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Abstract—Internet of Things (IoT) has facilitated the pros-
perity of smart environments such as smart homes. Meanwhile,
WiFi is a broadly-used technology for the wireless connectivity
of IoT devices. However, smart home IoT devices are often
vulnerable to various security attacks. This paper quantifies
the impact of Distributed Denial of Service (DDoS) and energy-
oriented DDoS attacks (E-DDoS) on WiFi smart home devices
and explores the underlying reasons from the perspective of
attacker, victim device, and access point (AP). Compared to the
existing work, which primarily focus on DDoS attacks launched
by compromised IoT devices against servers, our work focuses
on the connectivity and energy consumption of IoT devices
when under attack. Our key findings are three-fold. First, the
minimum DDoS attack rate causing service disruptions varies
significantly among different IoT smart home devices, and buffer
overflow within the victim device is validated as critical. Second,
the group key updating process of WiFi, may facilitate DDoS
attacks by causing faster victim disconnections. Third, a higher
E-DDoS attack rate sent by the attacker may not necessarily
lead to a victim’s higher energy consumption. Our study reveals
the communication protocols, attack rates, payload sizes, and
victim devices’ ports state as the vital factors to determine the
energy consumption of victim devices. These findings facilitate a
thorough understanding of IoT devices’ potential vulnerabilities
within a smart home environment and pave solid foundations for
future studies on defense solutions.

Index Terms—Internet of Things (IoT), security, energy con-
sumption, association, disconnection.

I. Introduction
Internet of Things (IoT) systems facilitate user interactions

and/or monitor and control physical environments by sensing,
communicating, and analyzing the data collected via sen-
sory devices. The application domains of IoT includes social
robots [1], [2], intelligent transportation services [3], [4] and
battlefield environments [5]. One important IoT application
that influences everyone’s daily life is smart home [6]. With
the advancement of IoT technologies, smart home systems
and their adaptation have significantly increased, providing
groundbreaking services such as voice assistants, security
cameras, smart entertainment systems, home appliances, and
many more. Meanwhile, due to its wide deployment and low
cost, WiFi is a broadly used technology for the wireless
connectivity of IoT devices [7].

Despite the significant increase of smart home devices [8],
these devices show vulnerabilities to diverse security and
privacy attacks, such as Distributed Denial of Service attacks
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(DDoS), energy-oriented DDoS attacks (E-DDoS), harvesting
and forging data, blackmail/extortion, bitcoin mining, stalking,
or robbery [9]. The reasons are multi-fold. First, because of
competition and revenue gain, many manufactures disregard
the security aspects of IoT devices, which demands resources
and skills—adding to the cost. Second, consumers are usually
not well educated about the potential security issues caused
by arbitrarily adding IoT devices into their home networks,
not to mention the importance of keeping their IoT devices’
security features up-to-date. Third, smart home devices usually
share a WiFi Access Point (AP) for Internet access and local
interconnection. For example, Google Nest and Google Home
can control smart thermostats, lights, cameras, and home
appliances, and provide feedback to users’ smartphones. The
high interconnectivity among smart home devices makes it
much easier for attackers to compromise one device to get
hold of the other devices and launch various attacks against
smart homes [9]. For example, [10] illustrates that IoT devices
behind NAT/firewall-enabled home APs are no longer safe.
Malicious attackers can inject viruses into smart home devices
and create a large-scale botnet, severely threatening everything
connected to the Internet.

Among various types of attacks, DDoS and E-DDoS are par-
ticularly effective in service disruption and increasing users’
electricity cost. These attacks are often initiated by a cluster
of compromised devices—known as a botnet. While DDoS
attacks launch malicious traffic to exhaust the target device’s
resources, E-DDOS attacks aim to cost maximum energy
consumption on the target side through malicious traffic. For
example, high-profile cloud services have become a popular
target of DDoS and E-DDoS [11]–[13] attacks launched by
compromised IoT devices, leading to a dramatic increase of
data centers’ service disruptions and energy consumption.

Despite the well-recognized damage of DDoS and E-DDoS
attacks on data centers, their impact on smart homes is ignored
by existing studies. Compared to data centers, individual
household owners are much more vulnerable and sensitive to
their energy bills. More importantly, considering the massive
amount of smart home devices on the market, the aggregated
attack impact cannot be neglected. According to [14], the
number of IoT cameras and smart appliances in use by 2020
is around 1 billion and 5 billion, respectively. Our study
reveals that when these devices are under E-DDoS attacks for
one month, the approximate increase in the electricity bills
can easily reach $253.7 million. On the other hand, DDoS
attacks against these devices can disrupt their services by
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disconnecting them from the AP. Thus, well-planned attacks
can significantly damage the confidence of the general public
in adopting household IoT devices to address their needs,
and eventually, causes revenue loss and hurts the market.
Therefore, it is essential to better understand the impact of
DDoS and E-DDoS attacks on smart home devices.

In contrast to the existing work, in this paper, we focus
on the direct effects of these attacks on the IoT devices.
In particular, instead of focusing on specific devices, user
application, or software stack, we study DDoS and E-DDoS
attacks from the WiFi connectivity and energy consumption
perspectives. Therefore, the target space is the highest for such
attacks. To the best of our knowledge, this is the first work that
empirically measures the impact of these attacks on household
IoT devices. The results show the significant damage possibly
caused by these attacks and draw attention to the urgent needs
of effective defense solutions. Our research can be used as a
framework to test IoT devices’ security and can be applied to
create security standards for robust, predictable, and tamper-
free operations.

