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Abstract—Parkinson’s Disease is a progressive neurological

disease that affects roughly 6.2 million people worldwide. Current

methods to control this disease via medication involve frequent

and lengthy exams for hospitalized patients. Due to the ineffi-

ciency of traditional treatment monitoring, many professionals

are currently pushing for in-home Parkinson’s Disease exami-

nations to lower costs while improving symptom response. In

this paper, we propose a low-cost and energy-efficient hybrid

system that monitors a patient’s daily actions to quantify hand

and finger tremors based on relevant Unified Parkinson’s Disease

Rating Scale (UPDRS) tests. We then evaluate its characteristics

with regards to energy efficiency and medical accuracy. Finally,

we compare the system with existing solutions to highlight its

salient features.

Index Terms—Tremor, Treatment Monitoring, Hybrid Device,

Surface Electromyography, Internet of Things, Cyber-Physical

System

I. INTRODUCTION

Parkinson’s Disease (PD) is a progressive neurological dis-
ease that affects 6.2 million people around the world [1]. Many
advanced PD patients suffer from severe motor symptoms
including arm and hand tremors, which increases the difficulty
of performing daily tasks. Additionally, PD patients can suffer
from other non-motor symptoms, varying from depression to
sleep disorders [2].

Currently, Parkinsonian tremors can be effectively con-
trolled through oral-medical therapies such as Levodopa, or
invasive surgeries such as Deep Brain Stimulation (DBS) [3].
Although these treatments work, they are costly (approxi-
mately $22, 800 per patient [4]), highly patient selective, and
can impose high risks [2], [3]. Furthermore, as the disease
progresses, both treatments need adjustment according to
the patient’s symptoms to optimize their performance [5].
Therefore, it is important to continuously monitor a patient’s
symptoms for better treatment results.

Clinically, the severity of Parkinson’s disease is measured
using the Unified Parkinson’s Disease Rating Scale (UPDRS),
which medical professionals use to subjectively evaluate the
patient’s symptoms. The measurement of severity for PD is
critical for understanding how to apply treatment. The pro-
fessional community recognizes this importance and they are
pushing for the automation of the UPDRS for more unbiased
results [6].

The current state of the art in healthcare is built upon
a feedback loop, which slowly responds to the advance of

Parkinsonian symptoms. We aim to reduce the latency and
improve the resolution of this feedback loop by improving the
resolution to promote the timeliness of professional response.
Our goal is to improve the measurement of PD through the
use of home monitoring methods to reduce the need for extra
doctor trips but providing the doctors with sufficient data to
adjust medication.

In this paper, we propose a low-cost and energy-efficient
platform capable of monitoring a patient’s daily actions to
quantify Parkinsonian tremors based on relevant UPDRS tests.
Our design is primarily focused on operation in a home
environment, where a patient has the freedom to act as they
please.

The proposed platform utilizes a glove and a server. The
glove houses a low-power microcontroller and sensors to
continuously monitor a patient’s Parkinsonian tremors at a
frequency of 100 Hz. The glove transmits this data to a server,
which processes the data using digital filters such as a low-
pass filter and a Hampel filter. These filters generate additional
features such as posture and movement.

It was important to us to build a platform that is accessible
for the community, and so our testing focused on validation
with respect to sampling performance and sampling accuracy.
We found the measurement of our low-cost inertial measure-
ment units to be similar to that of the expensive industrial
sensor, but with a larger variance. The tested lifetime of
the glove is approximately 15.16 hours when in constant
use, which is considered sufficient for continuous monitoring.
Our filters have been tested to demonstrate the capability to
process regularly sized data sets quickly. Finally, the glove is
run through an end-to-end sequence, demonstrating that the
platform can collect data and produce a score estimate for the
medical professionals.

This paper is organized as follows. In section II, we review
our platform design. In sections III and IV we discuss the
implementation of our glove and pipeline respectively. In
section V and VI, we present our test results, compare them
to existing systems, and discuss future work on the system.

II. SYSTEM OVERVIEW

The Unsupervised Parkinson’s Disease Assessment (UPDA)
system uses a client-server architecture model and a pipeline
architecture to model the behaviors of the glove and server,
respectively. Figure 1 demonstrates that after the server has
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Fig. 1. Software architecture of system. The glove transmits patient data to
the server over radio. The server then gathers and filters the data to produce
UPDRS scores.

Fig. 2. Current prototype of the UPDA glove.

received the raw data from the glove, the server passes it
through a series of filters in the signal processing subsystem.
Each filter outputs new features, which are used to determine
the UPDRS scores of a patient’s Parkinsonian symptoms.

