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Abstract—Transport Layer Security (TLS) is the de-facto
protocol for secure communication in Internet of Things (IoT)
applications. However, the processing and energy demands of
this protocol are two essential parameters that must be taken
into account with respect to the resource-constraint nature of
IoT devices. In this paper, we study the resource consumption
of the TLS handshake using a testbed in which an IoT board
(Cypress CYW43907) communicates with a Raspberry Pi server
over an 802.11 wireless link. Although TLS supports a wide-
array of encryption algorithms, we focus on the performance of
TLS using three of the most popular and robust cipher suites.
Our experiments show that ciphers using Elliptic Curve Diffie
Hellman (ECDHE) key exchange are considerably more efficient
than ciphers using Diffie Hellman (DHE). Furthermore, ECDSA
signature verification consumes more time and energy than RSA
signature verification given ECDHE key exchange. The studies of
this paper help IoT designers choose an appropriate TLS cipher
suite based on application demands, computational capabilities,
and available energy resources.

Index Terms—Security, Encryption, Computation, Wireless,
Key Exchange.

I. INTRODUCTION

IoT (Internet of Things) refers to a network of physical
devices which are embedded with the ability to communicate
and exchange data via Internet. IoT networks are significantly
growing in number and are being used in various application
domains such as factory automation, health-care, and smart
agriculture [1]–[3]. As of 2018, there are approximately 9
billion IoT devices in place and experts forecast that this
number will surge to 28.3 billion by 2020 [4], [5]. As in-
formation transfer across IoT networks is set to explode, most
applications require secure data exchange. This necessitates
the use of networking protocols that enable nodes to authenti-
cate each other before exchanging information. Without proper
authentication, a malicious node can act as either a server or
a client and steal information from a node that is monitoring
a classified process. Additionally, even after authentication,
there must be a secure mode of communication between two
parties to prevent data interception.

Transport Layer Security (TLS) protocol is designed to
provide encryption, authentication, and data integrity for ex-
changing information over the Internet. The TLS protocol is
composed of two phases [6]: The first phase is the handshake,
which allows a client and a server to agree on TLS version
and a cipher suite. A cipher suite encompasses the following
encryption algorithms: server authentication algorithm, key
exchange algorithm, bulk encryption algorithm, and measure

digest algorithm. The agreement enables the two communicat-
ing parties to ultimately establish a shared session key. The
client and server also have the option to authenticate each other
using certificates provided by a trusted third-party certification
authority (CA) [7]. The second phase of the protocol is the
record layer, in which the shared session key is used to send
encrypted messages between two nodes. As of today, TLS is
the most widely used protocol for securing communication
between IoT devices [8], [9]. This protocol is considered to
be highly effective because of its use of both symmetric key
and public key cryptography. Unfortunately, these advantages
come at the cost of high computational and energy demands
[10], [11].

Reducing the overhead of the TLS protocol is critical for
multiple reasons [11]–[13]. First, as IoT devices are increasing
by the billions, a few milli-joules saved from each TLS trans-
action can save millions of dollars in the big picture. Second,
all networks are vulnerable to interference, timeouts and loss
of connectivity; the overhead of the TLS handshake should
not deter users from re-establishing lost connections between
nodes. Third, understanding the overhead of TLS enables
IoT designers to configure this protocol based on application
requirements. For example, a user may intentionally deploy a
light cipher (possibly compromising some aspects of security)
when establishing a short-lived connection for exchanging
trivial data. Furthermore, resource constraints of different IoT
devices may necessitate using light ciphers regardless of the
nature of data transfer. Although there are several studies
focusing on the implementation of the TLS protocol on general
purpose processing platforms and mobile devices, there are
very few works that present the computational and energy
costs of TLS on embedded IoT processors [8], [13]–[17].

In this paper, we analyze the performance of the TLS
handshake using three popular and robust ciphers:

– C1: DHE RSA WITH AES 256 CBC SHA256
– C2: ECDHE RSA WITH AES 256 CBC SHA384
– C3: ECDHE ECDSA WITH AES 256 CBC SHA384

Our results show that ECDHE ciphers are considerably more
efficient than DHE ciphers. We also conclude that an ECDHE
cipher has lower resource consumption when using RSA
encryption compared to ECDSA encryption. This is attributed
to the fact that ECDSA certificate verification is longer and
more computationally expensive. The results reported in this
work help IoT designers choose TLS cipher suite based on



application demands as well as the computational capabilities
of IoT devices.

The rest of the paper is organized as follows: In Section
II, we explain the fifteen steps of the TLS protocol and the
cipher suites used for our study. In Section III, we specify
our hardware platform and experimental procedure. Section
IV presents the analysis of collected results. Finally, Section
V concludes the paper and provides future research directions.