The main contributions of this paper are summarized as
follows: First, we design a smart home testbed to automate the
different attack factors and reliably capture network traffic and
victim IoT devices’ power consumption in real-time. Second,
we quantitatively study the impact of DDoS attacks on victim
devices’ service disruptions by identifying the minimum attack
rates and duration. By studying a victim device’s internal
status, buffer overflow has been validated as the key reason
for device disconnections. Furthermore, we identify that the
WiFi protected access (WPA) group temporal key (GTK)
updating process, which is a security feature, can facilitate
DDoS attacks to disconnect victim devices from their associ-
ated AP. Its quantitative impact on the victim’s disconnection
is also studied in detail. Third, we identify several critical
influential factors, particularly in terms of communication
protocol, attack rate, payload size, and victim devices’ port
state, and analyze these factors considering their impact on
the victim devices’ energy consumption. Fourth, based on
the above observations and studies, we summarize effective
ways to launch DDoS and E-DDoS attacks against smart home
devices.

The rest of the paper is organized as follows: We present
the attack scenarios, testbed setup, key influential factors, and
automated data collection process in Section II. Section III
presents the results of the network scan, impact of DDoS at-
tacks on device disconnection, and impact of E-DDoS attacks
on energy consumption. We overview related work in Section
IV and conclude the paper in V.

II. Experiment Setup and Design
In this section, we first present possible attack scenarios

against smart home. Then, we explain the detail of our
testbed design, different attack factors, and the automated data
collection process.

A. Experiment Setup
There are two possible scenarios when launching attacks on

a smart home: internal and external. In the internal scenario,

the attacker has access to the local network. This is possible
by hacking the WiFi network or gaining access to a device of
the smart home. For example, the attacker may launch internal
attacks by remotely accessing a local Linux-based device such
as Amazon Echo or Google Home. For the external case, the
attacker generates attack packets from outside of the network.
For example, if the attacker can identify port mapping inside
the home router’s NAT table, it can send packets to particular
devices from outside of the local network. Both of these
scenarios have been studied in literature [15].

The testbed contains various household consumer IoT de-
vices as victim. We chose the most popular smart home
devices on the market as victim devices, including Google
Mini Home (Google Home), Amazon Echo Dot (Alexa),
Nest Indoor Camera (NestCam), and Ring Stick Up Camera
(RingCam). Besides, since accessing the internals (e.g., per-
ceived RSSI value, buffer overflow, and perceived noise) of
these devices is not possible, we also include an IoT edge
device as another victim device to understand the internal
status of a victim device when it is under attack. This IoT
device is CYW43907 [16], [17], henceforth as the DevBoard
(development board), an embedded wireless system-on-a-chip
(SoC) featuring two ARM Cortex-R4 processors, one used
for managing the WiFi subsystem and one used for running
applications. Moreover, four separate Linux devices are in-
volved: (i) an attacker to send malicious packets to the victim
devices, (ii) an AP, (iii) a sniffer to capture WiFi traffic, and
(iv) a command and control center (C&C) to coordinate the
testbed components. Further, we use a programmable power
switch to turn on/off the connected devices automatically. To
measure each victim device’s energy consumption in real-
time, we use the EMPIOT board developed in our lab [18].
EMPIOT is a low-cost, easy-to-build, and flexible energy
measurement platform. This platform samples voltage and
current at approximately 500,000 samples per second. These
samples are then averaged and streamed at 1 Ksps. The current
and voltage resolution of this platform are 100 µA and 4 mV,
respectively.

We use various software tools for attack data generation
and collection. On the attacker device, we use nmap to
launch a network scan and identify the victim device’s status
(e.g., online/offline, MAC address, IP address). We also run
TCP/UDP port scan to identify ports’ status on the victim
devices. We use the hping3 tool to generate dynamic DDoS
and E-DDoS attack traffic by adjusting attack rate, source IP
address, destination IP address, payload, attack type, flags of
TCP session (SYN, ACK, FIN, push, or urgent) and port types.
Second, for complete control over the AP, for example, to
monitor the 802.11 events, we install hostapd on the AP.
hostapd is a user-space daemon that provides AP function-
ality on Linux-based machines [7]. To quantitatively evaluate
the impact of the DDoS/E-DDoS attacks, we use tshark,
running on a sniffer, to capture WiFi traffic. For the control
purposes, we use Paramiko, a parallel SSH Python library.
With this library, the C&C uses SSH to connect to EMPIOT,
attacker, AP, and the sniffer to synchronize attack generation
and data collection. Last, we developed Python scripts on the
C&C for the programmable power switch to automatically
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Fig. 1. Interconnections of the testbed components to automate attack
generation and data collection.

restart the connected IoT device after each experiment.
Figure 1 shows the connectivity of testbed components. The

AP, C&C, programmable power switch, EMPIOT, sniffer, and
attacker connect to an Ethernet switch. The victim device con-
nects to the AP through WiFi and is placed close (about 2 m) to
the AP to avoid link unreliability. The sniffer is placed between
the AP and victim to sniff all the packets exchanged. The
victim device’s input USB port is plugged into the EMPIOT’s
output USB port for energy measurement. The EMPIOT’s
input is connected to the programmable power switch via
USB, allowing automatic restarts after each attack. To study
the impact of attacks on each victim device independently,
we perform experiments on a device-by-device basis. During
attacks, we make sure that the victim device is in an idle
state so that the energy consumption and disconnections are
caused only by the attack traffic. This allows us to differentiate
between the energy caused by device operation (e.g., video
streaming) and attack.

B. Identify Key Influential Factors
In this work, we mainly focus on the impact of the following

factors on disconnection and energy consumption.
Firstly, different types of victim devices differ in their

hardware design (e.g., CPU, memory, WiFi chip) and available
services (e.g., voice assistants, video cameras), thereby they
respond to the same attack in different ways. In this work, we
use Google Home and Alexa as the WiFi voice assistant de-
vices, and NestCam and RingCam as the WiFi video cameras.