A. Glove

This section presents the design of the glove portion of
the UPDA, which continuously monitors the occurrence of
Parkinsonian symptoms during daily activities. To prevent
major interference with user mobility during sampling, we
picked a glove design for the wearable. The UPDA system
focuses on data collection to evaluate finger and arm-based
UPDRS tests. These tests require the detection of several
actions including the movement of individual fingers and
position of the entire hand.

Sensors are mounted onto the glove, ideally monitoring a
user’s precise actions without interfering with the patient’s
intentional movement. On the glove, four inertial measurement
units (IMUs) are placed on the proximal phalanges of thumb,
index finger, ring finger, and dorsum the of palm. Separated
from the glove is an additional sensor for surface electromyo-
graphy (sEMG), which is placed on the patient’s forearm to
measure muscular activity (Figure 2). The information from
both the IMUs and the sEMG are used together to determine
several of the postures and movements for automatic testing.

The system is designed using low-cost materials to improve
accessibility for other professionals to rebuild the system.
Additionally, we are interested in energy efficiency such that
data can be measured for longer periods of time. More data
improves the estimation of a patient’s symptom severity.

B. Algorithms
The goal of the algorithms subsystem is to process all raw

data collected from the glove to produce meaningful features,
which helps provide diagnostics. For the scope of this project,
we focus on six tests from the UPDRS, which cover finger and
hand movement. To do so, we process acceleration, angular
velocity, and surface electromyography (sEMG) readings from
the glove to generate features that can help determine UPDRS
scores.

The first two tests analyze finger taps and hand movement,
requiring the system to generate features that can reflect a
patient’s desired movement without any tremors. We first
implemented a low-pass filter to clear high-frequency noise
caused by either the patient’s tremor or by the glove itself.
Additionally, we created a gravity filter, which separates the
acceleration due to gravity from the raw acceleration.

The other four tests measure different types of tremors and
their constancy. We use positional data and sEMG signals to
determine at what times the patient exhibits postural tremor,
kinetic tremor, and resting tremor. We designed a band-
pass filter to isolate tremor signals to analyze amplitude and
frequency. We use a Hampel filter to obtain clearer sEMG
signals, removing outliers caused by poor contact between the
sensors and the patient’s skin.

III. SENSING AND COMMUNICATION

In this section we discuss the glove subsystem’s design,
individual components, and behaviors of the UPDA platform.

1) Sensors: The patient’s hand position is monitored us-
ing four low-powered inertial measurement units (Invensense,
MPU9250). An IMU contains an accelerometer, a gyroscope,
and a magnetometer. These IMU features are synthesized
to estimate orientation, which has proven useful for posture
determination. To estimate orientation, we process the data
through a Mahony filter [7]. Additionally, we measure the
hand’s muscular responses using a sEMG sensor to help
validate its movement is caused by PD.

2) Wireless Radio: The radio communication between the
glove and the server must be optimized for low-power usage,
reliability, and range so that the system can cover an aver-
age household. Out of three popular wireless technologies:
802.15.4, 802.15.1 (Bluetooth), and 802.11 (WiFi), 802.15.4
[8] was the most suitable. Although Bluetooth can be low
powered using Bluetooth Low Energy (BLE), the range and
data rate are not sufficient to fit the needs of a home or hospital
environment. A micro SD card is installed as a peripheral
for reliable storage and to drive wireless connection. While
transferring data, the processor will pull all of its samples
from the SD card and send them over an XBee Series 1 (Digi
International) using 802.15.4 based firmware.



TABLE I
WEARABLE GLOVE COST.

glove Unit Cost Quantity Cost

Teensy 3.6 $29 1 $29
XBee S1 $25 2 $25
MPU 9250 $15 4 $60
Myoware EMG $38 1 $38

Total Cost: ⇠$152

TABLE II
APPROXIMATE POWER CONSUMPTION OF UPDA GLOVE

Glove Active Current Draw Idle Current Draw

Teensy 3.6 79.13 mA 60mA
XBee S1 50.0 mA 10 µA
MPU 9250 3.7 mA 8 µA
sEMG 14 mA N/A

3) Embedded Controller: The microcontroller (MCU) co-
ordinates all the other hardware elements on the wear-
able. Specifically, the glove uses an ARM Cortex-M4 MCU
(Kinetis, MK66FX1M0VMD18), which uses a RISC-based
architecture with a normal clock rate at around 180MHz.
Using interrupt-based timers, the MCU is capable of sampling
data in real-time reliably while maintaining a low power
profile. Any major computations are passed off to the server,
allowing the glove to focus mainly on sampling and power
consumption.

