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Abstract—The expansion of the Internet of Things (IoT) has led
to numerous innovations in the industry, including improvements
to existing systems. Disaster prevention and monitoring systems
are a prime example of such systems. Every year, there are
significant and preventable financial losses, not to mention the
safety hazards caused by floods. To warn people ahead of time,
we can deploy low-power wireless sensor nodes to send readings
across any terrain to a cloud platform, which can perform
pattern analysis, prediction, and alert forwarding to anyone’s
cellular device. In this paper, we propose Flomosys, a low-cost,
low-power, secure, scalable, reliable, and extensible IoT system
for monitoring creek and river water levels. Although there
are multiple competing solutions to help mitigate this problem,
Flomosys fills a niche not covered by existing solutions. Flomosys
can be built inexpensively with off-the-shelf components and scales
across vast territories at a low cost per sensor node. In this paper,
we present the design and implementation of this system as well
as real-world test results.

Index Terms—Disaster Monitoring, IoT, Wireless Communica-
tion, Security.

I. INTRODUCTION

Floods are notoriously earth’s most frequent and most de-
structive natural hazards. While flood damage counts in the
billions worldwide, climate scientists have predicted that with
the rise of global warming, flood events will only intensify
in number and magnitude over time. Between 1995 and 2015,
flooding affected 2.3 billion people and claimed 157,000 lives
across the globe [1]. Since 2000, the US has spent over $107
billion on the damages caused by floods. California’s San
Francisco Bay Area, in particular, is facing a grim future. In
2017, San Jose suffered flooding of the Coyote Creek, which
amounted to around $100 million in total damage and displaced
14,000 residents [2]. According to a team of scientists and
economists who studied the global impacts of a rising sea level
coupled with a growing economy and population, the Bay Area
is not alone in its dismal future. Their reports predict that flood
damage worldwide will cost up to $1 trillion per year by 2050.

In this paper, we present the design and development of a
low-power, reliable, low-cost, scalable, secure, and extensible
flood monitoring system, referred to as Flomosys. This system
aims to monitor flood zones and report accurate, useful data to
predict impending floods, so authorities are prepared to mitigate
flooding disasters and allocate proper funds for response and
recovery. A Flomosys system was installed and had been
running in California’s Bay Area since Summer 2019.

Figure 1 presents a high-level architectural diagram of Flo-
mosys. The system is composed of three distinct components,
Sensor Nodes (referred to as Nodes), the Gateway, and the
Cloud platform. A full installation requires at least one instance
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Fig. 1: Flomosys architecture. Each Node measures water level and transmits its
data up to several miles away over a secure link to the Gateway. Each Gateway
operates on multiple frequencies, performs duplicate packet detection, and
forwards the received data to the Cloud. The Cloud provides an administration
dashboard for system configuration, as well as data analysis.

of each component, but can be scaled to support many Nodes
for each Gateway, and multiple Gateways per Cloud.

Since Nodes typically rely on battery or energy harvesting
as their energy source, we designed and developed a low-
power circuit and software to minimize energy consumption.
Nodes communicate with the Gateway using the Long Range
(LoRa) wireless protocol [3]. On top of LoRa, we designed and
implemented a new encryption and authentication mechanism
called HMENC, which is suitable for low-bandwidth, low-
power devices. This specialized encryption mechanism requires
very little overhead and provides a built-in checksum feature
making it more efficient than Advanced Encryption Standard
(AES) or similar general-purpose ciphers, allowing Nodes
to operate using very little energy. According to our power
profiling results, each Node survives between 100 days and
almost three years on a 2400 mAh battery, depending on water
level sampling rate and wireless transmission variables (as we
will explain in Section VI).

The Gateway design includes an array of receivers connected
to directional antennas operating on different frequencies. This
provides the Nodes with the diversity required to reach the
Gateway in case of link unreliability. Also, the Gateway can be
fully implemented using low-cost, single-board Linux devices
such as the Raspberry Pi (RPi). If solar or limited energy
resources are powering the Gateway, duty-cycling mechanisms
are used to reduce energy consumption [4]. In our current
deployment, the Gateway has been installed on the roof of
an 11-level tall building belonging to Santa Clara University
(SCU).