Secondly, during an attack, the communication protocol and
port state (e.g., open, closed) can significantly influence a
victim device’s response, leading to different service disrup-
tions or energy consumption levels. Therefore, we launch three
types of attacks: (i) ICMP Echo Request (ICMP), (ii) TCP-
SYN, and (iii) UDP attacks. In the case of TCP-SYN and
UDP attacks, we launch attacks against ports with different
states—open, closed, filtered, and open/filtered. Note that
ICMP attacks do not specify the port number.

Thirdly, although it has been recognized that the impact
of DDoS/E-DDoS attacks is directly related to attack rates,
there is a lack of quantitative analysis on the correlation
between attack rates and the resulted service disruptions and
energy consumption of victim devices. For example, what
is the minimum attack rate causing device disconnections?
Will energy consumption linearly increase versus attack rates?
How does such a relationship change across different victim
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Fig. 2. Interactions between the components of the testbed. Each trial contains
three phases: setup, network scan, and attack and data collection.

devices? We test different attack rates on each device to answer
these questions.

Fourthly, as IoT devices are resource-constrained in terms
of processing power and memory, their behaviors may differ
significantly versus the payload size of attack packets. There-
fore, we also adjust the payload of attack packets to 0 Byte,
denoted as PL (no-payload), and 1400 Byte, denoted as PH

(high-payload).

C. Automated Data Collection
We developed an automated testbed due to the following

reasons: Firstly, a reliable evaluation of the key influential
factors requires a significant amount of repetitive experiments
over a long duration. For example, we need to run 735 trials
for E-DDoS attacks where each trial lasts 3 minutes, and 640
trials for DDoS attacks where each trial runs until the victim
device is disconnected. Manual initialization and control of
these experiments will significantly delay the data collection
process. Secondly, highly accurate coordination and synchro-
nization among all the testbed components are critical, making
manual control impossible. Thirdly, we need to frequently
switch to a different attack configuration. To ensure that we
start on a clean slate, the testbed needs to be restarted after
each attack trial. A manual restart of all the testing devices is
tedious and error-prone. Besides, we observe that many IoT
devices change their port state after each reboot, requiring us
to identify the attacking ports for each trial automatically.

Figure 2 presents the interactions among the testbed’s com-
ponents. Note that although we draw both DDoS and E-DDoS
attacks in the same figure for simplicity reasons, these two
types of attacks are conducted in separate sets of experiments.
Each trial contains three phases: setup, network scan, and
attack and data collection. The double solid lines in Figure 2
represent multiple operations running simultaneously.

During the setup phase, C&C restarts the victim device to
avoid any sort of influence from the previous trials. Using a
Python program, the C&C turns off a particular port of the pro-
grammable power switch to shut down the victim device. After
waiting for five seconds, C&C turns on the programmable
power switch’s port to start the victim device, and waits for
one minute to ensure that the device is completely restarted
and stabilized. Next, the C&C sends a command to the attacker
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TABLE I
RESULTS OF NETWORK SCAN

Device TCP Scan UDP Scan

Alexa 4 open, 49144 filtered and
16387 closed ports

1 open, 622 open/filtered
and 377 closed port

Google
Home

6 open and 65529 closed
ports

986 closed and 14
open/filtered ports

NestCam 65535 closed ports 1000 closed ports
RingCam 65535 closed ports 1000 closed ports

to initiate the network scan phase. Using nmap, the attacker
performs a device scan and a port scan.

The third phase is attack and data collection. To collect
data during DDoS attacks, the C&C simultaneously starts the
sniffer, connects to the AP to capture its current time, and
starts the attack and logs 802.11 events. Specifically, two files
are generated for each trial, one at the sniffer side containing
802.11 management packets, and the other at the AP side
containing the attack start time and 802.11 events generated
by hostapd.

In contrast, for E-DDoS attacks, the C&C simultaneously
launches commands for EMPIOT, sniffer, and the attacker.
Two files are generated for each experiment trial, one EMPIOT
file containing the energy consumption data and one tshark
file containing all the packets exchanged by the victim device.
After each trial, the C&C reconfigures the attack parameters.

III. Experimental Results and Analysis
A. Results of Network Scans

Device scan gathers information about the victim IoT de-
vice, such as the device state (online/offline), IP address, and
MAC address. The goal of the port scan is to discover the
state of TCP and UDP ports. The possible states are: open,
closed, filtered, and open/filtered. When E-DDoS attacks are
launched against different ports, depending on their state, the
energy consumption could vary. An attacker can successfully
identify all active IoT devices in the network and retrieve the
state of TCP/UDP ports for each device. Table I reports the
state of ports for the devices used in our testbed.

B. Attack Rates Received by Victim
In preliminary tests, we find that victim devices seldom

receive the actual attack rate sent by the attacker. For example,
for TCP-SYN attack on a closed port, Figure 3 shows the
average total attack rate received by Google Home versus
the average attack rate sent by the attacker, averaged for
five repetitions. We can observe that with an increase in
the packet rate sent by the attacker, the received packet rate
shows an approximately logarithmic increase. Similar patterns
are observed for Alexa, RingCam, and NestCam (results not
included due to space limitation).