II. TRANSPORT LAYER SECURITY (TLS)

The TLS protocol makes use of both symmetric key and
public key cryptography to secure communication over a
network. In symmetric key encryption, the client and server
share a secret key that is used to encrypt or decrypt mes-
sages. However, this symmetric session key must somehow
be communicated between the two nodes before secure com-
munication can take place. In the TLS handshake, public key
cryptography protects the exchange of the session key.

Unlike symmetric key cryptography, public key cryptogra-
phy uses both a public and private key. In TLS, a public and
private key pair is generated by the server. The server publishes
the public key while keeping the private key to itself. The
client will then use the public key to encrypt the symmetric
session key which only the corresponding private key (owned
by the server) can decrypt. However, this mandates the client
to have a mechanism to bind the public key with the identity
of the server. For this measure, the TLS protocol makes use
of X.509 certificates that are signed by a certificate authority
(CA) [18].

Encryption guarantees privacy but not necessarily the in-
tegrity of the data transferred between the client and the
server. A malicious node can still alter the messages exchanged
between nodes without detection. TLS preserves message
integrity using a digest algorithm (one-way hash function)
that outputs a unique digest for each input message. This
mechanism ensures that any modification made to the message
will also alter the digest. Therefore, a compromised message
can be detected by identifying a mismatch between the digests
computed by the sender and the receiver.

The TLS handshake phase consists of a total of 15 steps.
At the start of the handshake, hello messages are exchanged
between client and server to agree on a cipher suite and to
exchange random values. Then, depending upon the cipher
suite chosen, the client and server exchange the corresponding
cryptographic parameters to agree on a pre-master secret.
Afterwards, the client authenticates the server using a pre-
installed certificate from a trusted CA; the server may option-
ally authenticate the client as well. Finally, a master secret is
generated from the pre-master secret and the random values.
The symmetric session key is derived from the master secret
and is used to encrypt subsequent data exchange between the
client and server in the record layer phase [19]. We present
each step of the TLS handshake in detail as follows:
1) client hello. The client sends this message to the

server to establish an initial contact. This message, in
particular, contains: (i) the TLS version that the client

intends to use, (ii) a list of cipher suites supported by the
client, (iii) a random number, (iv) compression method, and
(v) a session ID. The server then checks its compatibility
with the specified version of TLS and the list of ciphers
specified in the message.

2) server hello. If the server’s TLS version and supported
cipher suites are compatible with that of the client, this
message is sent by the server in response to the client’s
hello message. This marks the completion of a successful
negotiation.

3) server certificate. The server sends to the client a
certificate containing its public key. The client can authenti-
cate the server by comparing the certificate it receives from
the server to its pre-installed certificate. An authentication
failure is raised in the case that the server’s certificate does
not match any of the certificates pre-installed by the client.

4) server key exchange. In this message, the server ex-
changes Diffie-Hellman cryptographic parameters (modu-
lus, generator, newly-generated public key) with the client
so that it can convey a pre-master secret. The resource
consumption of this step can be attributed to the client
verifying the signature of these parameters.

5) certificate request. This message is sent by the
server to request a certificate from the client in the case
that the user has configured the server to require client
authentication. In our study, the server sends a request to
the client to adhere to the protocol, however, the server
does not functionally verify the client.

6) server hello done. This message is sent by the server
to indicate the end of the hello message exchange sequence.
While this message is prepared and sent, the client is
verifying the validity of server’s certificate.

7) client certificate. This message is sent by the client
if the server has requested the client to send its certificate
(i.e., if client authentication is required). Even if the client
does not have a suitable certificate, it must send a certificate
message that does not contain any certificate. In our study,
the client is configured to send a blank certificate message
to the server, thereby, this step is one of the fastest to
execute.

8) client key exchange. In this message, the client sends
to the server the shared secret along with its Diffie-Hellman
public value (C1 uses DHE while C2 and C3 use ECDHE).
The DH public value that is sent to the server is distinct
for each handshake due to the ephemeral nature of the key
exchange.

9) certificate verify. This message is sent by the server
to indicate that it has successfully verified the client’s
certificate. A digitally signed structure of all the handshake
messages sent or received is included in this message.

10) client change cipher spec. This message is sent by
client to inform the server that subsequent data transfer will
be protected by the newly negotiated ciphers.

11) client finished. This message verifies that the client
has successfully completed the authentication processes
and key exchange.



12) server change cipher spec. The server sends this
message to notify the client that subsequent data transfer
will be protected by the newly negotiated cipher and keys.
The client then reacts by setting the session key parameters
accordingly.

13) server finished. This message verifies that the server
has successfully completed the authentication processes
and the key exchange.

14) flush buffers. In this step, the temporary data that is a
byproduct of the handshake process is deleted on both the
client and server nodes.

15) handshake over. This message marks the completion of
the handshake phase and the start of the record layer phase.