In addition to reporting water level values to interested
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agencies, Flomosys can provide endangered residents with
proper flood notice. The Flomosys platform is open-source and
is designed to be assembled using Commercial Off-The-Shelf
(COTS) components. The source code and hardware designs are
published publicly and are freely available on the SIOTLAB’s
GitHub account1. With this low-cost design, strategic flood
precaution is no longer out of reach for impoverished areas and
third-world countries. Ultimately, the cost of implementation no
longer outweighs the impending costs of flood-related damages.

The rest of this paper is organized as follows: In Section
II, we discuss related work and how Flomosys fills a new
place in the landscape of flood monitoring. In Section III, we
present the system requirements. In Section IV, we detail the
system architecture and how the different components move
data from a Node to the web application. In Section V, we
discuss the wireless communication protocols used and the
HMENC encryption protocol. In Section VI, we examine the
power profiling results and explain the theoretical system’s
lifetime. We conclude the paper in Section VII.

II. BACKGROUND

Current flood monitoring systems deployed worldwide have
provided us with information for what methods work when
developing a reliable, feasible, and sustainable solution.

The Philippines, which is among the most flood-prone re-
gions globally, has launched a program that predominantly
utilizes Light Detection and Ranging (LIDAR) 3D terrain
mapping and ultrasonic sensors. The LIDAR technology is
coupled with computer-assisted analyses to pinpoint landslide-
prone areas, while the ultrasonic sensors are utilized to monitor
water levels. More recently, there has been an increased focus
on deploying flood warning systems on urban streets. All of
these sensors provide data that is analyzed and interpreted, then
shared with the public via online flood information websites
and mobile device applications. Another organization in the
Philippines developed a real-time flood monitoring and early
warning system to monitor the Cagayan River’s water level
using ultrasonic sensors [5]. This sensor system consists of an
Arduino, ultrasonic sensors, a GSM module, web-monitoring
software, and SMS-notification hooks to alert stakeholders and
mitigate casualties related to flooding.

In 2008, various states in the United States experienced dev-
astating floods [6], including Iowa [7]. This led the University
of Iowa to create an Iowa Flood Center (IFC), which was
also supported by the Tech State of Iowa. IFC has developed
many inexpensive river stage2 sensors mounted on bridges to
span rivers and streams. They have developed a self-contained
and compact Bridge-Mounted River Stage Sensor (BMRSS)
[8] for monitoring small rivers and streams, consisting of an
ultrasonic distance sensor, a solar panel, a GPS antenna, a
cellular modem antenna, and a serial port. In operation, a
BMRSS wakes periodically, measures its distance from the
water surface, and transmits this information via the Internet

1https://github.com/SIOTLAB/Flomosys
2Water level above a locally defined reference elevation

to IFC servers. BMRSS unit consists of an ultrasonic distance
sensor from Senix, designed for operation up to 15.2 m, and
supporting the RS-485 interfaces. BMRSS enhances the output
from flood forecasting models and can operate for several years
unattended, even in harsh environments.

The flood monitoring system presented in [9] uses the
Blynk platform as a medium of data transmission. This system
uses two WiFi-based NodeMCU development boards connected
through Blynk, a platform with iOS and Android applications
to control an Arduino or RPi remotely via the internet [10].
This platform provides a digital dashboard to build a graphical
user interface with custom widgets. One NodeMCU is placed at
the flood area while the second one acts as the control unit. The
transmitter unit consists of a NodeMCU, an ultrasonic sensor,
and a display to show the current reading. The ultrasonic sensor
data is sent to the Blynk application over WiFi, where it is
stored in a database and can be transmitted to the internet if the
second NodeMCU is connected. This system provides a short
communication range, especially in urban areas, and deploying
nodes on many bridges would require full sets of hardware at
each installation.

III. REQUIREMENTS

The major requirements of the system are reliability, energy
efficiency, scalability, and security.

Concerning reliability, in the case of system failures, flood
warnings may not reach endangered communities, which is
arguably worse than having no system in place at all, as
residents may rely on the system. Reliability must be addressed
from multiple perspectives. First, the sampled data regarding
water height must be accurate. Second, the software managing
the operation of Nodes, Gateway, and Cloud platform must be
bug-free and always be operational. Third, the Nodes must be
able to transmit their data to the Gateway reliably. Fourth, the
lifetime of the system components—especially the battery—
must be long and predictable.