To figure out the reason, we analyzed the tshark files
collected by the sniffer and observed a significant packet
retransmissions rate from the AP to the victim IoT device,
as Figure 3 shows. This is because the reception buffer of
the 802.11 transceiver in the IoT device is overflowed and

Fig. 3. TCP-SYN E-DDoS attacks on a closed port of Google Home.
Packet transmission rate and reception rate are over 500 ms intervals. These
results confirm that the packet rate received by the victim (Y axis) does not
necessarily follow the attack rate sent by the attacker (X axis).

cannot accept all the incoming packets. Therefore, it cannot
acknowledge all the received packets when under attack. As a
consequence, the AP retransmits packets until the retry limit
(usually 7) is reached, and then removes the packet from
the queue allocated to the station in the WiFi transceiver’s
driver. Meanwhile, as it takes a certain amount of memory
and computation time to store and retransmit packets, after
some time, buffer overflow happens at the AP, leading to attack
packets dropping by the AP. In particular, since the output rate
of the AP’s wireless interface is lower than the input rate of
the wired interface, packet drop happens in the AP’s queuing
discipline (qdisc) layer and the wireless driver’s queues.

From the above analysis, we can see that higher attack rates
sent by the attacker, which usually costs more resources at the
attacker side, may not necessarily lead to compelling increases
in the attack rates received by the victim. Consequently, we
will mainly consider the received attack rate in this paper.

C. Quantitative Understanding of DDoS Attacks
In this section, we study the effect of DDoS attacks and

WPA GTK on the disconnection of victim devices from the
AP.

1) Disconnections caused by DDoS attacks: We consider
threshold attack rate as the minimum attack rate measured as
packet per second (pps) that results in disconnecting the victim
device from the AP. The time duration between the initiation
of an attack until device disconnection caused by the attack
is referred to as the survival duration. We set the maximum
attack duration to 10 minutes. We have launched ICMP attacks
and TCP-SYN/UDP attacks on open, filtered, and closed ports
of the victim devices to collect their threshold attack rate and
survival duration. Table II presents the results for three types
of attacks: ICMP, TCP-SYN on closed port, and UDP on
closed port. We use these attack types because: (i) RingCam
and NestCam only have closed ports, and (ii) Google Home
and Alexa are not disconnected by TCP-SYN/UDP attacks on
open or filtered ports even with the maximum receivable attack
rates.

As Table II shows, Alexa does not disconnect under ICMP
attacks. Google Home and Alexa are disconnected by all the
PL attacks, while Alexa survives a slightly higher attack rate.
By looking into the tshark files, we observe the 802.11
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TABLE II
DDOS THRESHOLD ATTACK RATES AND SURVIVAL DURATION

Google Home Alexa NestCam RingCam
PL PH PL PH PL PH PL PH

Rate 15 k - 20 k - 800 100 16 k 800

T1 7.4 - - - 3.6 3.15 6.8 6.19
T2 8.6 - 6.54 - 4.4 2.45 6.2 7.2
T3 7.8 - 6.31 - 3.8 2.45 7.1 7.6

PL and PH refer to 0 and 1400 Byte attack payloads.
Rate refers to the attack packets per second sent by the attacker.

T refers to the average survival duration (in minutes).
T1: ICMP, T2: TCP-SYN closed port, T3: UDP closed port

handoff process performed by both devices. Specifically, dur-
ing attack, Google Home and Alexa broadcast probe requests
and send deauthentication packets to the AP. The reason code
field of the deauthentication packets is 3, suggesting that the
victim device wants to leave the current network [19]. On the
other hand, in the case of PH attacks, no such packets are
present, and Google Home and Alexa do not disconnect even
with the highest attack rate. We will present a detailed study
of these observations in the next section. Compared to Google
Home and Alexa, RingCam disconnects in all the cases, and
disassociation packets with reason code 3 are also observed
in all the cases. It is also worth mentioning that Alexa and
Google Home include more powerful hardware compared to
RingCam and NestCam. Alexa uses a quad-core ARM-Cortex
A53 application processor and Google Home uses a dual-core
ARM Cortex A7 application processor, and therefore both
systems are capable of running the Linux operating system. In
contrast, for example, RingCam uses a TI CC3220 SoC along
with a Camera Video Processor.

NestCam disconnects in all the cases. With the PH , how-
ever, NestCam requires a lower threshold attack rate and
demonstrates a slightly shorter survival duration. For all the
attack types and payload sizes, the NestCam sends a disasso-
ciation packet with reason code 7 [19] to the AP, indicating
that it is no longer associated with the AP and therefore
no more packets are expected from the AP. Two potential
reasons are: either NestCam does not send deauthentication
packets to the AP while leaving the network, or the sniffer
fails to capture the deauthentication packets. To identify the
reason, we stopped the attack and forced NestCam to leave
the network by turning off the AP. Even in this case, no
deauthentication packet was captured by the sniffer. Therefore,
we conclude that NestCam does not send notifications to the
AP when leaving the network.

2) Analysis from inside of victim devices: Since it is not
possible to access the internals of commercial IoT devices,
we adopt the DevBoard (discussed in Section II-A) to analyze
and reveal the internal status of the victim device during DDoS
attacks. In our preliminary test in Section II-B, we mentioned
that buffer overflow occurs in the victim device. Meanwhile,
since the 802.11 handoff mechanism is usually triggered due
to beacon loss and RSSI drop [20], [21], we collect these two
parameters along with buffer overflow. We use low-level APIs
to interact with the driver and collect the above parameters
during system operation. The attack type used is TCP-SYN on

closed port. During the experiment, we consecutively switch
among three 2-minute attack scenarios: (i) attack with PL, (ii)
attack with PH , and (iii) very low-rate attack that does not
cause buffer overflow (the payload size is 0 Bytes). In between
two consecutive scenarios, we also add a 2-minute idle (no
attack) interval. The overall experiment lasts for 32 minutes.
We also implement two different workloads on the victim
device’s host processor: (i) a single idle thread, and (ii) a single
busy thread that is continuously performing mathematical
operations. Figure 4 presents the results collected. The solid
black line shows the results when the idle thread is running,
and the dash red line shows the results when the busy thread
is running.