4) Behavior: Our interrupt-based system is not able to
sample data and send it immediately over the radio as a
result of our decision to use a single-threaded microcontroller.
Therefore to guarantee time, our glove has separate sampling
and transfer states. During the sampling state, the MCU
collects data from each sensor in a round-robin style at 100 Hz.
Strict timing is guaranteed through an interrupt-based routine
to perform sampling. The main thread then moves each sample
from the buffer on to permanent storage on the micro SD
for transmission. As the glove state transfers data, it pulls
all sampling information from permanent storage for server
transmission.

A. Cost
Cost is a key factor to make this platform accessible. In ad-

dition to providing low-powered sensory data and computing,
the glove is chosen based on cost. Table I shows the cost of the
main hardware for the wearable system. Given the low cost
of the system and the relative ease at which a server could be
purchased, the barrier to entry to reproduce this glove can be
lowered.

B. Power Consumption
The system relies mainly on its hardware capability to

continuously sample for sufficient periods of time such that
UPDRS scores can be accurately estimated. Table II shows
the approximate active and idle current draws for each sensor
on the glove.

In addition to using low-power hardware, we can further
extend the battery life of the glove by reducing the power
usage of unused hardware. For instance, during the sampling
state, the radio is using low-power. Inversely during the data
transfer state, the IMUs are put into sleep mode. When the
glove is in the transfer state and it detects that there is no
more information to transfer, the MCU powers down the radio,
the sensors, and itself to minimize energy consumption. It is
essential to save as much energy as possible to ensure that
most energy is spent when monitoring a patient.

Equation 1 gives the general formula for estimating the
overall lifetime of the glove [9]. Equation 2 estimates a fifteen
hour lifetime for the glove assuming a battery capacity of 2500
mAh and all hardware elements are constantly on. To extend
the lifetime, we can employ power consumption strategies,
which turn off different elements of the glove when they
are not in use. Equation 3 estimates the battery life of the
glove where each hardware element is idle, which provides
a good upper limit to the performance of the glove. While
testing the lifetime based on normal usage of the glove, we
can estimate that the actual lifetime of the glove will fall
somewhere between the hypothetical minimum and maximum
calculations.

BatteryCapacity (mAh)
IARM�M4 + IXBee + (4⇥ IIMU ) + IEMG

(1)

2500mAh

79.13mA+ 50mA+ 14.8mA+ 14mA
= 15.738h (2)

2500mAh

60mA+ 0.010mA+ 0.032mA+ 14mA
= 33.76h (3)

IV. DATA PROCESSING

In this section, we discuss the implementation of different
filters, which produce key features to perform UPDRS scoring.
We designed four different filters to apply to different raw
signals collected from our sensors. We used a low-pass filter to
prepare training data for machine learning, a band-pass filter to
identify tremor, a gravity filter to remove the effect of gravity
on acceleration, and a Hampel filter to eliminate spikes within
sEMG signal. Finally, we use machine learning to perform
posture determination using logistic regression.

A. Tremor Model
We had limited access to Parkinson’s Disease patients, so we

created a tremor model from the intentionally shaking hands
of healthy subjects. We first validated the tremor data before
using our glove and training our pattern recognition model.
The frequency of a typical Parkinsonian rest tremor is above
4 Hz and can reach 9 Hz [10] and the range of acceleration
is under 10 m

sec2 [11]. We applied a Fast Fourier Transform
(FFT) on measured data to analyze our tremor model to
determine whether our modeling is sufficiently accurate for
further analysis.

Our tremor model has a peak magnitude of 6.8 Hz as
shown in Figure 3, which falls into the range of PD tremor.
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Fig. 3. We performed FFT analysis on our tremor model and obtained a peak
magnitude at 6.8 Hz.

TABLE III
FILTER PARAMETERS

Filter Low-pass Filter Band-pass Filter

Filter Type FIR FIR

Order Mode Minimum Minimum

Passband Frequency 0-3 Hz 3-7 Hz

Stopband Frequency 3-4 Hz 2-3 Hz; 7-8 Hz

Passpand Ripple 0.1 dB 0.1 dB

Stopband Attenuation 80 dB 80 dB

Parkinsonian tremors also produce low accelerations, which
allow for the measurement of tremors using accelerometers
rated with a range of 16g. Unfortunately, we did not find any
clear second or higher order harmonics, which are commonly
shown in PD tremors [10]. This is expected because it is
difficult to mimic the harmonics on patients without PD. We
decided to continue using our tremor model for further analysis
since the accuracy is sufficient for the scope of this project.