From the energy efficiency point of view, Nodes may rely on
battery or solar harvested energy. Therefore, it is essential to
minimize energy consumption to reduce the cost of an energy
harvesting system [11]. Relying on renewable energy offers the
additional benefit of reducing maintenance costs by eliminating
the need to replace batteries frequently.

From the scalability point of view, the system must be
easy to extend without deploying a large number of Gateways.
Compared to the other flood-monitoring projects mentioned
in Section II, Flomosys will achieve scalability by keeping
Node costs low and shifting more expensive hardware and
internet requirements to the Gateway. Because dedicated GSM
modules and expensive recurring cellular plans are not required,
deploying tens or hundreds of Nodes will cost much less than
full systems, therefore dropping the average cost per monitored
site for every Node installed and keeping total recurring costs
very low. Also, the long communication range of the Nodes
will reduce the number of Gateways required to cover an area.

Last but not least, secure communication between Nodes and
Gateways is essential. In this regard, authenticity is necessary
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Fig. 2: (a) Node’s circuitry, and (b) packaging used for installation on bridges.
Low-power circuit design and software improvements were employed to ensure
minimum power consumption. The current draw of the circuitry during sleep
mode is 30 µA.

to ensure a valid Node has generated the data received by a
Gateway. Also, integrity is required to ensure the received data
is tamper-free. Confidentiality is not essential because the data
sampled by Nodes are not confidential.

IV. ARCHITECTURE AND SYSTEM OVERVIEW

At a high level, the system architecture is composed of
three components, as Figure 1 shows: one or multiple Nodes,
one or multiple Gateways, and a cloud-based coordination and
management system, which is simply referred to as the Cloud.

A. Nodes

Figure 2 shows a Node’s circuitry and packaging. The two
major responsibilities of a Node are collecting measurements
and sending data packets to the Gateway. Each Node’s sampling
rate is adjusted based on several factors, including the last-
measured water level and custom settings configured via the
Cloud. In the current deployment, during normal operation (i.e.,
no hazard detected), the sampling interval is within the range of
15 to 30 minutes, depending on a per-Node configuration set in
the firmware. As the water level increases, the Node’s software
reduces the sampling interval to ensure timely detection and
response. These parameters are configurable via the Cloud
platform.

The Node’s circuitry includes a microcontroller, wireless
transceiver, power distribution circuit, and interface to commu-
nicate with an ultrasonic sensor. To reduce the power consump-
tion of the Nodes, software and hardware optimizations were
made. These optimizations allow the Node to achieve a 30 µA
current consumption during sleep mode. The microcontroller
used is ATMEGA328P, which is available on Arduino Pro Mini
boards [12]. The software improvements include enabling a
low-power mode named power-down and disabling all unnec-
essary functionalities. Power-down is a power-saving configu-
ration supported by ATMEGA328P, which disables everything
except the watchdog timer, Two-Wire Interface (TWI) Address
Match, and interrupts. The watchdog timer allows the Node to

automatically wake from power-down mode without requiring
an external clock or interrupt. The watchdog periodically gen-
erates an interrupt, which transitions the microcontroller from
power-down mode to normal operation. If the wake-up is early,
the MCU will revert to power-down mode until the next timer
interrupt; if it is the time to wake up, the MCU remains in
normal mode to sample the sensor and transmit data.

The energy efficiency of the circuitry is improved as follows.
First, the regulator of the Arduino Pro Mini has been removed.
Instead, we use the MCP1703 regulator [13], which has a low
quiescent current of 2 µA. MCP1703 also allows input voltage
within the range 2.7 to 16 V; thereby simplifying interfacing
various energy sources such as solar energy harvesting systems.
During sleep mode, the microcontroller cuts the power to
the wireless transceiver and the ultrasonic sensor to avoid
any current leakage. This is achieved by using two onboard
transistors. The debugging LEDs (A0-A2) can also be fully
disabled by jumpers. We also have removed the onboard LED
of the Arduino Pro Mini.

1) Sensor: In addition to energy efficiency, the sensor must
provide accurate water level measurements by reporting the
Node’s distance to the surface of the water. The three main
types of distance sensors are ultrasound, LIDAR, and radar.
Many LIDAR sensors’ signals do not properly reflect off the
water and instead penetrate the surface. Ultrasound modules
are cheaper than their radar counterparts. Therefore, because
ultrasound is affordable, reflects off the water properly, and is
easy to source from a manufacturing standpoint compared to
other technologies, it makes for the ideal distance sensor for
Flomosys.