The Internet Assigned Numbers Authority (IANA) has
named over 300 cipher suites compatible with TLS in early
2016. BSI, a federal IT security agency in Germany, recom-
mends using only 16 of those ciphers for TLS [7]. In this
paper, we study the performance of the TLS protocol using
three of the cipher suites that they have recommended. These
are listed in Table I:

Note that all three ciphers use the same session key,
AES 256 CBC. AES is a symmetric key block cipher al-
gorithm that is used to encrypt data [20]. It is defined as
a cryptographic standard by the NIST and is one of the
most widely used encryption algorithms. Furthermore, it has a
reputation for having high performance with relatively efficient
resource consumption. In our study, AES-256 is used to
encrypt and decrypt all information transfer in the record layer
phase of the protocol. Hash functions SHA256 and SHA384
are used to create digital signatures of the data. As a one-way
function, SHA easily authenticates messages and preserves
message integrity. There are other variations for SHA (i.e.,
SHA224 and SHA512), but they are not available for use
in mbed TLS because they do not offer added security or
efficiency.

We have kept the session key and hash function type consis-
tent among all the ciphers so that differences in resource con-
sumption can be conclusively attributed to either the key ex-
change method or choice of public key encryption algorithm.
The two key exchange methods used in this list of ciphers are
DHE and ECDHE. They are both ephemeral key exchange
methods meaning that a distinct DH public value is created in
each handshake. As a result, they require more cryptographic
operations than their non-ephemeral counterparts and offer
more security. DHE uses modular arithmetic to compute the
shared secret. In contrast, ECDHE uses elliptic curves to
generate the secret; thereby, ECDHE is considerably more
efficient than DHE. The key exchange method significantly
impacts the establishment of the pre-master secret (Step 8)
which is the most computationally expensive process in the
TLS handshake. Aside from the key exchange method, our
ciphers use either RSA or ECDSA public key encryption
schemes. ECDSA signatures tend to be much smaller than
RSA signatures given the same method of key exchange.
However, RSA signature verification tends to be much faster
than ECDSA verification [14].
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Fig. 1: The components and interconnection of the testbed.

III. EXPERIMENTAL PROCEDURE

We run the TLS protocol using a Cypress CYW43907 IoT
device as a client and a Raspberry Pi as a server. The client
and server connect to an access point (router) through an
802.11 link. CYW43907 is an embedded wireless system-on-
a-chip (SoC) that features an ARM Cortex-R4 32-bit RISC
processor [21], [22]. The Cypress IoT device supports the
WICED Development Platform which offers SDKs for system
development. The TLS code used on the client and server is
derived from the mbed TLS implementation [23]. Note that
we perform all time and energy measurements on the client
side.

For measuring the energy consumption of the TLS protocol
we use EMPIOT (Energy Measurement Platform for IoT De-
vices) [24], that is connected to the client. The EMPIOT plat-
form is composed of a shield installed on top of a Raspberry Pi
(separate from the server). We measure processing time using a
logic analyzer. Figure 1 shows our experimental setup for time
and power measurement. When performing a TLS handshake,
we can divide resource consumption into processing and
transmission components. The former entails cryptographic
operations such as symmetric/public key encryption, hashing,
and digital signatures. The latter, on the other hand, consists
of message exchange intervals over TCP. Our study focuses
solely on measuring the processing components, and we have
set markers in the mbed TLS code to demarcate the start and
end of each step’s processing duration.

The energy measurement platform, EMPIOT, is connected
to the client as follows. First, EMPIOT powers the client
via a USB connection and measures the bus voltage and
current drawn by the client. Second, the tool detects the
duration of each step by connecting to four pins toggled by
the client’s markers. We measure the computation and energy
consumption of TLS steps 3, 4, 8, and 9, which are all longer
than 1ms. We have observed that the processing time and
energy consumption of the remaining steps are negligible and
therefore these steps will not factor into our study.

The TLS handshake may occasionally fail due to network
timeouts caused by packet loss over the wireless link. To



Alias Cipher Suite Authentication Key Exchange Encryption Digest
C1 DHE-RSA-AES-256-SHA RSA DHE AES-256-CBC SHA256
C2 ECDHE-RSA-AES-256-SHA384 RSA ECDHE AES-256-CBC SHA384
C3 ECDHE-ECDSA-AES-256-SHA384 ECDSA ECDHE AES-256-CBC SHA384

TABLE I: Cipher suite configuration. The signature type corresponds with the longest signature available for each cipher suite.
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Fig. 2: The flow diagram of measurement methodology.

ensure that the accuracy of our measurements is not affected
by these error cases, we configure the client to notify EMPIOT
if the handshake has failed. In this way, we can discard
measurements collected from incomplete runs. The detail of
the power measurement process is shown in Figure 2.