Figure 4 shows that buffer overflow during PL intervals is
considerably higher compared to the PH intervals. Although
the second row of Figure 4 clearly shows buffer overflow
instances, we also collect noise level to verify that packet
losses were not caused by low signal to interference-and-noise
ratio (SINR) [22]. As the fourth row of this figure shows, there
are no evident noise changes during the PL attack periods.

A buffer overflow indicates the reception of a new packet
before processing the previously-received packet. When a
packet is received by the transceiver, it generates an interrupt
to inform the host processor and request for packet transfer
from the transceiver to the operating system’s domain. If the
request is not handled promptly, the transceiver may receive
a new packet while the previously received packet has not
been processed yet—causing a buffer overflow. Both incoming
packet rate and the load of the host processor intensify buffer
overflow. This can be observed by the dash red lines in Figure
4, which correspond to the case where a higher load is imposed
on the processor.

While data packets are usually retransmitted in case the
transmitter does not receive an acknowledgment or a proper
response, broadcast packets are sent just once and their loss
adversely affects the operation of victim device. Most impor-
tantly, 802.11 devices need to receive beacon packets every
102.4 ms to synchronize their timer with the AP, identify if the
AP has any buffered packets for them, and decide for roaming,
just to mention a few [23]. The 802.11 drivers usually adopt a
moving averaging method to compute their link quality with
the AP. In particular, whenever a beacon packet is received,
the RSSI of the packet is fed into the averaging method. If no
beacon is received when it is expected (102.4 ms after the last
beacon), a small RSSI value such as the noise floor [22] is
added to the averaging method. Therefore, even if the victim
device is very close to the AP, frequent loss of beacons results
in a lower RSSI value perceived by the victim over time. And
usually, when the RSSI drops below a certain threshold (e.g.,
-70 dBm), the victim device initiates the roaming process.

Figure 4 also shows that buffer overflow happens in all the
PH scenarios, which also leads to beacon loss and RSSI drop.
This explains why NestCam and RingCam are disconnected
when they are under the PH attacks. However, the number of
buffer overflows under the PH scenario is not as high as that of
the PL scenario. This is because it takes a longer time for the
PH attack packets to be transmitted and received by the victim
device, and this provides the victim device with a longer time
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Fig. 4. Internal status of victim device (the DevBoard) under TCP-SYN closed port DDoS attack. The solid black line shows the results when the idle thread
is running, and the dash red line shows the results when the busy thread is running. Attacks with no-payload (PL) and high-payload (PH ) cause buffer
overflow in the victim device. Also, increasing the victim device’s processor load results in higher number of buffer overflows. These overflows have two
major effects: the device cannot accurately measure its RSSI to the AP, and the device cannot respond to AP’s time-critical communication requests (such as
GTK update) promptly.

to process each packet. This explains why Google Home and
Alexa get disconnected under PL attacks but survive under
PH attacks.

3) GTK updates facilitates DDoS: WiFi uses the WPA
protocol to provide secure communication between stations
and AP. In addition to the pairwise transient key (PTK)
assigned to the associated devices, all the devices connecting
to the same AP share a group temporal key (GTK) to receive
broadcast packets such as address resolution protocol (ARP).
GTK is updated periodically (every 10 minutes or once per
day, depending on the group key type used) or when a
device leaves the network. In the latter case, the update is
necessary to prevent the left device from receiving multicast
or broadcast packets of the network that the device no longer
belongs to. Since the capability of receiving and processing
packets by IoT devices drops in the presence of attacks, our
hypothesis is that these attacks will prevent the devices from
performing GTK update in a timely manner, which in turn
results in their disassociation from the AP. In particular, the
default hostapd’s configuration allows the AP to perform
only four tries to update the key. Due to the buffer overflows
happening in the victim device, the device may not be able
to respond back to the packets sent by the AP to update the
GTK; therefore, causing disconnection from the AP. During
our experiments, we identify that such GTK updates actually
facilitate the DDoS attacks to shorten the survival duration of
the victim device. For each IoT device, we record the indices
of GTK updates that cause the disconnections.

We run 100 experiments per device. Figure 5 shows the
histogram of the indices of GTK update instances that cause
victim devices’ disconnections. We observe 100% disconnec-
tions within the original DDoS attack survival duration in all
the four subplots, indicating the impact of GTK on facilitat-
ing DDoS attacks. By looking into packet level traces, we

Fig. 5. We ran 100 experiments per device, where each experiment is a
TCP-SYN DDoS attack on a closed port. The X axis shows the GTK update
instance, and the Y axis shows the percentage of disconnections happening at
that particular instance. As this figure shows, GTK facilitates disconnecting
the victim devices from the AP.

observed that the AP sends deauthentication packets with the
reason code 2 [19]. Taking NestCam as an example, 85% of
disconnections happen right after the first GTK update, while
the other 15% of disconnections happen right after the second
GTK update. It indicates that as long as one or two connected
devices move out of the AP’s range during the attack, NestCam
will be disconnected by the AP due to its failures in updating
the GTK. For Google Home, most disconnections are gathered
around 2 to 5 GTK updates. However, for Alexa and RingCam,
only a very small percentage of disconnections happen before
the 20th GTK update. We can conclude that NestCam and
Google Home are sensitive to GTK updates when under attack,
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while Alexa and RingCam are much less sensitive.

D. Quantitative Understanding of E-DDoS Attacks

In this section, we quantitatively study the impact of E-
DDoS attacks on each victim devices’ energy consumption.