Passive ultrasound sensors send a set of very short pulses and
detect the reflection of these signals. A transducer emits these
sound pulses, which reflect off objects back to the sensor, and
the transducer detects the echoes. The device can then measure
the time it takes between the sending and receiving of these
pulses. Using this time interval, we can determine the distance
between the sensor and the object that has been detected.

2) Control Program: Algorithm 1 presents the pseudocode
of the program controlling the Node’s operation. When a
Node is awake during its duty-cycle, it first samples using
the ultrasonic sensor. Next, it uses HMENC to encrypt the
packet, and enters the transmission loop. In the transmission
loop, an encrypted packet is transmitted on channel 914, and
the Node waits for an acknowledgment (ACK) packet from the
Gateway. If no ACK is received before a timeout, the Node
transmits again on channel 915. The Node will transmit on
channel 916 if the transmission on channel 915 failed as well.
This channel hopping ensures the Node does not violate Federal
Communications Commission (FCC) regulations concerning
LoRa communication. Once a packet is received, it is validated.
If the packet is too long or short, it is immediately discarded.
The retry counter is incremented, and the system attempts to
transmit and receive it again, provided that it has not already
retried too many times. If the packet is the right size, it is
decrypted, and the checksum is calculated. Invalid checksums



Algorithm 1: Pseudocode of a Node’s Controlling
Program

1 while true do
2 retries = 0;
3 read_ultrasonic();
4 while retries <MAX_PACKET_LISTENS OR time <TIMEOUT

do
5 encrypt_packet();
6 transmit_packet();

7 wait_for_ack_packet();

8 if packet length not correct then
9 drop packet;

10 ++retries;
11 continue;
12 else
13 if packet fails checksum then
14 drop packet;
15 ++retries;
16 continue;
17 else
18 if msg_type == seed upgrade then
19 if seed packet has correct seq_no then
20 current_seed = message_seed;
21 encrypt_packet();

22 retries = 0;
23 continue;
24 else
25 ++retries;
26 continue;
27 end
28 else
29 // data transmission is successful
30 break;
31 end
32 end
33 end
34 end
35 increment_seed();

36 sleep();
37 end

result in another transmission attempt, retries permitting. Valid
checksums result in one of two situations: either the packet is a
valid ACK, or it is a seed upgrade. If the packet is an ACK, the
loop is finished, and the Node goes into a power-down sleep
mode until the duty cycle is finished. Seed upgrades tell the
Node to update their sequence number and attempt to transmit
again, regardless of retries. As this case is infrequent, and the
FCC regulations require an average dwell time on each channel
to be lower than 400 ms, an immediate retry every few hundred
packets in the rare event of Node reboot is not an issue.

B. Gateway

A Gateway is responsible for collecting sensor data read-
ings from Nodes, acknowledging the reception of measure-
ments, filtering duplicate receptions, and forwarding data to
the Cloud. A Gateway implementation includes multiple Linux-
based boards, such as the RPi, where each is connected to a
wireless transceiver and antenna. To interface each RPi with
a wireless transceiver, we have designed daughterboards that
are compatible with RPi header pins. In our installation, the
Gateway was installed on top of an 11-level building belonging
to SCU with a steady power supply and reliable internet access.

C. Cloud
The Cloud Application runs on a managed server hosted

on Linode, a hosting service providing a 99.9% uptime. The
Cloud’s application itself consists of a front-end and back-end.
The back-end, implemented in Golang, accepts authenticated
incoming connections from Gateways streaming measurements
and serves requests for the data to the front-end. The front-end,
written in VueJS, displays several graphs to the user, displaying
readings for the previous week, month, and all-time data. An
administrator console allows vendors such as water districts
to register webhooks for events such as water level passing a
certain threshold. All connections to and from the server are
served using Transport Layer Security (TLS) with a certificate
auto-renewed by LetsEncrypt, a free Secure Sockets Layer
(SSL) Certificate Authority (CA). The domain registration is
handled through Google Domains, which costs $12 USD per
year. The total cost to run the cloud services for a year comes to
less than $75 USD without requiring expertise with serverless
functions.

V. WIRELESS COMMUNICATION

This section discusses the importance and challenges of
achieving long-range, secure wireless communication. We also
present the details of the wireless communication and security
protocol implemented in Flomosys.

