfortunately, existing link scheduling algorithms are either centralized or
they rely on specific assumptions that are not realistic in wireless sensor networks. In this
paper, we propose a distributed and concurrent link scheduling algorithm, called DICSA,
that requires no specific assumption regarding the underlying network. The operation of
DICSA is managed through two algorithms: (i) Primary State Machine (PSM): Enables each
node to perform its own slot reservation; (ii) Secondary State Machine (SSM): Enables each
node to concurrently participate in the slot reservation of its neighbors. Through these
algorithms and a set of forbidden slots managed by them, DICSA provides concurrent
and collision-free slot reservation. Our results show that the execution duration and energy
consumption of DICSA are at least 50% and 40% less than that of DRAND, respectively. In
terms of slot assignment efficiency, while our results show higher spatial reuse over
DRAND, the maximum slot number assigned by DICSA is at least 60% lower than VDEC.
In data-gathering applications, our results confirm the higher performance of DICSA in
terms of throughput, delivery ratio and packet delay. We show that the network through-
put achievable by DICSA is more than 50%, 70%, 90% and 170% higher than that of DRAND,
SEEDEX, NCR and FPS, respectively.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

has been investigated and improved from various perspec-
tives (e.g., tree structure [9,10], data aggregation [11,12],

The fundamental traffic pattern observable in sensor
networks is to send the data sampled by the nodes towards
a common destination called sink node. This many-to-one
traffic pattern is referred to as convergecast [1-4]. In order
to make accurate and quick decisions, data gathering appli-
cations usually require high delivery ratio with minimum
end-to-end delay [5-8]. To this aim, data convergecast

* Corresponding author at: Department of Computer Science, Faculty of
Computing, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia.
E-mail address: dezfouli@ieee.org (B. Dezfouli).

http://dx.doi.org/10.1016/j.adhoc.2014.09.011
1570-8705/© 2014 Elsevier B.V. All rights reserved.

and channel access). From the channel access point of
view, employing random access mechanisms results in
significant packet collisions, which is the result of traffic
direction, multihop transmissions and hidden-node prob-
lem. Since packet collisions reduce network performance
in terms of effective throughput and delivery ratio [1,13],
scheduling algorithms have been proposed to eliminate
the negative effects of collisions on the performance of
data gathering applications [14]. In particular, in contrast
to random access mechanisms, scheduled access mecha-
nisms (a.k.a., time division multiple access (TDMA)) divide

B. Dezfouli et al. /Ad Hoc Networks 25 (2015) 54-71 55

time into slots, and arbitrate channel access through slot
assignment to the nodes or links. In node scheduling algo-
rithms, transmission time slots are assigned to the nodes
assuming each node’s transmission should be received by
all of its neighbors. In contrast, link scheduling algorithms
aim to provide collision-free packet reception only at the
intended receiver of each transmitter. Therefore, since link
scheduling algorithms apply fewer constraints to slot
assignment, they can potentially improve channel utiliza-
tion, compared to node scheduling approaches [15,16].
Besides, as the convergecast traffic pattern indicates an
almost static child-parent relationship between nodes
[1,17], it justifies the benefits of employing link scheduling
to improve data gathering performance [2,3,14]. Neverthe-
less, it has been shown that time slot assignment to the
nodes or links of a graph is a NP-complete problem [18,19].

Based on the decision type made for channel access
scheduling, the existing scheduling algorithms can be cat-
egorized into probabilistic (e.g., [20-23]) and deterministic
algorithms (e.g., [2,3,19,24]). Using the probabilistic
algorithms, nodes determine their behavior at each slot
probabilistically (e.g., using a pseudo-random function).
Therefore, although the main advantage of these algo-
rithms is the ease of distributed implementation, they have
no guarantee on a node’s channel access delay. Addition-
ally, since each node is only aware of its two-hop neighbor-
hood, priority chaining may appear and these algorithms
cannot effectively utilize the channel. For example, a node
may refrain from transmission while no node in its two-
hop neighborhood is transmitting. Using the deterministic
algorithms, either the transmission slots of each node
within the frame is known [24], or the total data gathering
duration is predetermined [2,3]. However, while most of
these algorithms are centralized (e.g., [25-29]), the rest
(except DRAND [24]) rely on specific assumptions that
are not realistic in sensor networks (e.g., the requirement
to have an interference-free tree topology [30,31]). In
particular, while significant research has been conducted
on the theoretical aspects of improving network capacity
through link scheduling, much less attention has been paid
to the design of practical scheduling algorithms.

Among the deterministic algorithms, DRAND [24] is a
distributed implementation of RAND [18], and is suitable
for networks with no significant mobility. This algorithm
requires no specific assumption regarding the network,
and the complexity of its execution duration and message
exchange is O(maxN'?) (assuming no packet loss), where
maxN'? is maximum two-hop neighborhood.! In addition,
DRAND employs node scheduling because it does not con-
sider any particular traffic pattern. However, considering
the convergecast traffic pattern, this algorithm cannot
achieve the potential improvements of link scheduling. For
example, even if the transmissions of two neighboring nodes
to their parents do not cause packet collision, DRAND
prevents concurrent transmission of these nodes (exposed
node problem). Furthermore, using DRAND, when a node
is applying for a slot reservation, no one-hop or two-hop

! Notice that the set of the two-hop neighborhood of a sample node i,
which is denoted by NI.' 2 includes those neighbors that are one-hop or two-
hop away from i. In other words, N} = N/ UNZ.

neighbor of this node is allowed to apply for slot reservation,
therefore, only those nodes with distance more than two
hops can be concurrently involved in slot reservation. This
low level of concurrency increases the execution duration
and energy consumption of DRAND.

In this paper, we propose the Distributed and Concur-
rent link Scheduling Algorithm (DICSA), which provides
distributed link scheduling without requiring any specific
assumption regarding the underlying network. This algo-
rithm relies on network layer information and performs
slot assignment based on child-parent relationship. DICSA
is composed of two algorithms: The first algorithm enables
each node to perform its own slot reservation, the second
one enables the nodes to be involved in the slot reservation
of their neighbors. In particular, in contrast with DRAND
(which requires at least three-hop distance between those
nodes applying for reservation), DICSA does not require
any specific distance for concurrent slot reservation, and
enables the nodes to be involved in the slot reservation
of more than one neighbor at a time. This mechanism sig-
nificantly reduces the execution duration and energy con-
sumption of DICSA compared to DRAND. Additionally, it
results in lower slot updating cost during the network
operation. Both of the DICSA’s algorithms manage a com-
mon set of forbidden slots lists to achieve collision-free slot
assignment. Using these lists, each node is also aware of
the slots in which it should receive from its children or
send to its parent. Therefore, establishing the forbidden
slots lists also simplifies MAC design to achieve energy effi-
ciency. Considering probabilistic and deterministic link
scheduling and node scheduling algorithms, we perform
comprehensive performance evaluations from four main
perspectives: (i) algorithm execution cost, (ii) slot assign-
ment efficiency, (iii) slot updating cost, and (iv) data
gathering performance. All these evaluations confirm the
high performance of DICSA.

It is worth mentioning that child-parent packet trans-
mission is not the only traffic pattern in sensor networks.
For example, link estimation and route updates may
require packet exchanges that do not follow the child-par-
ent scheme [17,32]. Nevertheless, the frequency of control
packet transmissions is considerably lower than that of
data packet transmissions; therefore implying the impor-
tance of collision-free unicast transmissions. Additionally,
employing link scheduling algorithms in hybrid CSMA-
TDMA MAC protocols enables collision-free unicast
transmissions, as well as supporting other traffic types.
Therefore, this paper does not aim to propose a sophisti-
cated low-power MAC protocol, rather, the proposed
scheduling algorithm can be used in the design of TDMA
and hybrid MAC schemes. It should also be noted that this
paper neglects data aggregation during convergecast;
therefore, each generated packet should be individually
delivered to the sink node. This type of convergecast is
referred to as raw-data convergecast [3]| and is different
from the approaches proposed in [11,12,33].

The rest of this paper is organized as follows. Prior
works are given in Section 2. We present the formal
presentation and requirements of link scheduling and node
scheduling algorithms in Section 3. The design and imple-
mentation of DICSA is described in Section 4. We present

56 B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71

Table 1

A summary of key notations.
Description Symbol
Number of nodes in the network Vv
Set of the one-hop neighbors of node i Ni]
Set of the two-hop neighbors of node i N2
Set of the two-hop neighborhood of node i Nih2
Maximum number of one-hop neighbors maxN!
Maximum two-hop neighborhood maxN!2
Maximum number of children per node maxC
Reception slots RS
Transmission slots TS
Reception slots of one-hop neighbors RSO
Transmission slots of one-hop neighbors TSO
Transmission slots of two-hop neighbors TST
Reservation status of node x S(x)
Reservation status of node y at node x S(x)[y]
One-way message delay v
Packet transmission duration [second] Tpacket
Contention window duration [second] Tew
Maximum number of slot reservations per node K

performance evaluation results in Section 5. Analysis of the
storage requirement of DICSA is given in Section 6. We
conclude in Section 7.

Table 1 shows the key notations used in this paper.

2. Related work

Neighborhood-aware Contention Resolution (NCR)
[20,23]is a probabilistic scheduling algorithm. NCR requires
the nodes to be aware of their two-hop neighborhood,
which is referred to as the contender set. At each time slot,
each node employs a pseudo-random function to determine
its own priority and the priority of its contenders. A node is
allowed to send in a time slot if it has the highest priority
among its contenders. The major drawback of this scheme
is its random channel access latency. In addition, channel
capacity cannot be effectively used because each node deci-
des about packet transmission based on its own two-hop
neighborhood information. For example, assume node i is
refrained from transmission due to the higher priority of
node j, and node j is also refrained from transmission due
to the higher priority of a node in its two-hop neighborhood.
In terms of MAC design, it is hard to provide energy effi-
ciency since a node cannot be sure about packet reception
in a given time slot. A similar approach to NCR is SEEDEX
[22], which is basically a link-scheduling algorithm. At each
time slot, a node goes into the PT (Possible Transmit) or the L
(Silent) state with probability p and 1 — p, respectively.
When a node has a packet to send, it should wait for a slot
in which it is in the PT state and its receiver is in the L state.
Additionally, to reduce collision probability, sender node
computes its transmission probability based on the number
of one-hop neighbors of the receiver that are in the PT state
(using a pseudo-random number generator). Although SEE-
DEX can potentially improve channel utilization over NCR,
it suffers from packet collisions due to its probabilistic col-
lision avoidance mechanism. Similar shortcomings can be
identified for the approaches used in [34-36,21].