B. Filter Design

We designed two signal filters to extract the desired signal
from the glove’s raw data. A low-pass filter was designed to
isolate the patient’s intentional actions. A typical Parkinsonian
tremor is above 4 Hz [10]. Therefore we set the cutoff
frequency to be 3 Hz, and the stopband frequency to be 3
Hz to 4 Hz. We choose the finite impulse response (FIR)
instead of the infinite impulse response (IIR) response filter for
better performance on finite samples because we perform data
analysis after data collection. A band-pass filter was designed
to isolate tremor signal from raw data. We chose 3-7 Hz as our
passband to include all tremor information from our tremor
model. The parameters of our preliminary filter designs are
listed in Table III.

We use Filter Builder in MATLAB to build these two filters
based on the parameters listed in table III, which returns lists
of filter parameters. We then perform convolution between the
raw signal and the filter coefficient array to obtain filtered
signal using Equation 4.

(Signal⇤Filter)(t) =

Z 1

0
Signal(⌧) ·Filter(t�⌧)d⌧ (4)

C. Gravity Filter
Given the limitation of the low-cost IMUs we are using, it

became necessary to remove gravitational acceleration from
the measured acceleration to extract the acceleration caused
by patient movements. First, we use a Mahony filter [7] to
convert acceleration, angular velocity, and orientation with
respect to the earth’s magnetic field into orientation estimated
represented in quaternion coordinates. We then apply these
calculated coordinates to the rotational matrix shown in Equa-
tion 5, to convert the gravitational acceleration vector into the
IMUs’ frame of reference.

g(x) = 2 · (i · k + j · r) ·G (5a)
g(y) = 2 · (j · k � i · r) ·G (5b)

g(z) = (r2 � i2 � j2 + k2) ·G (5c)

where

G = �9.81m/(s2) (5d)
quaternion = [r, i, j, k] (5e)

Combining the measured acceleration and gravity accelera-
tion, we obtain the actual acceleration as follows:

atrue(x, y, z) = ameasured(x, y, z) + g(x, y, z) (6)

D. Hampel Filter
We used a Hampel filter [12] to remove the random spikes in

sEMG recordings likely produced from poor contact between
the patient’s skin and the sEMG electrodes. The algorithm is
based on the sliding window philosophy, where the moving
window size is chosen to be 17. This means we replaced the
outliers of the median of the neighboring eight data points to
the left and to the right respectively (Equation 7).

mk = median{xk�8, . . . , xk, . . . , xk+8} (7)

E. Posture Determination
We use logistic regression to classify different, specific hand

positions that are useful for UPDRS evaluation. We focus on
the finger taps and hand movement tests from the UPDRS,
which requires us to recognize four actions including finger
tapping, a fist making, and any interruptions while performing
either.

First, we gathered relevant data for training a model to
accurately predict hand movements. We obtained data from
three team members, who each performed several variations of
the choreographed movements. For each variation, we gathered
10 samples and used that data to train our models. This
training process is performed by initializing random weights,
calculating the gradient, and following its descent towards the
minimized cost as shown in Figure 4.
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Machine learning models, however, only function as in-
tended when enough quality data is available to train on. To
maximize the quantity of our data, we have developed a form
of data manipulation that takes a single sample of data and
shifts by 1 as shown in Figure 5. This process results in a larger
and unique data set containing more samples. We chose four
frequencies in which a sample can occur, 0.33Hz, 1Hz, 2Hz,
and 3Hz, which correspond to 300, 100, 50, and 33 instances
per sample, respectively. We collected 120 samples for actions
in each frequency totaling 480 samples. With this shifting
method, we generate 57,480 samples in total for training our
16 models (Figure 5).

Finally, we tested its prediction accuracy by having it
process a similar dataset and compare its predictions with
expected values. With these results, we sought to minimize
the error rate of our model. To reduce errors from the model
over-fitting the data, we used cross-validation, feature removal,
and regularization.

V. RESULTS AND DISCUSSIONS

This section presents the results validating the glove and
filters. With regards to verification of the glove as a platform
for consistent sampling, we are testing energy efficiency and
accuracy. We are testing filter functionality and filter process-
ing performance.
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Fig. 6. Comparison of accelerations measured between two IMUs: the
MPU9650 and the Physilog5.