A. Reliable, Long-Range Wireless Links
The choice of wireless technology has a significant impact

in terms of reliability, energy efficiency, range, and security.
We did not choose cellular communication for several reasons.
First, cellular service may not be available in remote areas, and
it is unreasonable to expect users to install new towers in the
event of no coverage. Second, cellular communication requires
a recurring, often expensive subscription. Although WiFi offers
a high data rate and standardized security practices, its range
is short and requires access point installation near (⇠100 m)
each Node. The WiFi communication protocol also requires
establishing and maintaining association to allow Nodes to
communicate with WiFi access points. Both 802.15.4 and Blue-
tooth Low Energy (BLE) offer energy-efficient communication.
However, similar to WiFi, the communication range of these
technologies is short (⇠100 m) [3].

Given the above discussion, the application at hand requires
a Low-Power Wide-Area Network (LPWAN) technology stack.
Currently, the three leading LPWAN technologies are SigFox,
Ingenu, and LoRa. We chose LoRa because it satisfies our
system requirements in terms of message rate, range, and
energy efficiency [14], [15]. LoRa, developed by SemTech,
operates in the 915 MHz (North America), 829 MHz (Europe),
and 433 MHz (Asia) bands. It has no duty cycle restrictions
in North America [16], but a maximum dwell time of 400 ms
per channel per 20-second interval is enforced. It can achieve a
data rate of up to 300 Kbps, but typical data rates are between
300 bps and 27 Kbps, depending on the Coding Rate (CR) and
Spreading Factor (SF) used, which must be adjusted based on
distance. The LoRa module that we use is Semtech 1276 [17],



Fig. 3: The power required to transmit LoRa packets over time. Each spike
corresponds to a packet transmission.

Fig. 4: Four directional antennas connected to the Gateway. The Gateway has
been installed on top of a 11-level building in Santa Clara, California.

which can operate in the 137 MHz to 1020 MHz frequency
band. After performing several power profiling tests, such as
the one represented in Figure 3, it was determined the total
energy required to transmit a LoRa packet at +20 dBm with this
module ranged from 0.702 Joules to 0.960 Joules, depending
on the CR and SF.

Nodes, as well as the Gateway, use the same transceiver
(Semtech 1276). The radio control software utilizes Radiohead,
an open-source RF library licensed under GPLv2 [18]. Each
Node is equipped with a directional antenna (mounted on a tall
pole near its bridge) pointing toward the Gateway. The current
Gateway deployment includes six RPi boards. These RPi boards
operate on three different frequencies with two boards operating
on each frequency, providing redundancy in case of failure.
The three frequencies used are 914, 915, and 916 MHz. The
transceivers use a SF of 1024 Chips-Per-Second (CPS), a 4/7
CR, and have a transmission power of +20 dBm. Each RPi
couple is connected to a directional antenna, mounted on a
mast installed on the roof of Swig Hall, the tallest building
on the campus of SCU, at over 11 stories. Figure 4 shows
antennas connected to the Gateway. These four antennas span
the entire area we need to cover to measure the bridges along
Coyote Creek and Guadalupe Creek. We observed reliable
coverage extending just over 9 miles away from the Gateway.
Figure 5 presents two sample locations communicating with the
Flomosys Gateway.

B. Data Security and Integrity

Because the LoRa protocol does not provide any inbuilt en-
cryption method for secure channel transmission, we have im-

Fig. 5: The Gateway and Nodes use directional antennas to improve connec-
tivity. This figure shows two sample locations where the Nodes were placed
and their connectivity with the Gateway were tested.

plemented a low-cost data authentication and integrity scheme.
LoRa facilitates the transmission of small packets over a

long distance (i.e., several miles), and the reliability of packet
transmission degrades as packet size increases. The data that
we need to send is the water level, which is represented by
a 4-byte variable. Important metadata includes a client ID
number to determine which Node is transmitting the reading,
and a sequence number, so the Gateway can detect duplicate
readings. Duplicate transmissions occur when a Node sends a
packet, the Gateway receives it and sends back an ACK, but the
ACK is lost; therefore, the Node retransmits the packet. This
is demonstrated in Figure 6.