1) Statistical data processing: To study energy consump-
tion versus the incoming attack reception rate of the victim
device, we need to time synchronize the data collected from
the sniffer (which is used to collect attack rate) and EMPIOT
(which is used to collect energy consumption). Although the
C&C starts the sniffer and EMPIOT simultaneously, these two
devices may not start at the same time due to initialization
delays. Therefore, the raw data collected by EMPIOT and
tshark are not synchronized. We synchronize the two data
sequences by correlation analysis. We shift the attack rates data
versus energy consumption data in 10 ms slots, and calculate
the Pearson correlation values, denoted as r, after each shift.
We consider the two sequences synchronized when the maxi-
mum correlation value is achieved because the victim device’s
energy consumption should have a strong correlation with
the received attack rate. This is a valid assumption because
the energy consumption of WiFi transceiver is considerably
higher than the energy consumed by other components such
as host processor. For example, considering the DevBoard
(CYW43907 [17]) we use in this paper, the current consump-
tion when only the processor is on is 140 mA, and using
the transceiver increases this current to around 400 mA. As
another example, the current consumed by Avnet BCM4343W
is 40 mA when processing, and the current consumption is
increased to 350 mA when using the transceiver [18].

The correlation between the energy data and attack rate data
is calculated as follows.

r =

P
n

i=1(pi � p)(vi � v)pP
n

i=1(pi � p)2(vi � v)2
(1)

where r is Pearson correlation value, n is number of samples,
and p and v are the average energy consumption and average
attack rate per 10 ms interval, respectively.

After synchronization, we quantitatively evaluate how the
victim device’s energy consumption changes versus attack
rates. To reduce the impact of short-term variations, we split
the collected data into a sequence of 500 ms non-overlapping
windows and retrieve the average energy and attack rate data
for each window. To eliminate energy consumption caused by
device itself, we further use the retrieved average energy minus
baseline energy, which is collected as the energy consumption
of each IoT device during its idle state. Lastly, we apply linear
regression to evaluate the relationship between attack rate and
victim device’s energy consumption. The regression line is
computed using the following equation:

�p = ↵0 + ↵1 ⇥ v (2)

where �p is an IoT device’s energy increase (percentage), v
is E-DDoS attack rate, and ↵1 is the coefficient (slope) of the
explanatory variable v.

The values of ↵1 and ↵0 of the regression line are calculated
by Equation (3) and Equation (4), respectively:

↵0 =
(
P

�p)(
P

v2)� (
P

v)(
P

�p ⇤ v)
n(
P

v2)� (
P

v)2
(3)

↵1 =
n(
P

�p ⇤ v)� (
P

v)(
P

�p)

n(
P

v2)� (
P

v)2
(4)

where n is the number of samples.
In addition, by using G*Power [24], we have confirmed

that the minimum required sample size is 68 if we aim to
achieve the statistical power 0.99 with effect size 0.5 and
error probability 0.01. In the regression analysis, for each IoT
device, the collected sample data size is 1800 for each specific
setting of the influential factors, which is far more than the
required size 68. This proves the statistical significance of our
regression results.

The collected samples are displayed in Figures 6, 7, 8
and 9 to illustrate the victim devices’ energy consumption
when attack parameters change. The majority of the collected
data samples are concentrated with small variations, which
further validates the statistical significance of the observed
linear relationship. Although some outliers are also observed
in our collected data samples, a robust linear regression
algorithm, RANdom SAmple Consensus (RANSAC) [25], has
been adopted to minimize the impact of outliers and ensure
the reliability of the observed linear relationship.

2) Analysis of attack impact: In this section, we study E-
DDoS attacks. For each victim device, the E-DDoS attack rates
sent by the attacker are below the threshold DDoS attack rates
that cause disconnection. In particular, the attack rates applied
to Google Home and Alexa are 500, 1000, 2000, 4000, 6000,
8000, and 10,000 pps, for both PL and PH . The attack rates
sent to NestCam for PL attacks are 100, 200, 300, 400, 500,
600, 700 pps, as the threshold attack rate is 800 pps. We did
not use PH attack against NestCam because it disconnects
with a very small attack rate. The attack rates for RingCam
are identical to that of Google Home and Alexa for PL attacks,
and 100, 200, 300, 400, 500, 600, and 700 pps for PH attacks.

Figures 6, 7, 8 and 9 show the quantitative analysis results
for these devices. The solid black lines in each subplot of
Figures 6, 7, 8 are the regression lines between the received
attack rates and the corresponding percentage energy increase
compared to the normal energy consumption of the device.
The ↵ values represent the slope of the regression lines.

Google Home: First, we analyze the impact of payload
size (PL and PH ). Taking the ICMP attack as an example,
compared to the PL case (Figure 6 (a)), the maximum attack
rate received in the PH case (Figure 6 (b)) is smaller. However,
using PH causes higher energy consumption at lower attack
rates, compared to PL. Similar observations can be obtained
for TCP-SYN and UDP attacks, as the second and third rows
of Figure 6 show. This is due to three reasons: First, for each
ICMP packet received, the victim replies with a same-size
reply packet. Since the victim device contends with the AP to
send reply packets, the incoming attack rate of the victim is
reduced. Second, energy consumption increases because trans-
mission energy is considerably higher than that of reception
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Fig. 6. Google Home under E-DDoS attacks shows maximum energy
consumption and received attack rate for high-payload (PH ) ICMP and no-
payload (PL) TCP-SYN open port attacks, respectively.

(e.g., 60 mA for reception vs 300 mA for transmission [17]).
Third, transmitting an x Byte packet is not equal with n
transmissions of x/n Byte packets. Specifically, the CSMA
method employed by 802.11 transceivers requires the device
to perform a random backoff before accessing the channel.
This means n transmissions of x/n packets includes n � 1
additional channel access backoffs compared to sending an x
Byte packet. Therefore, when sending high-payload packets,
idle listening duration drops and the victim device’s receiver
spends more time in packet reception.