Durmaz Incel et al. [3] proposed scheduling algorithms
for the convergecast minimization problem. However, they

have assumed that the interfering links of the data collec-
tion tree are eliminated through mechanisms such as
transmission power control or transmission frequency
management. They proved that the minimum number of
required slots to schedule this tree is equal to the maxi-
mum node degree. Furthermore, it has been shown that
this bound can be achieved when the BFS algorithm is used
for slot assignment. Generally, although there exists many
scheduling algorithms for wireless networks, they usually
suffer from specific assumptions that are not realistic in
wireless sensor networks. For example, while some
algorithms require tree topology (and cannot be used in
general networks) (e.g., [30,31,37]), others rely on central-
ized operation (e.g., [25-29]). Gandham et al. [2] consid-
ered the slot assignment problem for convergecast
duration minimization. Although the authors showed that
their algorithm requires at most 3V slots for general net-
works, where V is the number of nodes, the validity of their
algorithm depends on the following assumptions: (i) each
node should generate exactly one packet, (ii) each node
should be aware of the number of packets in its sub-trees,
(iii) each node should know the number of its children, (iv)
the tree structure should be the result of BFS traversal
algorithm, (v) sink node should generate a conflict map
(based on the nodes’ connectivity information) and dis-
seminate it to all the nodes. Furthermore, if the number
of generated packets at each node is more than one, the
number of packets that each node generates should be
known at the initialization phase. In [15] a distributed link
scheduling algorithm is proposed based on the Vizing’s
theorem. Link scheduling is performed in two phases: First,
a distributed algorithm is used to assign colors to every
edge of the graph. Then, directions are assigned to the
links, and extra colors are used for those links without
any feasible direction. The main drawback of this algo-
rithm is its slot assignment inefficiency; the authors
showed that at least 2 x (maxN' + 1) slots are required
when the maximum network degree is maxN'. In this
paper we refer to this algorithm as the Vizing-based
Distributed Edge Coloring (VDEC).

Flexible Power Scheduling (FPS) [38,39] is a tree-based
scheduling algorithm that assigns transmission and recep-
tion time slots based on child-parent relationship. Assume
node i is the parent of node j, establishing a child-parent
slot between these nodes is as follows. At the beginning,
node i marks all of its slots as idle. Then it randomly selects
a slot to advertise the availability of one of its randomly
selected idle slots. As long as node j has not reserved its
required slot, it continuously listens to the channel to
receive an advertisement packet from node i. When node
j receives an advertisement packet, it performs time syn-
chronization with node i and extracts the slot number in
which node i expects to receive reservation request. During
that slot, node j sends a reservation request, and expects
immediate confirmation from node i. If node i receives
multiple request packets, it responds to the first one; there-
fore, other children should reserve their slot in the next
cycles. Nodes employ CSMA during the reservation phase.
However, CSMA is also used during the normal network
operation because FPS removes collisions partially. For
example, node j can reserve slot o to send to node i only if

B. Dezfouli et al. /Ad Hoc Networks 25 (2015) 54-71 57

this slot is not reserved by node i or the children of node i.
Therefore, a one-hop neighbor of node i may be transmit-
ting in that slot too. Although it can be argued that the
lower bound for the number of required slots by FPS is
maxC + 3, where maxC is the maximum number of children
per node,” the real number of slots may be higher because
FPS does not cope with message losses during slot reserva-
tion. For example, if node j looses the confirm message sent
by node i, node i has marked a slot reserved for node j, how-
ever, node j is not aware of its reservation and tries to reserve
another slot. It is worth mentioning that in this paper, in
order to provide a fair comparison between FPS and other
scheduling mechanisms, we improved the operation of FPS
to achieve the mentioned lower bound at each node.
TreeMAC [40] is another child-parent based scheduling algo-
rithm. However, this algorithm relies on each node’s depth
and the whole network topology. Therefore, when a change
in the network traffic or topology happens, it may be neces-
sary to update all the slot assignments towards the sink node.

DRAND (Distributed Randomized TDMA Scheduling)
[24]is a distributed implementation of the RAND [18] algo-
rithm for time slot assignment to nodes. Although DRAND’s

theoretical time complexity is O(maxN'?), where maxN'?
is the maximum two-hop neighborhood, it has been shown

that its time complexity is O((maxN'?)*), which is due to
unbounded transmission delays. The operation of DRAND
is as follows. At the beginning all the nodes are in the IDLE
state. Each node tries to reserve a slot through entering the
REQUEST state and starting a slot reservation round. In
order to avoid multiple neighboring nodes enter the
REQUEST state simultaneously, nodes run a lottery that

its success probability is 1 / (2‘NQ°S"” Noslet

the number of those one-hop and two-hop neighbors of
node x that have not yet reserved their slot. When a sample
node i wins the lottery, it moves into the REQUEST state and
broadcasts a request message. When node j receives the
request message, it moves into the GRANT state and sends
a grant message (which includes the slots reserved by node
j and its one-hop neighbors) if it is in the IDLE or RELEASE
state. If node j is in the GRANT state, it replies with a reject
message. After receiving a reject message, node i goes back
to the IDLE state and sends a fail message. If no reject mes-
sage has been received from the neighbors, node i can
reserve a time slot after receiving grant messages from its
one-hop neighbors. The selected time slot is the minimum
slot number that has not been taken by its one-hop and
two-hop neighbors (i.e., two-hop neighborhood). After slot
selection, node i goes into the RELEASE state and broadcasts
a release message to notify its neighbors about the
reservation.

We can identify the following shortcomings for DRAND:
(i) Considering the convergecast traffic pattern, DRAND
cannot benefit from the potential improvements of utiliz-
ing link scheduling instead of node scheduling. (ii) Each
node requires to know the time slots of its one-hop and

is

) , where

2 Assuming each node reserves only one slot, a node requires: (i) maxC
slots for its children, (ii) one slot for transmission to its parent, (iii) one slot
for advertisement transmission, and (iv) one slot for receiving reservation
request.

two-hop neighbors before deciding about its own slot;
therefore, slot reservation should be performed sequen-
tially, which increases the duration and energy consump-
tion of this algorithm. (iii) When a node sends a grant
packet, that packet should include the transmission slots
of the one-hop neighbors. This packet enlargement affects
DRAND'’s duration and intensifies pack losses. (iv) Regard-
less of the next-hop node towards the sink, a node reserves
a slot when the maximum number of request transmissions
is achieved but no grant message has been received from
the parent. This may happen when the network is sparse
and link qualities are low.

3. Link scheduling versus node scheduling
3.1. Formulation

Definition 1. Scheduling. The scheduling problem is equiv-
alent to slot assignment (color assignment) to all of the or a
set of the nodes or links of a graph so that specific slot
assignment conditions are met through employing a
minimum number of slots (colors).

As the number of assigned time slots reveals the level of
concurrency, a lower slot number used to schedule a net-
work results in higher spatial reuse in that network.
Accordingly, the efficiency of the scheduling algorithms
can be measured by the maximum slot number they use
for graph coloring. The slot assignment conditions defined
for a scheduling problem depend on the nature of trans-
missions. Below are the conditions defined for node and
link scheduling problems.

Considering the node scheduling problem, a node’s
transmission should not conflict with the transmission of
one-hop and two-hop neighbors. In other words, the slot
number assigned to a node should be different from the
slot numbers assigned to its one-hop and two-hop neigh-
bors. This slot assignment condition guarantees a node’s
transmission is receivable by its entire one-hop neighbors.

Definition 2. Slot assignment conditions for node scheduling.
Assuming more than one transmission slot can be assigned
to each node, slot number x can be assigned to node i if
x ¢ TS(i) and x ¢ TS(k) Yk € N! UN?. Here, for a sample
node y, TS(y) is the set of the transmission slots of node y,
and N} and N; are the set of the one-hop and two-hop
neighbors of node y, respectively.

In the link scheduling problem, a node’s transmission
should be receivable at its intended receiver. With respect
to data gathering application, a node’s transmission should
be receivable at its parent. Therefore, assigning slot x to
link (i,j) indicates the assignment of slot x as the transmis-
sion and reception slot of node i and node j, respectively.
The assignment conditions are as follows.

Definition 3. Slot assignment conditions for link scheduling.
Assuming each node can be assigned more than one
transmission and reception slot, slot x can be assigned to
link (i,j) if the followings are fulfilled: (i) x ¢ RS(i) U TS(i),
(ii) x ¢ RS(j) UTS(j), (iii) x ¢ RS(k) Vk € N,-1, and (iv)
x ¢ TS(o) Yo € N}. Here, for a sample node y, RS(y) is the
set of the reception slots of node y.

58 B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71

3.2. Requirements

Scheduling algorithms require neighborhood informa-
tion to achieve collision-free slot assignment. For node
scheduling algorithms no information regarding the rout-
ing structure is required since all the one-hop neighbors
of a node are its potential receivers. Therefore, node
scheduling algorithms can immediately be started after
the neighbor discovery phase. In contrast, link scheduling
algorithms require routing information to assign time slots
to each transmitter-receiver pair. Accordingly, in addition
to the neighbor discovery phase, a collection tree construc-
tion protocol should be run before executing DICSA. After
the collection tree construction phase, each node is pro-
vided with the cost of its one-hop neighbors towards the
sink. This enables the nodes to forward their data packets
through their minimum-cost neighbor, which is referred
to as parent [17,41,42].

4. Design and implementation of DICSA

DICSA includes two algorithms that allow the nodes to
perform their own slot reservation, as well as handling
neighbors’ slot reservations. Both of these algorithms
access to a common set of slots lists, called forbidden slots
lists. In this section, we first introduce the forbidden slots
lists that should be maintained by the nodes. Then, we
present the details of the algorithms.

4.1. Forbidden slots

Data forwarding within a tree structure indicates many
nodes would have more than one reception slot. In addi-
tion, in order to provide a flexible algorithm, we assume
a node can reserve more than one transmission slot. This
capability allows slot assignment based on traffic
demands. However, it should be noted that, to provide a
fair comparison with other algorithms, this capability has
not been considered in the evaluations of this paper.
Having these assumptions, in this section we introduce
the forbidden slots lists, which provide a slot assignment
framework before presenting the operation of DICSA.

In order to perform data transmission over link (i, k),
node i should execute a reservation phase that is responsi-
ble to reserve a transmission slot at node i and a reception
slot at node k. However, since node i should select a slot
number before initiating a reservation phase, it requires
to be aware of the slots that cannot be selected. We call
these slots the forbidden slots and we categorize them into
two groups: general forbidden slots and parent-specific for-
bidden slots. The general forbidden slots for node i are:

- Transmission slots: A node cannot select a slot it has
confirmed for packet transmission. These slots are
recorded in the Transmission Slots (TS) list.