We also added a 2-byte checksum for data validation. After
including all the metadata, the message size is 16 bytes. Figure
7(a) shows the packet format. Such a small packet size is not
effectively encrypted with modern encryption algorithms, as
they require extra bytes for padding. Typically, using AES-128
would require us to transmit a ciphertext that is a multiple
of 16 bytes, which means we are unnecessarily increasing
packet size and reducing the chance of successful transmission.
Additionally, there is a hard limit to the proper transmission
length. In the US, the FCC mandated the maximum dwell
time per channel must not exceed 400 ms over any 20 second
period. However, to establish stable long-distance (around 9
miles) links, a high SF and CR must be used. These variables
significantly increase the time spent transmitting per byte of
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Fig. 6: This diagram illustrates three possible cases for message transmission.
The Gateway rejects the first transmission for using an invalid rand_seqno,
or seed. The Gateway responds with a seed upgrade. The Gateway receives
the second transmission, but the ACK message is lost, therefore the Node
retransmits the message. Finally, the third transmission is successful, and the
Node receives the ACK sent by the Gateway.

payload data. Sending 25 bytes or more with a CR of 4/7 and
a SF of 10 results in an illegal transmission rate. Importantly,
if the explicit header and Cyclic Redundancy Check (CRC) are
used, there are only 19 available bytes for the payload section
(see Figure 7a) of the packet. Similarly, Europe has duty-cycle
limitations per channel. As a result, the longer the message
is sent, the more infrequent messages must be sent to prevent
breaking regulations.

Since extra bytes in the total packet size must be avoided to
improve transmission reliability, we implemented our encryp-
tion and authentication solution for small data payloads, backed
by SHA-256.

C. HMENC: Low-Power Encryption

HMENC, the encryption solution implemented in Flomosys,
uses Hash-based Message Authentication Code (HMAC) and
is inspired by the HMAC-based One-time Password algo-
rithm and Time-based One-time Password algorithm (HOT-
P/TOTP) authentication schemes widely in use today for 2-
factor authentication. The distinction between authentication
and confidentiality is essential, as generally, HTOP/TOTP is
only defined for authentication and does not meet the criteria
for safe confidentiality. Additionally, HMENC has not been
certified, and although it offers sufficient data confidentiality
for Flomosys use case, the HMENC is better suited to ensure
integrity and authenticity. Notably, the name HMENC is not an
acronym, but rather a hybrid between HMAC and Encryption.
It is important to emphasize that the data payload, in this case,
is tiny, and only due to this small size does our particular
implementation work. As such, HMENC is only defined for
small data payloads, such as those under 64 Bytes. Figure 7
presents the HMENC message format.

The encryption algorithm is presented in Algorithm 2. Both
the Gateway and the Node are preloaded with a shared 32-
byte encryption key. Additionally, the Gateway maintains a
registry of client IDs that are unique and flashed into the Node
firmware before deployment. The first time a Node is activated,
the random number generator is seeded using a static input
read from an unused analog pin. Note that it is not critical

44 Bits 12 Bits 8 Bits 8 Bits 8 Bits

rand_seqno client_id msg_type seq_no retries

32 Bits 16 Bits

data checksum

(a) The packet generated by HMENC for float data types. Unencrypted
data is filled in gray, and encrypted data is in white. The values in each
field represents the number of bits used.

8 Symbols 4.25 Symbols 3 Bytes 16 Bytes 2 Bytes

Preamble
Mandatory
Preamble

Explicit (PHY)
Headers Payload CRC

(b) The physical layer frame used in Flomosys consists of a 2-part
preamble, explicit physical headers, the actual data payload, and finally
a 2-byte CRC.

Fig. 7: (a) Message format. (b) Physical layer frame format.

Algorithm 2: Encryption and Integrity Algorithm
1 Function encrypt_packet(char message[7], char packet[16]):
2 char checksum[2], pad[9], buffer[9];
3 checksum ( calc_checksum(checksum);
4 pad ( gen_HMAC(rand_seqno);
5 buffer ( message + checksum

6 ciphertext ( buffer � pad;
7 packet ( rand_seqno + ciphertext;

that this pseudorandom generator be cryptographically random.
The random generator fills the first five and a half bytes in a
seven-byte array with a pseudorandom sequence number, and
the client ID is inserted into the last byte and a half. This seven-
byte sequence is used as m, the message variable defined by
HMAC, and the pre-shared key is used as the HMAC key.