Second, we look into the impact of port state. We focus
on TCP-SYN and UDP attacks because ICMP attacks do not
specify port number. Considering TCP-SYN attack, Figures
6 (c) and (d) show that the maximum attack rate received
by closed ports is smaller than that received by open ports.
By looking into the tshark files, we observe much fewer
SYN-ACK packets (i.e., responses from open port) than SYN-
RST packets (i.e., responses from closed port). The reason is
that Google Home accepts only a few concurrent connections
on each open port, and any excessive received packets will
be dropped without further processing. However, a closed
port replies with a TCP-RST packet for each received packet.
Therefore, we can observe that attacking closed ports leads to

a higher ↵ value. Similar observations can be made for UDP
closed ports, as Figures 6 (e) and (f) show.

We have also launched UDP attacks against an open/filtered
port. The state of such a port cannot be confirmed by network
scan using nmap because the port does not send any response
packet. From Figures 6 (e) and (f), we observe that the
maximum received attack rate and ↵ of this port are highly
similar to that of the open ports in TCP-SYN attacks (cf.
Figure 6 (c) and (d)). Based on these observations, it is highly
possible for this port to be open.

Third, we examine the impact of attack type. In terms
of the maximum received attack packets, ICMP and TCP-
SYN/UDP closed port attacks yield similar results. This is
because Google Home responds to all the received packets
during these attacks, leading to similar capacity to receive
attack packets. Considering the energy consumption of each
attack type (↵), ICMP and TCP-SYN/UDP closed port attacks
show similar values in the case of PL. However, the value of
↵ in the PH cases varies significantly, where ICMP achieves
the largest ↵ value and TCP-SYN achieves the smallest. The
tshark traces reveal that the payload sizes of Google Home’s
response packets are quite different for different attack types.
Specifically, (i) an ICMP reply (response to ICMP packets)
includes a 1400 Byte payload, (ii) SYN-RST (response of
TCP closed port) includes a 0 Byte payload, and (iii) ICMP
error reply (response of UDP closed port) includes a 520
Byte payload. This is because (i) ICMP requests and replies
always have identical sizes (i.e., 1400 Bytes in our high-
payload cases), (ii) SYN-RST packet only updates the TCP
header’s RST field with no payload required, and (iii) the
ICMP error message contains the original ICMP message as
much as possible with a maximum payload limit of 576 Bytes
[26]. These differences are not observed in the PL cases, but
are very obvious for PH cases.

Alexa: Figure 7 shows the results using Alexa as the victim.
By checking the impact of attack payload on Alexa, we
observe a similar trend to that of Google Home: PH attacks
cause smaller maximum received attack rates but result in
higher energy consumption.

Next, we analyze the impact of port state. Similar to Google
Home, we observe a higher incoming attack rate on open port
compared to closed port. By launching UDP attacks against an
open/filtered port, we observe similar ↵ values and maximum
received attack rates to that of TCP filtered ports. Thus, we
consider it is highly possible for the port under attack to be
a filtered port. The study on the open/filtered ports of both
Google Home and Alexa shows the possibility of using energy
analysis to identify the victim device’s port state, which cannot
be directly determined using nmap network scans.

Last, we examine the impact of attack type on Alexa.
ICMP, TCP-SYN attacks on filtered ports, and UDP attacks
on open/filtered ports all yield similar maximum received
attack rates and ↵ values. This is because Alexa does not
generate any response when these attack packets are received,
thereby leading to a similar capacity to receive attack packets.
Further, comparing UDP and TCP-SYN attacks on open
ports, the maximum received attack rates with UDP attack is
higher. This is because the processing required to handle UDP

8



Fig. 7. Alexa under E-DDoS attacks demonstrates maximum energy con-
sumption for high-payload (PH ) UDP attacks on open ports, and demonstrates
maximum received attack rate for no-payload (PL) TCP-SYN/UDP attacks
on open ports.

packets is less than that of TCP packets. Specifically, since
TCP implements error recovery and rate control, it requires
more processing and memory allocation to keep track of per-
connection state.

NestCam: We examine the impact of attack type on Nest-
Cam, as Figure 8 shows. Similar to Google Home, we find
that for PL attacks, the maximum received attack rates and ↵
value caused by ICMP and TCP-SYN/UDP closed port attacks
are very close.

RingCam: RingCam shows a multi-valued association,
which means it has two different values of energy consumption
versus attack rate, as Figure 9 shows. By tshark trace
analysis, we observed intervals where the packet transmission
rate from the AP significantly drops and instead the reply rate
from the victim goes high. This has two effects: First, it causes
intervals where transmission power significantly dominates
over reception power. Second, two different attack rates (i.e.,
high and low) are received by RingCam when under a high-
rate attack.

Fig. 8. NestCam under no-payload (PL) E-DDoS attacks shows similar
energy consumption and maximum received attack rate for all the attack types.
TCP-SYN and UDP attacks are on closed port.

Fig. 9. RingCam under no-payload (PL) and high-payload (PH ) E-DDoS
attacks shows multi-valued association between energy consumption and
received attack rates across all attack types. The TCP-SYN and UDP attacks
are on closed ports.