- Reception slots: A node cannot select a slot it has
reserved for packet reception from a child node. These
slots are recorded in the Reception Slots (RS) list.

- Reception slots of the one-hop neighbors: A node
cannot apply for the slots which are used by its

one-hop neighbors for packet reception. Selecting such
a slot may result in packet loss due to collision. These
slots are recorded in the Reception Slots of One-hop
neighbors (RSO) list.

The parent-specific forbidden slots are as follows:

- Transmission slots of the selected parent: A node
cannot select a slot its parent has confirmed for trans-
mission. The transmission slots of one-hop neighbors
are recorded in the Transmission Slots of One-hop neigh-
bors (TSO) list.

- Transmission slots of the one-hop neighbors of parent:
A node should not select a slot which has been selected
by at least one of the one-hop neighbors of the parent
for transmission. Selecting such a slot may cause packet
loss due to collision at the selected parent. The trans-
mission slots of two-hop neighbors are recorded in
the Transmission Slots of Two-hop neighbors (TST) list.

DICSA allows the nodes to apply for slot reservation
irrespective to the time and neighbors’ reservation status.
Since a slot reservation phase may succeed or fail, nodes
cannot immediately update their forbidden slots lists
unless the reservation is confirmed. Accordingly, in addi-
tion to the above forbidden slots lists, which are referred
to as the permanent forbidden slots lists, a set of temporary
forbidden slots lists should be kept at each node. This set
includes: Temporary Transmission Slots (TemTS) list; Tem-
porary Reception Slots (TemRS) list; Temporary Reception
Slots of One-hop neighbors (TemRSO) list; Temporary
Transmission Slots of One-hop neighbors (TemTSO) list. It
should be noted that there is no temporary TST list because
this list can only be updated after a node confirms its res-
ervation and its one-hop neighbors broadcast notification
messages.

Each entry in the aforementioned slots lists is in the
form of (i, k, 0), where i indicates the sender, k is the recei-
ver, and o is the slot in which i sends to k. Notice that since
a node can send to at most one receiver in a given slot,
(i,k,0) can be reduced to (i,0); however, we employ the
earlier form for clarity.

4.2. Algorithms

DICSA employs two algorithms (state machines) that
enable the nodes to perform their slot reservation concur-
rently. Each sample node x should maintain two types of
state variables:

- S(x): Indicates the reservation status of node x.
- S(x)[y]: Indicates the reservation status of node y at
node x.

Notice that while there is only one S(x) state variable
per node, the number of S(x)[y] state variables at node x
is | N} |, which is equal to the number of one-hop neighbors
of node x. Fig. 1 shows the algorithm through which each
node manages its own reservation status. Fig. 2 shows
the algorithm each node uses to react against the slot res-
ervation of its neighboring nodes. In this paper we refer to

B. Dezfouli et al. /Ad Hoc Networks 25 (2015) 54-71

Condition 9:
[receive an approve message for reservation <i,y,z>]
Action:
If [slot z exists in TS(i)]
broadcast a confirm message for reservation <i,y,z>;

Condition 10:

[receive a notification message for reservation <m,n,[>]

Action:

If [m is a two-hop neighbor]| and [<m,n,[> & TST(i)]
add <m,n,I> to TST(i);

Else If [n is a one-hop neighbor] and [<m,n,I> € RSO(i)]
broadcast a fail message for reservation <i,y,z>; add <m,n,I> to RSO(1);
\ K \ K
(S(i)=WAITING

*

Action:

Condition 3: //successful reservation round
[receive an approve message for reservation <i,k,0>] and
[all the one-hop neighbors have approved reservation <jk,0>]

remove reservation <i,k,0> from TemTS(i) and TemRSO(i);
add reservation <i k0> to TS(i) and RSO(i);
broadcast a confirm message for reservation <i k,0>;

I

Action:

Condition 4: //successful reservation round

[approve message reception timeout] and

[number of apply message transmissions > MAX APPLY] and
[approve message has been received from node k]|

remove reservation <ik,0> from TemTS(i) and TemRSO(7);
add reservation <i k0> to TS(i) and RSO(i);

broadcast a confirm message for reservation <i k,0>;
I

Action:

Condition 5: //unsuccessful reservation round

[approve message reception timeout] and

[number of apply message transmissions > MAX_APPLY] and
[no approve message has been received from node k]

broadcast a fail message for reservation <ik,0>;
remove reservation <i,k,0> from TemTS(i) and TemRSO(i);
schedule for next reservation round;

Condition 7: //unsuccessful reservation round

[receive a tdecline message for reservation <ik,0>]

Action:

broadcast a fail message for reservation <i,k,0>;

remove reservation <ik,0> from TemTS(i) and TemRSO(i);
schedule for next reservation round;

Condition 8: //unsuccessful reservation round

[receive a pdecline message for reservation <i,k,0>]

Action:

broadcast a fail message for reservation <i,k,0>;

remove reservation <ik,0> from TemTS(i) and TemRSO(i);
schedule for next reservation round;

Condition 1:

[start a slot reservation round]

Action:

k = selected parent;

o = selected slot;

add <i,k,0> to TemTS(i) and TemRSO(7);
broadcast an apply message;

set a timeout timer for approve message reception;

extract sender (a) and receiver (b) node from the pdecline message;
If [a == k] //the sender is my selected parent .

add <a,b,0> to TSO(i); C'On.dltlon 11: B
If [b is a one-hop neighbor] //the receiver is a one-hop neighbor Similar to Condition 9.

add <a,b,0> to RSO(1); —.)
If [a != k] and [b is not a one-hop neighbor] gi(::llillia:lt"lz)nclc;i'ciition 10

add <a,b,0> to TST(i); :

I \ ¥ \ 4
(S(i)=APPLYING

x AN

Condition 2:

[receive an approve message for reservation <jk,0>] and
[there is at least one one-hop neighbor that has not confirmed
reservation <i,k,0>]

and [number of apply message transmissions < MAX APPLY)]
Action:

set a timer for approve message reception timeout;

1\

Condition 6:

[approve message reception timeout]

and

[number of apply message transmissions < MAX_APPLY)]
Action:

broadcast an apply message;

set a timer for approve message reception timeout;

59

Fig. 1. Primary State Machine (PSM). Nodes utilize this algorithm to manage their own slot reservation status. Node i is in the WAITING state when it is not
currently requesting for slot reservation. Node i is in the APPLYING state when it is applying for a slot reservation and waits for approval from its neighbors.
Note that when node i is in the APPLYING state, triplet (i, k,0) shows the slot this node is trying to reserve.

60

B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71

Condition 6:

Action:
If (reservation <i,k,0> is temporarily forbidden)

[receive an apply message for reservation <i,k,0>] and [reservation <jk,0> is forbidden]

send a tdecline message for reservation <i,k,0>;
Else if (reservation <i,k,0> is permanently forbidden)
send a pdecline message for reservation <i,k,0>;

\ /

C S()[i] = IDLE

“ r

Condition 2: //the sender node confirmed the reservation
[receive a confirm message for reservation <i,k,0>]
Action:
broadcast a notification message for reservation <i,k,0>;
remove <ik,0> from TemTSO(j);
add <i k0> to TSO(j);
If [k==j] //if I am the selected parent for this reservation
remove <i,k,0> from TemRS());
add <i,k,0> to RS(j);
Else if [node k is a one-hop neighbor]
remove <i,k,0> from TemRSO(j));
add <i,k,0> to RSO(j);

Condition 1:
[receive an apply message for reservation <i,k,0>] and
[reservation <i,k,0> is not forbidden]
Action:
send an approve message for reservation <ik,0>;
set a timer for confirm message reception timeout;
add <i,k,0> to TemTSO(j);
If [k==j] //if I am the selected parent of this reservation
add <ik,0> to TemRS(j);
Else if [node k is a one-hop neighbor]
add <i k,0> to TemRSO());

Condition 5:

[receive a fail message for reservation <i,k,0>]

or

[(confirm message reception timeout) and

(number of approve transmissions > MAX_APPROVE)]

Action:

remove <i,k,0> from TemRS(});
Else if [node k is a one-hop neighbor]
remove <ik,0> from TemRSO());

remove reservation <ik,0> from TemTSO()); Condlltlon 3 ; i iohbor i
If [k ==j] //I am the selected parent of this reservation Ke:_elve an apply message from neighbor 1]
ction:

send an approve message for reservation <ik,0>;
set a timer for confirm message reception timeout;

[

\ ,

C S(/)[i] =APPROVING

Condition 4:

Action:

[confirm message reception timeout] and [number of approve transmissions < MAX_APPROVE)

retransmit approve message for reservation <i,k,0>;
set a timer for confirm message reception timeout;

Fig. 2. Secondary State Machine (SSM). Nodes utilize this algorithm to behave against the slot reservations of their neighbors. Since DICSA allows
concurrent slot reservation, each node should maintain the reservation status of its neighbors separately. S(j)[i] indicates the reservation status of node i at
node j. S(j)[i] is IDLE when node j is not involved in a slot reservation round of node i. S(j)[i] is APPROVING when node j has sent an approve message to node i

and is waiting for reservation confirmation.

these state machines as the Primary State Machine (PSM)
(Fig. 1) and Secondary State Machine (SSM) (Fig. 2). It
should be noted that, at each node, PSM and SSM have
access to a common set of permanent and temporary for-
bidden slots lists.

With respect to its own reservation status, i.e., S(x), each
node can be in one of the following two states:

— WAITING: When all the required transmission slots
have been reserved, or the next slot reservation
phase has not been started yet.

- APPLYING: When an apply message has been sent
and this node is waiting for slot reservation
approval from its neighbors.

Regarding the reservation status of neighboring node
¥,S(x)[y] (which is kept in node x) can be in one the follow-
ing states:

- IDLE: When node x is not currently involved in a slot
reservation round of node y.

- APPROVING: When node x has sent an approve mes-
sage to node y and waits for a response.

In the following we describe the operation of DICSA
with respect to the aforementioned state machines.
Assume node i wants to reserve a slot for link (i, k), and
node j is a one-hop neighbor of node i. Also, statement
”A: Condition B” refers to condition B of state machine A.