Given

K
0 =

(
H(K) K is larger than block size

K otherwise

Given K, m, and H , HMAC is defined as follows:

HMAC(K,m) = H((K 0 � opad)kH((K 0 � ipad)km)) (1)

where H is a cryptographic hash function (such as SHA-256),
K is the key, opad and ipad are magic numbers multiplied by
the block size as defined in the HMAC specification, and m is
a message, in this case, our random_seqno [19].

The HMAC algorithm is run, and the output is truncated to
9 bytes. This truncated hash is the pad. The message payload
is four bytes, long enough to contain a float. The metadata
included along with the payload consists of a byte for the
message type (to allow for future extensibility), one byte for a
sequence number, and one byte to hold the number of retries. At
the end of the plaintext, the two bytes store a two-dimensional
checksum value calculated from the rest of the plaintext to
verify message authenticity after it is decrypted.

After the metadata, data and checksum are loaded into a
buffer, the plaintext is XORed with the pad, and the rand_seqno
is prepended to the packet. Lastly, the packet is handed off to
the RadioHead LoRa functions for transmission.

Upon receiving a message, the Gateway first unpacks the
client ID from the 6th and 7th bytes to verify the packet sender
is a valid client. Next, the first 7 bytes of the packet are loaded



into another buffer and run through the HMAC function along
with the pre-shared token to reproduce the pad. The remaining
9 bytes of the packet (the ciphertext) are XORed with the pad
to reveal the plaintext. Then, the first 7 bytes of the plaintext
are passed through the checksum function, and if the 2-byte
checksum matches the checksum provided by the remaining 2
bytes of the plaintext, the packet is determined to be valid. The
sequence number is compared to the last seen sequence number.
If it is a repeated number, then the Gateway will ignore the data
but still sends an ACK.

In order to prevent replay attacks, the Gateway keeps a
list of the last-used rand_bytes sequences per Node. As
rand_bytes sequences increase by a constant every message
sent, only the last seen sequence per device needs to be
remembered.

If a Node sends a new message with an old random seed
(distinguishable from a retransmission thanks to the sequence
number), the Gateway will respond with a seed upgrade packet.
This packet uses the 6 bytes otherwise occupied by the float,
sequence number, and retries counter to store the first 6 bytes
of the rand_bytes the device should use next. The seventh byte
is already known, as it is derived from the client ID. This leaves
the second half of the 6th byte unused, as the client ID also
occupies it. Instead, it is set to the value of the invoking packet’s
sequence number divided by 2 to help mitigate seed upgrade
replay attacks. When a device receives this seed upgrade
message, it compares the sequence number sent to the sequence
number included in the packet. If it is determined to be valid,
the Node updates the seed stored in memory to match what the
Gateway sent, and repacks the original message with the new
seed. Therefore, one retransmission is necessary before the data
is accepted and processed by the Gateway.

The HMENC algorithm is very fast and requires very
little energy overhead. Our system profiling shows that the
HMENC encryption operation requires approximately 3.28 ms
of computing time on a Node. To run these tests, the HMENC
codebase was profiled. In Figure 8, results from these tests show
the cyclical power consumption curve is smoother and shifted
higher on the Y-axis, signifying higher energy consumption.
Specifically, the baseline tests required 0.071 mJ per operation,
and each needed HMENC encryption 0.299 mJ per operation.
These results were collected using the EMPIOT board [20].

In the end, HMENC requires at least 16 bytes of ciphertext,
like AES-128, but it offers several benefits over AES. HMENC
offers an in-built checksum solution to prevent data corruption,
and it allows us to reuse one key across all the devices as no
two devices will ever use the same rand_seqno or client ID.
HMENC allows us to reject packets received by one Node but
intended for another without decrypting them first, providing
speed and, therefore, power savings. Additionally, if we choose
to add features to the device in the future and we must increase
our packet size by one byte, we can send a 17-byte packet,
whereas using AES-128 would require us to use at least 32
bytes, possibly more depending on how the Initialization Vector
(IV) is generated.

Fig. 8: The power consumption of a full HMENC function performing both
memory allocation (on the stack) and encryption. We compare this full function
with a baseline function only performing memory allocation.