E. Key observations

In the experiments of this section, we launched moderate
attacks against Google Home, Alexa, NestCam, and Ring-
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Cam for about 30 minutes and captured energy consumption.
During such attacks, the IoT devices continuously receive the
packets and spend resources processing these packets. Based
on such responses, effective techniques to launch DDoS and E-
DDoS attacks against IoT devices are as follows. Our analysis
shows that an effective DDoS attack can be launched as a no-
payload, TCP-SYN/UDP attack on a closed port or an ICMP
attack if the victim responds to ICMP packets. To launch
an E-DDoS attack that costs the victim device’s maximum
energy without being disassociated from the AP, the attacker
can launch a high-payload UDP attack against a closed port
or an ICMP attack if the device responds to ICMP packets.
Furthermore, in the voice assistant category, Google Home
is more vulnerable to DDoS attacks, while Alexa is more
vulnerable to E-DDoS attacks. In the video camera category,
comparing NestCam with RingCam, NestCam is more vul-
nerable to DDoS attacks and RingCam is more vulnerable to
E-DDoS attacks.

IV. Related Work
The majority of the existing works strive to propose defense

methods against DDoS and E-DDoS attacks, and much less
attention has been paid to the quantitative analysis of these
attacks. In contrast, by proposing and conducting a pragmatic
approach, in this work we quantitatively analyzed and revealed
new challenging dimensions considering attack rate, port state,
payload size, device’s response, and GTK key renewal process.

A. DDoS attacks
The massive deployment and non-secure configuration of

smart home IoT devices have made them increasingly attrac-
tive to DDoS attacks. Various studies have focused on the
impact of DDoS attacks on web servers when the attack is
launched by compromised IoT devices. For example, in [27]–
[30] the authors discuss the outbreak of the Mirai botnet (and
its variants), which compromised smart home IoT devices to
launch a DDoS attack against data centers. They claim that
even naive approaches can be employed to take control of
such devices and create a massive and highly-disruptive army
of zombie devices.

The work in [31] analyzes the families of IoT malware
that characterize the recent DDoS attacks. The authors in
[32], [33], and [34] present the threat of botnet-based DDoS
attacks posed to web servers’ application layer. They evaluate
the performance of web servers under different DDoS attacks
and confirm increased CPU usage, slowed response time, and
disruption of service to legitimate users. The authors in [15]
study reflexive DDoS attacks. In such attacks, the attacker
sends a large number of requests to IoT devices with the
spoofed IP address of the victim, which is usually a web
server. The IoT devices receiving malicious requests send
overwhelming response messages to the victim. In [35], the
authors estimate that DDoS attacks targeting web servers result
in 38 to 114 million dollars in losses. In summary, while
the existing work studies the threat of IoT devices posed on
web servers, the threat of DDoS and E-DDoS attacks on IoT
devices and home users has not been investigated.

Existing studies also show that the consumer IoT devices
are not secure. For example, in [36] the authors show that
79.54% of web cameras do not enforce firewall protection,
and [37] demonstrate that both commercial and industrial IoT
devices are vulnerable to attacks. Our work confirms that
Alexa, Google Home, NestCam, and RingCam do not provide
firewall protection against DDoS and E-DDoS attacks via
ICMP, TCP-SYN, and UDP packets.

Very few studies [38], [39] have been conducted regarding
how to launch link-layer DDoS attacks against 802.11 devices.

In [38], the authors examine deauthentication and disas-
sociation DDoS attacks, where the attacker overwhelms the
wireless device through fake deauthentication and disassoci-
ation packets. They show that by increasing the attack rate,
TCP throughput is dropped and UDP packet loss is increased.
They have developed a client-device-based queuing model to
show that the current IEEE 802.11w standard cannot resolve
deauthentication and disassociation at high attacking rates.
The work [39] performs association/authentication, disassoci-
ation/deauthentication, and probe request DDoS attacks. They
propose a detection system for auditing the network and
capturing and analyzing packets, which is then used to detect
such attacks. In contrast, in this work, we mainly focused
on the impact of DDoS and E-DDoS attacks on the resource
consumption, response, and connectivity of IoT devices.

B. E-DDoS attacks

Both [40] and [41] examine the fraudulent energy con-
sumption caused by E-DDoS attacks against large-scale cloud
services. In [40] the authors present a strategy to launch low-
rate E-DDoS attacks on web servers. They demonstrate CPU
usage and energy consumption increase versus attack rate,
meanwhile they assure that the attack rate is low enough
to stay undetected. In [41], the authors present power con-
sumption during CPU- and I/O-bound DDoS attacks on web
servers. They claim that CPU-bound attacks achieve higher
power consumption; however, I/O bound attacks may slow
down the data center responsiveness more than CPU-bound
attacks.

To the best of our knowledge, our work is the first to
quantitatively analyze the impact of E-DDoS attacks on smart
home IoT devices. Although each IoT device may not consume
a significant amount of energy, E-DDoS attacks on a large
number of such devices in smart homes may lead to approxi-
mately $253.7 million in energy loss in a month considering
the 5 billion IoT devices in use by 2020.

V. Conclusion

In this work, we quantitatively studied the impact of DDoS
and E-DDoS attacks on several, broadly-used smart home IoT
devices and analyze the underlying reasons for victim devices’
various response types. We first designed an automated testing
environment for efficient and reliable data collection. For
DDoS attacks, we first quantified the threshold attack rate and
survival attack duration for each victim device, investigated
victim devices’ internal status (e.g., perceived RSSI, buffer
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overflow, perceived noise, and beacons received) using a WiFi-
based IoT development board, and quantitatively studied how
the GTK update process facilitates DDoS attacks. For E-DDoS
attacks, we identified several key influential factors from
the attacker’s and victim device’s perspectives, including the
attack type (i.e., protocol used), attack rate, payload size, and
victim devices’ port states, and then we quantitatively studied
the impact of each on victim devices’ energy consumption.
The key observations made from this work presents a thorough
understanding of the potential vulnerabilities of IoT devices
within a home wireless environment. This work provides a
solid foundation for future studies on defense solutions.
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