When node i enters a slot reservation round, firstly, it
selects the minimum slot number that has no conflict with
the permanent and temporary forbidden slots lists. After-
wards, it broadcasts an apply message including the sender
address, selected parent address, and selected slot number
(shown as triplet (sender, parent,slot)). After broadcasting
the apply message, node i changes S(i) to APPLYING, and
waits for a specific time duration v to receive approve
message from its neighbors (PSM: Condition 1). Computing
the v value will be described in Section 4.4. After receiving
approve messages from the one-hop neighbors, node i
makes the reservation permanent, broadcasts a confirm
message and moves into the WAITING state (PSM: Condi-

B. Dezfouli et al. /Ad Hoc Networks 25 (2015) 54-71 61

tion 3). If node i receives a tdecline or pdecline message
from at least one of its neighbors, it terminates this reser-
vation round through sending a fail message and moves to
the WAITING state (PSM: Condition 7, 8). If node i does not
receive any approve message within time v, it retransmits
the apply message (PSM: Condition 6). If one or more
neighbors do not respond after MAX_APPLY transmissions,
reservation can be confirmed without considering that
neighbors (PSM: Condition 4). However, if the parent node
is amongst the non-responding neighbors, node i termi-
nates this reservation round through broadcasting a fail
message and changes S(i) to WAITING (PSM: Condition
5). Since DICSA allows multiple slot reservations, and
because neighboring nodes may loose the confirm or fail
messages, node i may receive apply messages during the
WAITING or APPLYING state (PSM: Condition 9, 11). There-
fore, for example, even when node i is in the APPLYING
state, it may send a fail message in response to the apply
message related to its previous slot reservation. Accord-
ingly, all the confirm and fail messages should include the
information of the reservation they have been sent for.

Upon receiving the apply message of node i at node j,
node j should refer to its forbidden slots lists and check
whether the reservation can be approved. (Note that the
reservation status of node i at node j is S(j)[i].) If the reser-
vation request has no conflict with the permanent and
temporary forbidden slots, node j sends an approve mes-
sage (including the slot reservation information) to node
i and changes S(j)[i] into APPROVING (SSM: Condition 1).
If the reservation is in conflict with an entry of the perma-
nent forbidden slots lists, node j sends a permanent decline
message (pdecline) that justifies why the slot is declined
(SSM: Condition 6). In other words, node j includes in the
pdecline message the slot information entry found in the
permanent forbidden slots lists. Using this slot entry, node
i can update its permanent forbidden slots lists and avoid
using that slot for its future slot reservations. If node j finds
no conflict with the forbidden slots lists, but with the tem-
porary forbidden slots lists, it sends a temporary decline
(tdecline) message to node i (SSM: Condition 6). When
node j goes into the APPROVING state, it expects to receive
a confirm or fail message from node i within a specific time
interval. Computing the timeout duration will be described
in Section 4.4. After receiving a confirm message for this
reservation, S(j)[i] changes to IDLE and reservation (i, k,0)
is changed from temporary to permanent. In addition, node
j broadcasts a notification message to inform its neighbors
about the confirmed reservation (SSM: Condition 2). For
those nodes that are in the one-hop neighborhood of the
parent node, the notification message allows them to
update their RSO list. For those nodes in the two-hop
neighborhood of the sender, they can update their TST list
(PSM: Condition 10, 12). If node j does not receive any
confirm message from node i, node j retransmits the
approve message. If the approve message has been sent
for MAX_APPROVE times or when node j receives a fail
message for this reservation, S(j)[i] changes to the IDLE
state and reservation (i, k, o) is removed from the tempo-
rary forbidden slots lists (SSM: Condition 5).

Fig. 3 shows a sample slot reservation scenario initiated
by node i and j. Packet transmissions and changes in the

forbidden slots lists of nodes are demonstrated within four
time intervals. During to — t1, both node i and node j broad-
cast apply message. After receiving these packets, the one-
hop neighbors of these nodes modify their forbidden slots.
For example, node [adds slot 3 and slot 4 to its TemTSO
list. Additionally, node [adds slot 3 to its TemRSO list since
the selected parent of node i is its one-hop neighbor.
During t; — t;, one-hop neighbors of node i and node j
reply with approve message. However, node m, which is
the selected parent of node j, replies with a pdecline packet
because its one-hop neighbor, node n, has previously
reserved slot 4 for transmission. Although notification
messages enable the nodes to be informed about the trans-
mission slots of their two-hop neighbors, node j was not
aware about the transmission slot of node n. This could
happen due to the issues such as packet loss due to colli-
sion, or packet loss when the transceiver is in transmit
mode. Notice that node j updates its TST list according to
entry (n,x,4) found in the pdecline message. During
t, — t3, node i broadcasts a confirm message and node j
broadcasts a fail message to notify their neighbors about
their reservation status. Finally, the one-hop neighbors of
node i broadcast notification message during t; — t4. This
notification messages, for example, allow node p to be
aware about the transmission slot of its two-hop neighbor.
Therefore, node p will not apply for reservation (p,j, 3).

4.3. Correctness

The correctness of DICSA follows from the fact that a
slot number reserved by a node does not violate the condi-
tions given in Definition 3. To this aim, a node should make
sure that its selected slot is not in any of the forbidden slots
lists even when a slot list is not up to date, which may hap-
pen due to packet loss. DICSA satisfies the conditions men-
tioned in Definition 3 as follows. Assume node i wants to
reserve a slot for transmission to node j. First, node i checks
the existence of x in its RS, TemRS and TS lists, and these
lists are always up-to-date therefore, x ¢ RS(i) U TemRS
(i) U TS(i). Second, if TS(j) U TemTS(j) # @, node j has pre-
viously reserved or is reserving a slot, which requires the
reception of an approve message from node i; therefore,
x ¢ TS(j) U TemTS(i). Third, the exchange of confirm and
notification messages allows the nodes to be aware of the
reception slots of their one-hop neighbors and update the
RSO and TemRSO lists. Assume node i is a one-hop neigh-
bor of node k, but node i is not a one-hop neighbor of node
m which has reserved or is reserving (m,k,I). In this case,
node i can be aware of the reception slot of node k through
receiving a notification message from node k. If the RSO and
TemRSO lists of node i do not include the reception slot of
node k (which may happen due to the issues such as packet
loss), condition x ¢ RS(k) U TemRS(k) Vk € N/ is satisfied
through requiring node i to receive approve message from
its one-hop neighbors. Finally, the exchange of confirm and
notification messages allows node i to be aware of the
transmission of the one-hop neighbors of node j; therefore,
avoiding conflict with these slots. If slot x is being or has
been reserved by a sample node o, which is a one-hop
neighbor of node j, node j will terminate the reservation
of node i. This is because node j should approve the slot

62 B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71
TemRS(k)={3} ={4} TemRS(k)={3} TS(n)={4}
TemTSO(/)=(3,4} TemTSO(/)={3,4}
TemRSO()={3} TSO(m)={4} TemRSO(I)={3/ TSO(m)={4}
| b @ approve
apply <ik3> ~ 9PPY - » N <ik3> approve”” pdecline
| <ik,3> apply <jm4> <i,k3> approve it
| e apply <j,m,4> e <j,m,4> pms>
P <j,m,4 Tl - <LK,3> I TemTS(j)=
e TemTS()=(4) TemTSoU-5
T ___apply A / TemTSOU:)={3} —_approve TemRSO())={4}
TemTS(i):{B}\\ <i,k,3> / \\\TEl‘l‘lRSOU):{Al-} TemTS(i)={3} <j,m,4> / TST(j)={4}
TemTSO()=(4} "1, s N TemTSO()=(4} = . approve
TemRSO())={3} <ik3> appl%// <j,m,4> app[;/ Gmd> TemRSO()={3} <ik,3> <j,m,4> approve
/ AN <j,m,4>
TemTSO(0)={3,4}\@’ TemTSO(p)={4} TemTSO0(0)={3,4} TemTSO(p)={4}
(@:t-t1 (b):t1-t2
Rethogy 0 TemTSO()={} P 12(2()’1‘);‘5}3 }
RS(k)={3} em = = -
TemRSO(1)={} RS(={3} RSO(=(3)
RSO()={3} (0=(3} v TST(m)={3}
TSO()={3} N— . A w(m)m}

\So(m]={4}

,’/1

confirm 1 i
<ik3> confirm fail fai .
i > <ik3> il <j,m,4—é /<],m, >
LT <jf,il4>\~\1 S TemTS()={}
@ Y @ TemTSO(j)={}
TSO(j)=(3}
T 1S
TemTS(i)={} N " . TemRSO())={}
TemTSO(i)={} confirm fail
TS(1)={3} <ik3> <jm4> fail <jm,4>
TemRSO()={} \
RSO())={3}
TemTSO(p)={} @
TSO(0)=(3}
TemTSO(0)={}
(c):t2-t3

% noti/"i]:r;tic;n notification notij_‘i}:t;tidn
i <ik3> <ik3> B <i,k3>
» - 9
- notification TSO(j)={3}
<ik3> TST()={4}
TS()={3} N 4 N
RSO(1)=(3} "Oi’ﬁ:‘;i"’” notification notification
Lk N <ik,3> <irk/3?
T80(0)=63) TST()=(3) @
(d): t:- ta

: RN X
notification |
<ik,3> // ‘ v

Fig. 3. A sample slot reservation scenario. Gray circles show the transmitting nodes during each interval. Solid arrows and dotted arrows represent unicast

and broadcast transmissions, respectively.

reservation of its neighbors, including node i and node o.
Therefore, if node j has approved slot x for node o, then it
will decline the reservation of slot x by node i. Conse-
quently, x ¢ TS(0) U TemTS(0) Vo € N;.

4.4. Timing

Although DICSA does not rely on time synchronization,
its performance depends on the timings used during the
algorithm execution. This dependency is specifically due
to the concurrency of slot reservation. Here, we present
the timing details used in the implementation of DICSA.

Assuming node i starts a slot reservation phase, it
should wait for 1.1v after each apply message transmission
to receive at least one response from its neighbors. In addi-
tion, node i renews its timer after each approve message
reception. As v is one-way message delay, initially, node i
estimates v as Tpacket + Tcw, Where Tpaue: 1S the packet
transmission duration and T¢y is the contention window

size of the CSMA protocol used during the execution of
DICSA. Node i can improve its estimation of one-way mes-
sage delay during the network operation.

Assume node j, a one-hop neighbor of node i, receives
an apply message from node i, and replies with an approve
message. Node j should wait for node i to receive its neigh-
bors’ responses and send a confirm message. To compute
this value, node i should include in its apply messages
the number of the neighbors from which it expects
response message. Assuming that the number of
response-pending neighbors of node i is | Nfe”di”g |, node j
computes its waiting time for confirm message reception
as vx | NP | 4y 4 uniform(0,2v). Here, uniform(0,2v)
is a uniform random variable in range [0,2v] and is used
to prevent simultaneous timer expiry and channel access
by the one-hop neighbors of node i. Note that | NP |
may be changed after each apply message retransmission.