A. Energy Efficiency

The energy efficiency of the glove determines for how long
a patient’s wearable glove can collect and transfer data for
UPDRS scoring. The goal was to test the actual lifetime of
the glove before applying power consumption behaviors. The
glove was powered on the test bench with all hardware actively
working, to determine how close the actual battery life was
to the calculated battery life according to Equation 2. The
test results are close to that of the calculation, showing that
the glove lasted approximately 15.16 hours during constant
normal usage before losing its capability to power any one
component.

B. Measuring Accuracy

The quality of the low-cost inertial measurement units has
been evaluated through a side-by-side comparison with the
Physilog5 sensor [13], which has been recommended for
medical sensing and evaluation. We compared the quality
of the MPU9250 to the quality of the Physilog5 sensor to
justify its potential as a lower cost medical platform. The
sensors are compared by placing the Physilog5 on top of the
glove’s IMU located on the dorsum of the palm. Both gloves
were oriented such that the axes are similar. The tester then
performs five minutes worth of fast and slow movements to
evaluate sampling ability. Both data sets are then subtracted
from each other to find the difference. Figure 6, presents box
and whiskers plots for each axis of acceleration compared.
The medians of each plot are approximately zero, but all
contain large variances and a large range of outliers. This is
expected because of the large difference in cost and advertised
quality between the two sensors. While the Physilog5 sensor
measures far more accurately, we can potentially filter out the
outliers from the MPU9250 to make it more stable for medical
monitoring.

C. Data Processing

Several different filters are presented in the previous sec-
tions for which we want to test both the efficiency and the
performance.
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Fig. 8. We compared the performance of using raw data versus filtered data for
position determination. The filtered data described in the solid lines performs
better on average than the raw data in the dashed lines.

1) Filter Efficiency: The efficiency of the filters is pro-
portional to the time spent processing the data. We tested
different order modes, stopband frequencies, passband ripples,
and stopband attenuation to obtain a suitable filter design.
Additionally, we tested each filter with a one-hour dataset
measuring random movement. The collected results confirm
that our initial design worked best in terms of speed and
accuracy.

On MatLab, filtration of an hour of data costs 0.2 seconds,
implying the filters are sufficiently fast for daily real-time
implementation.

Additionally, the entire pipeline performance was tested.
Figure 7 shows the approximate linear increase of the
pipeline’s processing time proportionally increases with the
linear increase of the raw data. The proportional linear increase
is promising with regards to system scalability for future
platform development.

2) Filter Performance: The performance of the low-pass
filter is determined by its contribution towards improving
position determination. We used both raw data and filtered
data to train two machine learning models and compare
the accuracy of both. We compared the sensitivity and the
specificity of all sixteen models and plotted the results in
Figure 8. The low-pass filter can improve both the sensitivity
and specificity of the machine learning algorithm by keeping
both rates above 0.4.

The performance of the gravity filter is tested by placing the
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Fig. 9. Comparison of the measured acceleration with true acceleration
generated by gravity filter. The gravity filter generates approximately zero
when the sensor is stationary.

sensors on a stable surface and rotating the sensors without
moving their center of gravity. After the application of the
gravity filter, the accumulated acceleration is estimated to be
close to zero. We used four-hundred seconds of raw data for
testing, with the result plotted in Figure 9. Our results show
we can correctly rectify raw data. We adjusted the sensor
positions between times one-hundred seconds to one-hundred
fifty seconds, and the gravity filter performed well under
different sensor positions.

VI. RELATED WORK

The volatility and progression of PD symptoms have in-
spired the healthcare community to introduce home monitoring
to PD patients. One recent review emphasizes the significance
of wearable technology and its potential impacts for control-
ling tremors [14]. In this report, tremors have also been cited
as one of the most disrupting symptoms in one’s daily life.
Through the accessibility of wearable technologies, there lies
the potential to improve our response to Parkinsonian symptom
fluctuation.

Many researchers and teams are aiming to improve the
UPDRS scoring process [5], [15]–[20]. All of these researchers
utilize the same types of equipment, including sEMGs and
inertial measurement units to collect data. However, each team
utilizes this information differently to develop new insight for
the UPDRS scoring automation process.

Several research teams sought to design systems focused on
enabling patients to interact with healthcare professionals from
their homes [17], [18]. These methods demonstrate successful
web service designs. These designs reduce the cost of travel
and continue to provide professionals with sufficient data
to accurately evaluate the patient’s condition. Furthermore,
these methods show how patients can reliably perform the
necessary actions at home in order to perform evaluations [21].
These systems, while they provide more quantitative data, still
require a doctor to objectively make decisions, which may still
affect the outcome of the treatment.