Our data collection procedure is as follows: We perform
1000 iterations of successful TLS handshakes for each cipher,
i.e., C1, C2, C3. We measure the processing time and energy
of steps 3,4,8, and 9 in each iteration.

IV. RESULTS

Figure 3 shows the processing time of each TLS step for
the three cipher suites. Figure 4 shows the power consumption
in Joules per TLS step for each cipher. Each marker denotes
the median of 1000 iterations, and error bars show the higher
and lower quartiles. The value of the median is shown on top
of each error bar.

Analyzing Step 3. In Step 3 the server sends to the client
a certificate with its public key and the client verifies this
certificate. The results obtained from this step indicate that C3
has considerably higher values for both processing time and
energy consumption compared to both C1 and C2. Specifically,
client verification of an ECDSA certificate is heavier than
client verification of an RSA certificate. This is a trend that
has been generally identified and our results corroborate this
trend.

Analyzing Step 4. Similar to Step 3, C3 has considerably
higher values for resource consumption than both C1 and C2.
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Fig. 3: Processing time of various steps. This figure confirms that client
verification of an ECDSA certificate requires about 5200% longer processing
compared to RSA. In addition, signature verification using ECDSA is around
2000% longer than RSA. Furthermore, key exchange using DHE shows
300% longer processing time than using ECDHE. In general, the processing
overhead of C1 and C3 are 300% and 150% higher than C2, respectively.

This indicates that signature verification is more demanding
when using ECDHE ECDSA compared to the other ciphers.

Analyzing Step 8. C1 has considerably higher values for
both processing time and energy consumption compared to
both C2 and C3. We know that DHE key exchange is more
computationally expensive than ECDHE and this trend is
quantitatively proven. Compared to all other steps, Step 8 is
clearly the heaviest, which confirms that key generation factors
into most of the handshake’s computational cost.

Analyzing Step 9. Note that our testbed does not func-
tionally perform client authentication. In Step 7, the client
sends a blank certificate that our server is configured to always
accept. The client processes the server’s default verification
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Fig. 4: This figure confirms that client verification of an ECDSA certificate
requires about 3900% more energy compared to RSA. In addition, signature
verification using ECDSA requires around 1700% more energy verus RSA.
Furthermore, key exchange using DHE shows 300% more energy compared
with ECDHE. In general, the processing overhead of C1 and C3 are 300%
and 150% higher than C2, respectively.

very quickly; the results indicate that C1 has the shortest
processing time, while C2 and C3 also show relatively low
values.

With the exception of Step 4 for C1, the upper and lower
limit of all the error bars are very close to the median value.
This indicates that the processing time and energy consump-
tion measurements for each cipher are consistent throughout
all the iterations. Because there are no major outlier values,
the median value accurately represents the energy consumption
of each step. The cumulative time and energy measurements
show that C1 is the heaviest cipher, and that C3 is heavier
than C2 (i.e., in the context of the TLS protocol).

V. RELATED WORK

The studies of [6], [10] and [17] present a thorough
overview of the TLS protocol and its broad scope of ap-
plications. However, these works do not present quantitative
resource consumption analysis. Potlapally et al. [14] have
conducted a thorough study on the energy consumption of
the TLS handshake using various cryptographic protocols, but

do not present time measurements nor consider ephemeral
key exchange methods (i.e., DHE and ECDHE). Nevertheless,
this is one of the very few works which analyzes resource
consumption of individual steps during the TLS handshake
(i.e., KeyExchange and Verification). Miranda et al. [13] have
analyzed the energy consumption of TLS transactions between
a Nokia N95 mobile device and several popular web services
over WLAN and 3G interfaces. In their study, they present
energy consumption measurements of the total overhead of
TLS, inclusive of both cryptographic operations as well as
message transmission costs. One limitation of this study is
that it does not highlight the cost of the individual steps of
the protocol. Another point to consider is that this study uses
a mobile device as the client which is not apt in the context
of IoT networks. Our analysis is unique in this regard and is
beneficial for those who want to understand the computational
costs of the different steps of the TLS handshake.

VI. CONCLUSION

We conclude that the order of the ciphers from least to great-
est energy efficiency is the following: C1, C3, C2. On average,
C1 consumes 55% more energy than C3, and C3 consumes
150% more than C2 per TLS handshake. Clearly, the most
efficient cipher based on the results is C2 (i.e., ECDHE using
RSA). However, when choosing between RSA and ECDSA
encryption, there are two considerations: RSA generally has
heavier signatures than ECDSA, and ECDSA requires more
computation for certificate verification. Our study proves that
the energy consumption of ECDSA certificate verification
considerably outweighs RSA’s energy consumption for heavier
signature generation. We plan on expanding this study by
extending our pool of ciphers, ranking the ciphers based
on level of security, and including network overhead, using
various types of IoT devices.
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