Due to packet transmission delay, a node’s timeout
timer may expire while the radio is busy with transmis-

B. Dezfouli et al. /Ad Hoc Networks 25 (2015) 54-71 63

sion. In this case, although packet buffering is a feasible
solution, it may increase the algorithm overhead in terms
of unnecessary sent packets. To overcome this problem, a
node should reschedule its timeout timer for v/2 when an
approve/decline or confirm/fail timeout happens and the
radio is busy with transmission. If a node decides to enter
a reservation phase while the radio is busy, the reserva-
tion is postponed to 3v which is long enough to send
and receive two packets. If the packet transmission
request is not caused by a timer expiry, packet buffering
can be used to send the buffered packet once the radio
is idle.

5. Performance evaluation and discussion

Using an accurate simulation framework, we conduct
extensive simulations to evaluate the performance of
DICSA. We perform two types of evaluations: First, we
show the performance improvements of DICSA in terms
of algorithm execution duration, energy efficiency and slot
assignment efficiency. Second, we show how employing
DICSA in a TDMA MAC protocol can improve the perfor-
mance of data gathering applications.

5.1. Simulation configuration

We implemented the protocols and algorithms
evaluated in this paper in a simulation tool developed on
the OMNeT++ simulation framework [43]. Within this
framework we developed an accurate wireless channel
and physical layer model to precisely simulate the
characteristics of low-power wireless communication
[44]. In particular, we considered the following properties:
(i) Amongst the interference models we used the signal-to-
interference-plus-noise ratio (SINR) model due to its high-
est accuracy [45,46]. (ii) Since low-power transceivers
present the capture effect [47], our packet reception model
employed at the physical layer of the nodes provides an
accurate implementation of the capture effect [48]. (iii)
In addition to the multipath channel variations, we also
included noise floor variations caused by the white Gauss-
ian noise. (iv) We considered the effects of hardware heter-
ogeneity on transmission power and noise floor [49].

Table 2 presents the general simulation parameters of
this paper. The radio parameters have been chosen based
on the documentation of Mica2 motes with CC1000 radio.
The environmental parameters have been chosen based on
the studies of [49]. Packet format is similar to that used by
TinyOS [50]. TinyOS’s default CSMA MAC protocol is used
during the scheduling algorithm executions. We set the
maximum number of packet retransmissions to 100. Each
figure point represents the median of 20 runs. Error bars
indicate upper and lower quartiles.

During the neighbor discovery phase each node
broadcasts 60 packets to find its one-hop and two-hop
neighbors. Nodes also estimate the link qualities to their
one-hop neighbors [17,41]. Afterwards, we employ the
TinyOS’s Collection Tree Protocol (CTP) [1] to establish
routing tables at the nodes.

Table 2

Simulation parameters.
Parameter Value
Radio
Average noise power [dBm] -106
Switch to TX/RX [us] 250
Radio sampling [us] 350
Evaluate radio sample [us] 100
Modulation NC-FSK
Encoding Manchester
Radio speed after encoding [bps] 19,200
PL(dp) [dB] 55
Heterogeneity of transmission powers 1.2
Heterogeneity of noise floors 0.9
Correlation of transmission power and noise floor -0.7
TX current consumption [mA] 16.5
RX/Idle current consumption [mA] 9.6
Environment
Path loss exponent (#) (outdoor) 4.7
Variance of multipath channel [dB] (outdoor) 3.2
Variance of white Gaussian noise [dB] 4
CSMA MAC
Initial contention window [slot] 128
Congestion contention window [slot] 64

Packet format

Phy header/MAC header/Payload/CRC 8/5/29/2
Other parameters

Battery capacity [mAh] 2500
Packet buffer size [packets] 20

It is worth mentioning that the simulation parameters
used in this paper are different from those used in [24].
In particular, while the simulation parameters of [24] are
valid for ad hoc networks with high radio data rate, our
parameters are valid for Mica2 sensor networks. Therefore,
our reported results for the performance of DRAND comply
with the multihop Mica2 experiment of [24], and not those
evaluated by NS2.

5.2. One-hop scenario

We first evaluate the performance of DICSA and DRAND
in various one-hop networks. We consider 2-20 nodes
deployed in a circular topology. Nodes transmit at 5 dBm.

Fig. 4 presents our evaluation results for the one-hop
scenario. In terms of algorithm execution duration, DICSA
provides significantly lower duration due to its concur-
rency mechanism. Since all the nodes are one-hop neigh-
bors, DRAND requires the nodes to perform their slot
reservation sequentially. In contrast, DICSA allows the
nodes to be concurrently involved in slot reservation.
Therefore, since DICSA reduces the number of failed slot
reservation tries, the average number of rounds per node
is significantly lower than that of DRAND.

Despite the lower duration of DICSA, it requires more
packet transmissions because of its concurrency mechanism
that causes higher number of packet losses during the algo-
rithm execution. It should be noted that one-hop networks
are not collision-free. As CSMA is the employed channel
access mechanism during the algorithm execution, a colli-
sion happens when two or more nodes select the same back-

64 B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71

One-Hop Topology
701 130

——DICSA: Duration
—O>—DRAND: Duration
601 .5~ DICSA: Rounds/Node 125
-A- DRAND: Rounds/Node
"w 501
— 120
=
S 40f
E 301 '
=
A 110
207
10 X I°
- o=8-0-0-0-0
0 0

2 4 6 8 10 12 14 16 18 20
Neighborhood Size

(a)

Rounds/Node

Transmisions/Node

One-Hop Topology x 107
100 115 &
——DICSA: Transmissions/Node =
—0—DRAND: Transmissions/Node 3

80+ -0~ DICSA: Energy/Node ’ °
-A- DRAND: Energy/Node z

11 g

60 e
=

40} z
1 o

0.5 S
20¢ z
Fold f‘-)

L -0~ =

0 e B-0-0T T 4

2 4 6 8 10 12 14 16 18 20

Neighborhood Size

(b)

Fig. 4. Evaluating the execution performance of DICSA and DRAND in various-size one-hop networks. (a) Execution duration and average number of rounds
per node. (b) Average number of packet transmissions per node and average battery consumption per node. Since DICSA does not impose any distance
between the nodes reserving slot, it provides shorter algorithm execution duration and lower energy consumption.

off slot. Therefore, the number of transmissions can be
reduced through increasing the contention window size.

Regardless of its higher number of transmissions, DICSA
shows lower energy consumption per node, which is due
to its lower execution duration. As CSMA is used during
the execution of these scheduling algorithms, and since
the energy consumed by the radio in the idle and receive
modes are identical and dominate the transmit mode,
energy consumption of the scheduling algorithms mainly
depends on the execution duration.

We do not present maximum slot number for the one-
hop scenario because it is always equal to V — 1, where V
is the number of nodes.

5.3. Multi-hop scenario

In this section we conduct performance evaluations in
multihop networks with various two-hop neighborhood
densities. In a 50 m x 50 m area we changed the number
of nodes from 60 to 200 to generate various densities.
Nodes transmit at 0 dBm.

Fig. 5 shows our performance evaluation results in mul-
tihop scenarios. Although DRAND claims its execution
duration linearly increases versus neighborhood size, the
performance evaluations of [24] as well as our evaluations
show quadratic relationship, which is due to the packet
losses caused by collisions. Compared to DRAND, the exe-
cution duration of DICSA is also quadratic, however, with
lower growth rate. Our results show that the execution
duration of DICSA is at least 50% less than that of DRAND.

The one-hop and two-hop results signify that DICSA’s
number of rounds is independent from neighborhood size.
In both DRAND and DICSA a node can confirm its slot res-
ervation if no response is received from some neighbors
after achieving the maximum number of retransmissions.
In DICSA, the current round should be terminated and a
new round should be initiated when: (i) a node receives
a tdecline/pdecline message due to the selection of a forbid-
den slot, or (ii) when a node achieves the maximum num-
ber of retransmissions without receiving approve message
from the parent node. Further evaluations have been

erformed to measure the effects of forbidden slot selection
and the number of packet retransmissions on the number
of rounds. These evaluations revealed that the maximum
number of packet retransmissions is the main parameter
affecting the number of rounds. In particular, when the
number of retransmissions is not large enough to cope
with the packet losses caused by collision, child-parent
packet exchanges cannot be accomplished and therefore,
the current round should be terminated and a new round
should be initiated. These investigations also revealed that
neighborhood density has no effect on the number of
rounds when the number of retransmissions is large
enough (e.g., 100 in these evaluations). However, increas-
ing the network density intensifies packet collisions and
enlarges the number of nodes from which no reply has
been received after reaching the maximum number of
retransmissions. Nevertheless, it was observed that these
links are usually asymmetric or represent low quality,
consequently, they do not affect scheduling accuracy.

Our results show that the number of packet transmis-
sions with DRAND and DICSA demonstrate quadratic
growth versus the neighborhood size. However, the
growth rate of DRAND is lower than DICSA. We can charac-
terize this difference through the spacing between those
nodes applying for slot reservation. In particular, in
DRAND, the number of hidden-node collisions is signifi-
cantly reduced as the spacing between two nodes applying
for slot reservation should be at least three hops.

Similar to the one-hop scenario, the lower duration of
DICSA results in its lower energy consumption. Our results
indicate that the energy consumption of DICSA is more
than 40% lower than DRAND.