Many studies focused on creating automated UPDRS scor-
ing systems [5], [6], [15], [16], [19]–[21]. These automated
UPDRS scoring systems also are subdivided into systems
that rely on guided human movement such as a UPDRS test



example [21], or systems that monitor unguided movement [5],
[6], [15], [16], [19], [20]. Several of the automatic scoring
systems attempt to utilize machine learning to classify the
different scoring metrics [5], [16]. Unfortunately, both teams
agree that machine learning, while promising, does not meet
a high enough accuracy to perform as a suitable scoring
method [5], [16]. Other teams integrated numerical methods
and different classifiers to explore the kinematic features
correlated to specific UPDRS scores. One team created a
promising method for automatic UPDRS scoring system for
gait symptoms, which relies on the linear relationship between
several kinematic features and the actual UPDRS scores [20].
Another team has designed a methodology that produces
highly accurate estimates of tremors for UPDRS using an
inertial measurement unit on a wristband [15].

There are many different strategies for performing auto-
mated UPDRS scoring, but none are embodied inaccessible
products in the market. Therefore our aim is to provide a
platform that can support research for truly automated UPDRS
scoring, starting with hand, finger, and tremor tests. To provide
sufficient, data we have been designing a glove with the goal
that it can sample for extended periods of time. Our server
architecture incorporates filters to extract important features
for users, and modularity such that other developers can add,
update or create a new filter. Machine learning classifies the
user’s different positions and includes them for the scoring
algorithm.

VII. DISCUSSION

There are limitations that we seek to address in the future.
For instance, the current model cannot sample and transmit
simultaneously in real-time. The current glove additionally
contains a set of minor hardware and software bugs that reduce
the battery lifetime, which we intend to fix in the next model.
While the prototype was functional for basic testing, it is far
too large to be comfortable on a patients arm, and the hardware
should be reduced to a more manageable size. On the server
side, we plan to add the support for multiple gloves at once for
better use in hospitals or for research. We are also interested
in improving the server software to improve accessibility to
health care professionals, who can review the evaluation and
adjust medication appropriately.

With limited access to real PD patients, we were unable to
design unique filters for each patient. Real patient data enables
customizable filter parameters, such as cut-off frequency, to
better prepare the signal for pathology analysis. We are also
interested in designing different passbands for the band-pass
filter to isolate postural, kinetic, and resting tremors for
better understanding how these tremors change with disease
progression. Finally, as the platform develops, we would like to
test medical accuracy with a doctor’s diagnosis and try to reach
a higher accuracy than that of general professional diagnosis.

As we have implemented our machine learning models and
tested its limits, we believe that our method is verifiable
since the models are capable of determining the positional
information for the UPDRS test. However, there are some

shortcomings in our design. For instance, although we have
managed to replicate tremors, our data is still lacking tremor
data from actual patients. We redesigned our model to com-
pensate for our lack of Parkinson’s Disease patients, and make
our best attempt to model tremor data [22]. After conducting
a series of tests, we have determined that it performs on
average above 50% accuracy. However, to better the model,
we recognize the need for real patient data.

The results presented in this paper serve to state confidence
that this system holds merit as a platform for automatic
UPDRS scoring. The tests presented in this paper have been
performed by the development team since the resources to
perform testing on PD patients were unavailable. We intend
to gather resources to undergo future patient testing and further
the platform. Ultimately, we hope this platform can serve other
researchers and health care professionals as a useful tool in
the future.

VIII. CONCLUSION

In this paper, we presented the preliminary design and
validation of a system that automatically scores portions of the
UPDRS based on a patient’s regular movements. To verify this
system, we designed experiments to confirm its functionality
by gathering raw data and producing features through filters.
Our current version of the glove is capable of supplying
researchers and patients with continuous symptom monitoring
at useful resolutions. The system architecture offloads the
heavier processing onto the server, enabling more powerful
data processing than possible using just the glove. The server
also creates options for future services; doctors with per-
missions could request patient data remotely for simplified
treatment adjustment.

We intend to continue working on the system; improving
its functionality for health care professionals in addition to
improving scoring quality. We would also like to organize
patient testing with a facility that is capable of gathering
information from actual patients. Overall, this platform has
demonstrated potential to found future development for wire-
less PD monitoring and we are excited to see to what lengths
this system is used.
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