VI. LIFETIME ANALYSIS

As mentioned in Section III, energy efficiency is a major con-
cern for Flomosys. Additionally, energy efficiency is directly
related to the reliability concerns for the system. As Flomosys is
designed for remote locations, often without electricity, it must
be feasible to power the system with renewable energy. For
example, it should not drain a battery faster than the recharging
rate of an inexpensive COTS solar panel. However, given
the many variables involved in calculating expected energy
harvesting rate from renewable sources, we have chosen to
determine how long the system can survive powered by a 2400
mAh battery.

The energy cost of each operation, including data sample
collection, packet encryption, and wireless transmission, have
been recorded and analyzed using the EMPIOT board [20].
These measurements, as well as sleep power consumption,
were also measured and verified using a high-precision digital
multi-meter (Tektronix 7510). To determine the theoretical
lifetime of Flomosys with different average retries and wireless
configurations, we have used the following equation:

lifetime =
Ebat

(Eu + (Ee + Et)⇥ (R+ 1) + Es)⇥N

=
3600⇥ 2400⇥ 10�3 ⇥ 5

(Eu + (Ee + Et)⇥ (R+ 1) + Es)⇥N

(2)

where Eu, Ee, Et, and Es are the energy consumption for
sampling with the ultrasonic sensor, encrypting a packet, trans-
mitting a packet, and sleeping. Ebat is the available energy of
the battery, N is the number of cycles (sampling and transmis-
sion) per hour, and R is the average number of retransmissions
(ReTX) per cycle.

As mentioned in Section V-B, the most reliable transmission
results were observed with a CR of 4/7 and a SF of 1024.
However, as the distance between the Node and the Gateway
reduces, a lower SF and CR may be acceptable. For this reason,
two graphs have been generated: Figure 9(a), which displays
the theoretical system lifetime for various retransmission rates
with the CR and SF used at the longest distance (9 miles), and
Figure 9(b) which displays the theoretical system lifetime for



(a) CR: 4/7; SF: 1024 CPS (b) CR: 4/5; SF: 128 CPS

Fig. 9: Theoretical lifetime assuming a 2400 mAh battery with no self-discharge
for different average retransmissions, SF, and CR.

various retransmission rates with lower SF and CR values, to
show maximum lifetime.

Finally, it is important to note these figures do not take
into account battery self-discharge, which will significantly
lower the system’s lifetime. The particular battery we use has
a lifespan of 5 years [21]. Consequently, the system remains
operational for a substantial period before any key component
replacement is necessary. Ultimately, the longevity of this
component reduces the need for frequent maintenance.

VII. CONCLUSION

Multiple competing solutions offer comparable features and
use similar methods to monitor flood zones. Unlike the other
solutions, Flomosys can be built inexpensively with off-the-
shelf components and scales across vast territories at a low
cost per Node. In the worst case, Flomosys can continuously
report data over several miles for 100 days using a 2400 mAh
battery, or for 2.8 years under perfect conditions, marking it
as very low-power and energy efficient. HMENC, the low-
power encryption algorithm, secures all data sent between
Nodes and Gateways, and the protocol supports adding new
message types in case additional modules need to be added to
the board. Together, these properties ensure Flomosys is a low-
cost, low-power, secure, scalable, reliable, and extensible flood
monitoring solution.

ACKNOWLEDGMENT

This project has been funded by the Santa Clara Valley
Water District, the City of San Jose, Santa Clara University’s
Frugal Innovation Hub, and Cisco Systems. We would like
to thank all the students that have contributed to the success
of this project: Chelsey Li, JB Anderson, Michael Cannife,
Navid Shaghaghi, Jaykumar Sheth, Peter Ferguson, Salma
Abdel Magid, Francesco Petrini, and Zach Cameron. We would
like to thank Dr. Winncy Du and her team at San Jose State
University for working on the solar panel component. We also
thank Semtech and MachineQ for providing us with the LoRa
modules and development boards.

REFERENCES

[1] M. Williams, “2.3 Billion People Affected by Flooding Disas-
ters in 20 Years,” https://www.channel4.com/news/factcheck/2-3-billion-
people-affected-by-flooding-disasters-in-20-years, 2017.

[2] E. Deruy, “Coyote Creek Victims Sue a Year After Disas-
trous Flood,” https://www.mercurynews.com/2018/02/17/a-year-after-
devastating-coyote-creek-floods-some-victims-still-struggling/, 2018.

[3] A. Nikoukar, S. Raza, A. Poole, M. Güneş, and B. Dezfouli, “Low-power
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