The number of slots a scheduling algorithm uses for
network scheduling is an implication of spatial reuse
efficiency. Fig. 6 shows the efficiency of slot number
assignment achieved by various scheduling algorithms.
The maximum slot number assigned by DICSA is up to
50% lower than that of DRAND at high neighborhood
densities. This reduction is due to the higher spatial reuse
of link scheduling compared to node scheduling. We also
showed the upper bound of DRAND, which is

B. Dezfouli et al. /Ad Hoc Networks 25 (2015) 54-71 65

Multi-Hop Topology

600 i T T . :
——DICS
-— DICAg Least-Square Fit: Quadratic Curve
—0—DRAND
500F - Z _DRAND: Least- Square Fit: Quadratic Curve”]|
2. 400]
o
2
v 300f 1
-
=
A 200t -7
100 1
0 -~ L L 1 L
10- 20 20-30 30-40 40-50 50-60
Maximum Two-Hop Neighborhood (maxN'2)
(a)
Multi-Hop Topology
1200 T T T T -
——DICSA -
- — DICSA: Least-Square Fit: Quadratic Cufve
1000f ~°7B < -
_g ---D : Least-Square Fit: QuadratieZCurve
o .
Z.
~ 800r]
w
=1
o
s 600 1
2z
g »
wn L 4
Z 400
<
=
& 200-]

10-20 20-30 30-40 40-50 50-60

Maximum Two-Hop Neighborhood (maxN

(¢)

1,2)

Multi-Hop Topology

250 —— DICSA
——DRAND
200+ -
()
o
-
< 150t i
92}
=
= I |
g 100
~
50+
L p—o——o———
10-20 20-30 30-40 40-50 50-60

Maximum Two-Hop Neighborhood (maxN!-2)
(b)

x 107 Multi-Hop Topology

o o o o S o= o

N A O 00 =~ N b~ O
oo
j=s)
=
2,
o

Battery Consumption/Node [%]

o

10-20 20-30 30-40 40-50 50-60

Maximum Two-Hop Neighborhood (male'Q)

(d)

Fig. 5. Evaluating the execution performance of DICSA and DRAND in multihop scenarios with various two-hop neighborhood sizes.

maxN"? + 1. Accordingly, our results confirm that the slot
assignment of DICSA is always lower than
0.4 x (maxN'? + 1). The ‘VDEC’ curve demonstrates the
lower bound of the slot assignment achieved through
employing algorithm [15] (cf. Section 2). Fig. 6 indicates
that the slot assignment of DICSA provides more than
60% improvement over this distributed link scheduling
algorithm. Fig. 6 also shows the minimum slot number
required to schedule the collection trees constructed from
our networks. This lower bound equals to maxN' of the
tree, as reported by [3]. Note that the maximum degree
of an interference-free tree can be computed as
maxC + 1, where maxC is the maximum number of chil-
dren per node. Although this number of slots does not hold
for our network topology (because it assumes no
interfering link in the tree), it can indicate the potential
improvements of DICSA when all the interfering links are
eliminated through mechanisms such as power control,
multiple frequencies or code assignment. The minimum
number of slots required for network scheduling through
FPS is also demonstrated by Fig. 6. This lower bound is
equal to maxC + 3, which is very similar to the required
number of slots for scheduling a tree that has no interfer-
ence between its branches. This is because FPS schedules
child-parent links and it does not care about interference

Multi-Hop Topology
60 T : T -
ICSA: Maximum Slot Number
RAND Maximum Slot Number ¢
RAND: Upper Bound .
DEC:
e:

Lower Bound -]
ree: Lower Bound B
S: Lower Bound

D

D

D
oy
sof - VI
— FP
40t T 1

30

20

Number of Required Slots

10}

0

10-20 20-30 30-40 40-50 50-60
Maximum Two-Hop Neighborhood (maxN 1'2)

Fig. 6. The slot assignment efficiency of various scheduling algorithms.
Slot assignment of DICSA shows up to 50% improvement over DRAND,
and more than 60% improvement over VDEC.

between branches of a tree. In contrast with FPS, although
DICSA considers all the collision scenarios affecting child to
parent transmissions, nevertheless, its achieved slot
assignment efficiency is close to that of FPS.

66 B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71

5.4. Slot updating

When a new node is added to the network, or when the
network topology changes, some nodes may require to
update their slot assignment. Therefore, it is important to
update slot assignment with minimum time and energy
cost. In this section we evaluate the slot update cost of
DICSA against DRAND. We use 100 nodes deployed in three
different network densities. For each network we select
different number of nodes rerunning DRAND and DICSA
during the normal network operation. We report slot
update cost in terms of duration and energy cost. Duration
is the average time required by the nodes applying for slot
update to confirm their slot reservation. Energy consump-
tion is the total energy spent by all the nodes involved with
the slot reservation of those nodes applying for slot update.

Fig. 7 shows the updating costs. Both duration and
energy consumption present significant variations, which
is due to the randomness of packet delays and packet
losses. Our results show that the recovery cost of DICSA
is considerably lower than that of DRAND. In addition, with
respect to the DICSA’s concurrency mechanism, the
improvement percentage of DICSA over DRAND increases
when the network density enlarges or the number of nodes
applying for slot update increases.

5.5. Data gathering applications

In this section we evaluate the performance of DICSA,
DRAND, NCR, SEEDEX and FPS in data gathering applica-
tions. In particular, we show how a TDMA MAC protocol
would behave when each of these algorithms is used as
the underlying mechanism of channel access scheduling.
It is worth mentioning that we did not consider FPRP [51]
because the higher performance of DRAND over this proto-
col has been previously shown in [24]. Furthermore, we
neglected VDEC because its maximum slot number is much
higher than DRAND.

We introduce a TDMA MAC framework within which
we evaluate these scheduling mechanisms. As DICSA,

DRAND and FPS are deterministic algorithms, each node
is allowed to send a data packet in a specific time slot
during each frame. Therefore, time is divided into
frames and each frame is composed of M time slots,
where M is the maximum slot number assigned by
the scheduling algorithm. For NCR and SEEDEX, time is
not divided into frames, rather, it is a continuous
sequence of time slots.

In addition to the efficiency of the underlying schedul-
ing algorithms, the length of the time slots also affect net-
work throughput. In order to determine a realistic duration
for the time slots, in particular, we should consider time
synchronization accuracy because, in reality, synchroniza-
tion drifts are inevitable due to the issues such as oscillator
inaccuracy and low traffic rate. Therefore, time slot dura-
tion should be long enough to avoid the collisions caused
by slot overlap. Fig. 8(a) and (b) present the minimum
required time slot duration when synchronization accu-
racy (t) is larger than radio switching delay (@). When
the packet transmitter’s slot begins 2t before the receiver
(Fig. 8(a)), the transmitter should start its packet transmis-
sion after 27 + @w to make sure the receiver is ready for
reception. Considering the case in which the transmitter’s
slot begins 2t after the receiver (Fig. 8(b)), slot duration
should be at least 47 + @ + Tpacker + . The value (is due
to propagation, encoding and decoding delays. We can
conclude similar time slot duration when the synchroniza-
tion accuracy (7) is shorter than radio switching delay (@),
as demonstrated by Fig. 8(c) and (d). The obtained time slot
duration holds for all the algorithms except FPS. As FPS
employs CSMA at the beginning of each time slot, its min-
imum time slot duration should be 4t + @ + Tpacker+
{4+ Tew.

We consider a 100-node network in which all the nodes
generate packet. All the nodes send at 0 dBm. We vary the
packet generation rate of the nodes to measure the spatial
reuse and collision avoidance efficiency of the scheduling
algorithms. Performance evaluation results are presented
in terms of four metrics:

Multi-Hop Topology

maxN!= 20 maxN'= 30 maxN!= 40
3 DICSA: Duration 09 25 DICSA: Duration 80 DICSA: Duration 20
% DRAND: Duration :8: DRAND: Duration DRAND: Duration
- DICSA: Energy 08 — < DICSA: Energy — 70 ‘- DICSA: Energy .
o5 /% DRAND: Energy = 2 /% DRAND: Energy =3 /% DRAND: Energy =
. 0.7 = =
— ° o 60 15 :;:)
= 06 2 = 2 = z
Z 2 E o5 B g E
£ 05 57 S Z 3 2
= g = £ %40 10 2
= 04 © =& o = <]
A 15 . ;10 :), A 30 Li
03 2 & &
y -
02] g 2 5 ¢
1 2 9 5 S &
0.1 P 10
05 0 0 g---0-"" 0 0
’ 2 4 6 8 2 4 6 8
Number of New Nodes Number of New Nodes Number of New Nodes
(a) (b) (c)

Multi-Hop Topology

Multi-Hop Topology

Fig. 7. Recovery cost of DICSA and DRAND versus the number of nodes applying for slot update. These results indicate the significantly lower recovery cost
of DICSA compared with DRAND. When the network density enlarges or the number of nodes applying for slot update increases, DICSA’s concurrency
mechanism becomes more beneficial, therefore, increasing the percentage of improvement over DRAND.

B. Dezfouli et al. /Ad Hoc Networks 25 (2015) 54-71 67

w<r7
j«—————Time Slot Duration——————> «——————Time Slot Duration—————>
« 2t @ Tpacket 27— ATt w Toacket
4—'[4»«: 4—7;4>i
H } | Packet Transmission‘l H : ’ Packet Reception |
| «—4r—> ‘ 21 +w—> 27—
i‘*’["{?ﬂ| Packet Reception @ ‘ 1‘*’["{@‘1 ’ Packet TransmissionEI ‘
(a) (b)
w>7
fiTime Slot Durationghl «———————Time Slot Duration—————
2 +w Tpacket «—21—> 3 : 4T + @ Tpacket
T | «T
‘ zzr ‘ | Packet Transmission [{ : | zzr ‘ ‘ Packet Reception [
4*41% «—2t+tm—> «—21—>
4*’[4’{ @ | Packet Reception |¢ ‘ }frﬁ{ @ | ’ Packet Transmission (¢ ‘

(c)

(d)

Fig. 8. Minimum time slot duration with respect to time synchronization accuracy () and radio switching delay (w). (a) and (b) @ < 7. (c) and (d) @ > 7.
Irrespective to the relationship between 7 and @, the minimum time slot duration should be 47+ @ + Tpger + {. In this paper we assume

T=1ms, @+ {=1ms, and Tpocker = 18.33 ms.

- Sink throughput: The number of bits successfully
received by the sink node per second.

- Network throughput: The number of bits successfully
received by the nodes per second. We avoided using
the number of transmitted bits because, we wanted to
measure the effective network throughput, and not
those transmissions that could not be received at their
intended receivers. For example, the transmission
throughput and effective throughput of SEEDEX and
FPS are considerably different as a result of packet
collisions at the parent nodes.

- Delivery ratio: The percentage of the generated packets
that have successfully been received by the sink.

- Packet delay: The average time taken for the packets
from their generation until reception at the sink.

Fig. 9 presents our evaluation results with respect to the
data gathering application. These results confirm the
higher spatial reuse and lower number of collisions
achieved with DICSA. Compared with DRAND and NCR,
DICSA relies on link scheduling to achieve faster channel
access. Therefore, it can provide more efficient packet for-
warding (higher throughput), and reduces the number of
packet losses caused by buffer overflow. Consequently,
we can observe higher delivery ratio and lower packet
delay with DICSA. DICSA, SEEDEX and FPS all employ link
scheduling, therefore they demonstrate lower packet
delivery delay compared with DRAND and NCR. However,
when a child transmits to its parent, both SEEDEX and
FPS suffer from packet losses caused by the transmissions
of the one-hop neighbors of the parent; hence, they pres-
ent lower throughput and delivery ratio compared with
DICSA. Assuming the transmission of a child to its parent,
using SEEDEX, collisions occur at the parent node because
of the probabilistic approach employed by the child node

to reduce collisions. In FPS, packet collisions at the parent
node are avoided through employing CSMA before com-
mencing transmissions. However, carrier sensing can avoid
collisions only when the senders can sense each other.
Accordingly, since CSMA cannot avoid hidden-node colli-
sions, increasing the contention window size does not
improve the performance of FPS, as it can be observed in
Fig. 9. Consequently, in contrast with DRAND and NCR in
which packet losses are mainly due to buffer overflow,
the lower throughput and delivery ratio of SEEDEX and
FPS are due to the packet losses caused by collisions.

Fig. 10 presents network throughput versus neighbor-
hood size. This figure shows that the throughput of DICSA
is more than 50%, 70%, 90% and 170% higher than that of
DRAND, SEEDEX, NCR and FPS, respectively.

6. Storage analysis

The maximum amount of storage required by DICSA at
each node mainly depends on the storage required to store
the forbidden slots lists. Let max|x| be the maximum possi-
ble size of list x, and x denote the maximum number of
slots a node reserves. Therefore, max|TS| = x. The maxi-
mum size of list RS depends on the maximum number of
children per node; therefore, max|RS| = (maxN' — 1) x k.
The maximum size of list RSO depends on the maximum
number of one-hop neighbors per node and the maximum
number of children per node; therefore, max|RSO|=
maxN' x (maxN' — 1) x x. The maximum size of list TSO
depends on the maximum number of one-hop neighbors
per node; therefore, max|TSO| = maxN' x x. Finally, the
maximum size of list TST depends on the maximum num-
ber of two-hop neighbors; therefore, max|TST|=
maxN' x (maxN! — 1) x x. Consequently, the maximum
amount of storage required by DICSA is,

68

Sink Throughput [bps]

Delivery Ratio [%Generated Packets]

4000
3500

3000
2500}

2000
1500

1000

500

100

80}

60

401

20

B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71

Data Gathering Application

X -

.0375.075 .15

3
Packet Generation Rate [Packet/Sec]

.6

(a)

12 24 48 96

.0375.075 .15

Packet Generation Rate [Packet/Sec]

(¢)

3

.6

12 24 48 96

x 10° Data Gathering Application

Network Throughput [bps]
w

C-x="
O 1 1 1 L 1 1 L 1
0375075 15 3 6 12 24 48 96

Packet Generation Rate [Packet/Sec]

(b)

Data Gathering Application
80 ; " . T T :

T

701
60

30}
20}

Packet Delay [Sec]

.0375.075 .1I5 3 6
Packet Generation Rate [Packet/Sec]

(d)

12 24 48 96

Fig. 9. Performance evaluation of various scheduling algorithms versus traffic rate in data gathering applications. Compared with DICSA, the lower
throughput and delivery ratio of DRAND and NCR is due to the lower spatial reuse of node scheduling which results in buffer overflow and packet loss.
Packet losses caused by collisions reduce the throughput and delivery ratio of SEEDEX and FPS, compared with DICSA.

Fig. 10. Throughput evaluation of various scheduling algorithms versus

Network Throughput [bps]

10

o
£

< >OoOo*

T HZngo)|
o UAE=

Q)
w0
=

&
==
5o

C/}C/J;U
QQ =
=
I
= 00
Sv

w

N

N

o

30

20

10

Maximum Number of One-Hop
Neighbors (maxN?!)

neighborhood size in data gathering applications.

I =2 x (maxN')> x & x 7 (1)
where y is the number of bits required to store a slot num-
ber. The amount of storage required by DICSA can be
reduced through two mechanisms. First, instead of using
one byte for storing a slot number (which allows up to
256 slot numbers), the number of required bits can be
assigned based on the maximum slot number. For exam-
ple, as Fig. 6 shows, the maximum slot number assigned
by DICSA is less than 20 for two-hop neighborhood size
up to 60. Therefore, assigning 5 bits for storing a slot
number is enough. As another but more straightforward
optimization we can reduce the size of TSO and TST lists.
In particular, a node only stores the transmission slots of
its parent node in the TSO list; therefore, max|TSO| = k.
Furthermore, a node only stores the transmission slots of
the one-hop neighbors of parent in its TST list; therefore,
ITST| = (maxN' — 1) x k. Consequently, the maximum
amount of storage required by DICSA is reduced to,

I = (i x (maxN')” + & x maxN') x y

()

B. Dezfouli et al. /Ad Hoc Networks 25 (2015) 54-71 69

——I', v=28
—o—1I", optimized 7y
—=—TI', v=38
08+ ——1I', optimized v

0.6} 1

Required Storage [KB]

0.2 1

100 200 300 400 500
Maximum Two-Hop Neighborhood

(maxN 1"2)

Fig. 11. The storage requirement of DICSA.

Fig. 11 shows the amount of memory required by
DICSA. Note that this figure shows I' and I against
two-hop neighborhood size, therefore, both functions
demonstrate linear behavior. This figure shows that opti-
mizing the number of entries stored in the TSO and TST
lists can considerably reduce the amount of required stor-
age. In addition, for neighborhood sizes of lower than 300,
optimizing the number of bits per slot number entry can
reduce the required storage by up to about 30%. Also note
that the maximum amount of storage required by DICSA is
considerably lower than the RAM provided by wireless
sensor nodes. For example, for neighborhood size 300,
DICSA consumes about 6.5% and 2.6% of the RAM provided
by Mica2 and TelosB nodes, respectively.’

One might ask why we have only computed the storage
required by slot numbers, while an entry in a list of forbid-
den slots should also include the address of the sender
node, as described in Section 4.1. According to our previous
analysis, most of the storage required by DICSA is for RSO
and TST lists. In addition, as a neighbor discovery phase
has been completed before the execution of DICSA (cf. Sec-
tion 3.2), one-hop and two-hop neighborhood tables have
already been established and therefore, the slot numbers
belonging to the RSO and TST lists can be attached to the
corresponding entries in the one-hop and two-hop neigh-
bor tables.

7. Conclusion

The main traffic pattern of wireless sensor networks is
many-to-one, in which child-to-parent packet transmis-
sions forward the packets towards the sink. Therefore,
since link scheduling algorithms can provide higher spatial
reuse over node scheduling algorithms, data gathering per-
formance can be improved through TDMA MAC protocols

3 Mica2 provides 4 KB and TelosB provides 10 KB of RAM.

that employ link scheduling. In this paper, we proposed
DICSA, a link scheduling algorithm that does not require
any assumption regarding the underlying network. The
most important feature of DICSA is its concurrency mech-
anism that enables all the nodes to be concurrently
involved in slot reservation. Although both DRAND and
DICSA perform slot reservation in rounds, our performance
evaluations confirm the lower duration and energy con-
sumption of DICSA. Using a TDMA MAC framework, we
compared the performance of DICSA with other scheduling
algorithms. Our results reveal the higher performance of
DICSA in terms of throughout, delivery ratio and packet
delay.

References

[1] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, P. Levis,
CTP: an efficient, robust, and reliable collection tree protocol for
wireless sensor networks, ACM Trans. Sens. Netw. 10 (2013) 1-49.

[2] S. Gandham, Y. Zhang, Q. Huang, Distributed time-optimal
scheduling for convergecast in wireless sensor networks, Comput.
Netw. 52 (2008) 610-629.

[3] O. Durmaz Incel, A. Ghosh, B. Krishnamachari, K. Chintalapudi, Fast

data collection in tree-based wireless sensor networks, IEEE Trans.

Mob. Comput. 11 (2012) 86-99.

B. Dezfouli, M. Radi, M.A. Nematbakhsh, S.A. Razak, A medium access

control protocol with adaptive parent selection mechanism for

large-scale sensor networks, in: International Conference on

Advanced Information Networking and Applications - WINA "11,

IEEE, Biopolis, Singapore, 2011, pp. 402-408.

K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala,]J. Caffrey, R.

Govindan, E. Johnson, S. Masri, Monitoring civil structures with a

wireless sensor network, IEEE Internet Comput. 10 (2006) 26-34.

R. Szewczyk, A. Mainwaring,]. Polastre,]J. Anderson, D. Culler, An

analysis of a large scale habitat monitoring application, in:

Proceedings of the 2nd International Conference on Embedded

Networked Sensor Systems - SenSys '04, ACM Press, Baltimore,

MD, USA, 2004, p. 214.

L. Yu, N. Wang, X. Meng, Real-time forest fire detection with wireless

sensor networks, International Conference on Wireless

Communications, Networking and Mobile Computing (IWCMC '05),

vol. 2, IEEE, 2005, pp. 1214-1217.

G. Guangmeng, Z. Mei, Using MODIS land surface temperature to

evaluate forest fire risk of northeast China, IEEE Geosci. Remote Sens.

Lett. 1 (2004) 98-100.

[9] T.-S. Chen, H.-W. Tsai, C.-P. Chu, Adjustable convergecast tree
protocol for wireless sensor networks, Comput. Commun. 33
(2010) 559-570.

[10] O.D. Incel, B. Krishnamachari, Enhancing the data collection rate of
tree-based aggregation in wireless sensor networks, in: 5th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks, IEEE, 2008, pp. 569-577.

[11] E. de Souza, I. Nikolaidis, An exploration of aggregation convergecast
scheduling, Ad Hoc Netw. 11 (2013) 2391-2407.

[12] X. Xu, X.Y. Li, X. Mao, S. Tang, S. Wang, A delay-efficient algorithm for
data aggregation in multihop wireless sensor networks, IEEE Trans.
Parallel Distrib. Syst. 22 (2011) 163-175.

[13] G.-S. Ahn, S.G. Hong, E. Miluzzo, A.T. Campbell, F. Cuomo, Funneling-
MAC: a localized, sink-oriented MAC for boosting fidelity in sensor
networks, in: Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems - SenSys '06, ACM Press,
Boulder, Colorado, USA, 2006, p. 293.

[14] O.D. Incel, A. Ghosh, B. Krishnamachari, Scheduling algorithms for
tree-based data collection in wireless sensor networks, in:
Theoretical Aspects of Distributed Computing in Sensor Networks,
Springer, Berlin, Heidelberg, 2011, pp. 407-445.

[15] S. Gandham, M. Dawande, R. Prakash, Link scheduling in wireless
sensor networks: distributed edge-coloring revisited,]. Parall.
Distrib. Comput. 68 (2008) 1122-1134.

[16] J. Gronkvist, Assignment methods for spatial reuse TDMA, in: 1st
ACM International Symposium on Mobile Ad hoc Networking &
Computing, ACM MobiHoc’00, 1, IEEE, Boston, Massachusetts, USA,
2000, pp. 119-124.

[17] B. Dezfouli, M. Radi, S.A. Razak, K. Whitehouse, K.A. Bakar, T. Hwee-
Pink, Improving broadcast reliability for neighbor discovery, link

[4

(5

[6

(7

(8

70 B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71

estimation and collection tree construction in wireless sensor
networks, Comput. Netw. 62 (2014) 101-121.

[18] S. Ramanathan, A unified framework and algorithm for channel
assignment in wireless networks, Wireless Netw. 5 (1999) 81-94.

[19] S.C. Ergen, P. Varaiya, TDMA scheduling algorithms for wireless
sensor networks, Wireless Netw. 16 (2009) 985-997.

[20] L. Bao, J.J. Garcia-Luna-Aceves, A new approach to channel access
scheduling for ad hoc networks, in: Proceedings of the 7th Annual
International Conference on Mobile Computing and Networking -
(MobiCom '01), ACM Press, Rome, Italy, 2001, pp. 210-221.

[21] L. Tang, Y. Sun, O. Gurewitz, D.B. Johnson, PW-MAC: an energy-
efficient predictive-wakeup MAC protocol for wireless sensor
networks, in: Proceedings of the 30th IEEE International
Conference on Computer Communications, INFOCOM'11, IEEE,
2011, pp. 1305-1313.

[22] R. Rozovsky, P.R. Kumar, SEEDEX: a MAC protocol for ad hoc
networks, in: Proceedings of the 2nd ACM International Symposium
on Mobile Ad hoc Networking & Computing - MobiHoc '01, ACM
Press, Long Beach, CA, USA, 2001, p. 67.

[23] L. Bao,]J. Garcia-Luna-Aceves, Channel access scheduling in ad hoc
networks with unidirectional links, in: Proceedings of the 5th
International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications - DIALM '01, ACM Press,
2001, pp. 9-18.

[24] 1. Rhee, A. Warrier, DRAND: distributed randomized TDMA
scheduling for wireless ad hoc networks, IEEE Trans. Mob. Comput.
8 (2009) 1384-1396.

[25] H. Choi,]. Wang, E.A. Hughes, Scheduling for information gathering
on sensor network, Wireless Netw. 15 (2007) 127-140.

[26] S.-Y. Chae, K. Kang, Y.-]. Cho, A scalable joint routing and scheduling
scheme for large-scale wireless sensor networks, Ad Hoc Netw. 11
(2013) 427-441.

[27] Y. Li, L. Guo, S.K. Prasad, An energy-efficient distributed algorithm
for minimum-latency aggregation scheduling in wireless sensor
networks, in: 30th International Conference on Distributed
Computing Systems (ICDCS'10), IEEE, Genova, 2010, pp. 827-836.

[28] D. Chafekar, V.S.A. Kumar, M.V. Marathe, S. Parthasarathy, A.
Srinivasan, Approximation algorithms for computing capacity of
wireless networks with SINR constraints, in: The 27th Conference on
Computer Communications, (INFOCOM’08), 2008, pp. 1166-1174.

[29] H.-W. Tsai, T.-S. Chen, Minimal time and conflict-free schedule for
convergecast in wireless sensor networks, in: IEEE International
Conference on Communications (ICC'08), IEEE, Beijing, China, 2008,
pp. 2808-2812.

[30] Y. Zhang, S. Gandham, Q. Huang, Distributed minimal time
convergecast scheduling for small or sparse data sources, in: 28th
IEEE International Real-Time Systems Symposium (RTSS '07), IEEE,
Washington, DC, USA, 2007, pp. 301-310.

[31] M.-S. Pan, Y.-C. Tseng, Quick convergecast in ZigBee beacon-enabled
tree-based wireless sensor networks, Comput. Commun. 31 (2008)
999-1011.

[32] M. Radi, B. Dezfouli, K. Abu Bakar, S. Abd Razak, Integration and
analysis of neighbor discovery and link quality estimation in
wireless sensor networks, Sci. World J. 2014 (2014) 1-23.

[33] A. Kesselman, D.R. Kowalski, Fast distributed algorithm for
convergecast in ad hoc geometric radio networks,]J. Parall. Distrib.
Comput. 66 (2006) 578-585.

[34] V. Rajendran, K. Obraczka,].J. Garcia-Luna-Aceves, Energy-efficient
collision-free medium access control for wireless sensor networks,
in: Proceedings of the First International Conference on Embedded
Networked Sensor Systems - SenSys '03, ACM Press, Los Angeles,
California, USA, 2003, p. 181.

[35] A. Barroso, U. Roedig, C. Sreenan, u-MAC: an energy-efficient
medium access control for wireless sensor networks, in:
Proceedings of the Second European Workshop on Wireless Sensor
Networks, (EWSN 2005), IEEE, 2005, pp. 70-80.

[36] V. Rajendran, J. Garcia-Luna-Aceves, K. Obraczka, Energy-efficient,
application-aware medium access for sensor networks, in: IEEE
International Conference on Mobile Adhoc and Sensor Systems
Conference (MASS’05), IEEE, Washington, DC, USA, 2005, pp. 623-
630.

[37] G. Lu, B. Krishnamachari, Minimum latency joint scheduling and
routing in wireless sensor networks, Ad Hoc Netw. 5 (2007) 832-
843.

[38] B. Hohlt, L. Doherty, E. Brewer, Flexible power scheduling for sensor
networks, in: Proceedings of the Third International Symposium on
Information Processing in Sensor Networks — IPSN'04, ACM Press,
Berkeley, California, USA, 2004, p. 205.

[39] B. Hohlt, E. Brewer, Network power scheduling for TinyOS
applications, in: Second IEEE international conference on
Distributed Computing in Sensor Systems, DCOSS’06, pp. 443-462.

[40] W.-Z. Song, R. Huang, B. Shirazi, R. LaHusen, TreeMAC: localized
TDMA MAC protocol for real-time high-data-rate sensor networks,
Pervasive Mob. Comput. 5 (2009) 750-765.

[41] M. Radi, B. Dezfouli, K.A. Bakar, S.A. Razak, M. Lee, Network
initialization in low-power wireless networks: a comprehensive
study, Comput. J. 57 (8) (2014) 1238-1261.

[42] M. Radi, B. Dezfouli, K.A. Bakar, S.A. Razak, M. Lee, LINKORD: link
ordering-based data gathering protocol for wireless sensor
networks, Computing (2014).

[43] OMNeT++, The OMNeT++ Network Simulation Framework, 2014.
<http://www.omnetpp.org>.

[44] B. Dezfouli, M. Radi, S.A. Razak, T. Hwee-Pink, K.A. Bakar, Modeling
low-power wireless communications, J. Netw. Comput. Appl. (2014).

[45] A. lyer, C. Rosenberg, A. Karnik, What is the right model for wireless
channel interference?, IEEE Trans Wireless Commun. 8 (2009) 2662~
2671.

[46] G. Halkes, K. Langendoen, Experimental evaluation of simulation
abstractions for wireless sensor network MAC protocols, EURASIP].
Wireless Commun. Netw. 2010 (2010) 1-11.

[47] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, D. Culler, Exploiting the
capture effect for collision detection and recovery, in: The Second
IEEE Workshop on Embedded Networked Sensors, 2005, EmNetS-II,
IEEE, Sydney, Australia, 2005, pp. 45-52.

[48] B. Dezfouli, M. Radi, S.A. Razak, K. Whitehouse, T. Hwee-Pink, CAMA:
efficient modeling of the capture effect for low-power wireless
networks, ACM Trans. Sens. Netw. (2014).

[49] M.Z. Zamalloa, B. Krishnamachari, An analysis of unreliability and
asymmetry in low-power wireless links, ACM Trans. Sens. Netw. 3
(2007) 63-81.

[50] P. Levis, S. Madden,]. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay,]. Hill, M. Welsh, E. Brewer, D. Culler, TinyOS: an operating
system for sensor networks, Ambient Intelligence, vol. 35, Springer,
Verlag, 2005.

[51] C. Zhu, M. Corson, A five-phase reservation protocol (FPRP) for
mobile ad hoc networks, Wireless Netw. 7 (2001) 371-384.

Behnam Dezfouli holds B.Sc. in Computer
Hardware Engineering, M.Sc. in Software
Engineering, and Ph.D. in Computer Science.
He is currently a Post-doctoral Research Fel-
low in the Faculty of Computing, Universiti
Teknologi Malaysia. Before his Ph.D., he has
worked as a Lecturer for more than two years,
and as a Network Specialist for more than six
years. He was a Research Assistant at the
Institute for Infocomm Research (I?R), Singa-
pore, during 2012. His research interests
include communication protocols for wireless
ad hoc, sensor and mesh networks; development of wireless sensor net-
works for medical applications, structural health monitoring and IoT;
empirical evaluation and mathematical modeling of wireless communi-
cations; and development of network simulation platforms.

Marjan Radi holds B.Sc. and M.Sc. degrees in
Software Engineering, and Ph.D. in Computer
Science. She is currently a Post-doctoral
Research Fellow in the Faculty of Computing,
Universiti Teknologi Malaysia. She was a
Research Assistant at the Institute for Info-
comm Research (I?R), Singapore, during 2012.
Her research interests include MAC, routing
algorithms, congestion control, supporting
QoS, and link quality estimation mechanisms
in wireless networks.

B. Dezfouli et al./Ad Hoc Networks 25 (2015) 54-71

Kamin Whitehouse earned his BA and BS from
Rutgers University and his MS and PhD from UC
Berkeley. He has been teaching in the Computer
Science Department at the University of
Virginia since 2006. He is a past TPC chair for
ACM BuildSys, ACM SenSys, ACM/IEEE IPSN,
and EWSN and serves as associate editor of
ACM Transactions on Sensor Networks. His
current research is focused on intelligent
buildings, an interdisciplinary research area
that sits at the boundary between Computer
Science and Building Science.

Shukor Abd Razak received his Ph.D. in
Computer Science from University of Plym-
outh, United Kingdom. He is currently an
associate professor at Universiti Teknologi
Malaysia. His research interests are on wire-
less ad hoc and sensor networks, mobile IPv6
networks, vehicular ad hoc network and net-
work security.

71

Hwee-Pink Tan is currently the Unit Head of
the Sense and Sense-abilities National Initia-
tive Program, Institute for Infocomm Research
(IR), Singapore. Before joining I°R, he was a
Post-doctoral Researcher at EURANDOM, The
Netherlands from December 2004 to June
2006, and a Research Fellow with CTVR,
Trinity College Dublin, Ireland from July 2006
to March 2008. His research has mainly
focused on the performance analysis of wire-
less networks, and his current research
interests are in underwater networks, cogni-

tive radio networks and wireless sensor networks powered by ambient
energy harvesting.

