
Computing, March 2015, Vol. 97, Issue 3, pp 205-236

LINKORD: Link Ordering-Based Data Gathering Protocol
for Wireless Sensor Networks

Marjan Radi1,∗, Behnam Dezfouli1, K. A. Bakar1, S. A. Razak1, Malrey Lee2

1Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia (UTM), Malaysia
2School of Electronics and Information Engineering, ChonBuk National University, Korea

Abstract

With respect to the multi-hop communication pattern of wireless sensor networks, all the nodes should establish multi-hop
paths towards a common data gathering point to provide a data gathering service for the underlying applications.
Although data gathering protocols provide a simple service, these protocols suffer from poor performance in practice due
to the power constraints of low-power sensor nodes and unreliability of wireless links. Existing data gathering protocols
rely on the ETX metric to find high-throughput paths through assuming there is an infinite number of transmission
attempts at the link layer for delivering a single packet over every link. However, in practice the link layer provides a
bounded number of transmissions per packet over individual links. Therefore, employing existing data gathering protocols
in these situations may result in the construction of the paths that require more than maximum number of provided link
layer transmissions for delivering a single packet over each link. In this regard, we propose a path cost function which
considers the limitation on the number of provided link layer transmissions and relative position of the links along the
paths according to their data transmission probability. Furthermore, we introduce a data gathering protocol which uses
the proposed path cost function to construct high-throughput paths. Moreover, this protocol employs a newly designed
congestion control mechanism during the data transmission process to provide energy-efficient and high-throughput data
delivery. The simulation results show that, the proposed protocol improves data delivery ratio by 70% and network
goodput by 80%, while it reduces the consumed energy for data delivery by 50% compared to the default data gathering
protocol of TinyOS.

Keywords: Wireless Sensor Networks, Data Gathering, Link Ordering, Link Quality, Energy-Efficiency

1. Introduction

Since wireless sensor networks offer new opportunities
to observe the physical environments and interact with
inaccessible areas (e.g., jungles, earthquake disaster area,
battlefield target area, or inside a nuclear reactor), these
networks are being used in a wide range of applications
[1, 2]. The main observable traffic pattern in wireless
sensor networks is many-to-one, in which data flows from
many sensor nodes towards a single base station [3–6]. Due
to the limited radio range of the sensor nodes, intermedi-
ate nodes require to perform data relaying to forward the
collected data from source nodes towards the sink node
[7–9]. Therefore data gathering service is one of the key
building blocks of different wireless sensor networks proto-
cols to support multi-hop data transmission pattern [10].
The main aim of data gathering protocols is to construct
the network routing topology, which allows the collected
data from source nodes to be delivered to the network data
gathering point [10, 11].

∗Corresponding author:
Email address: radi@ieee.org (Marjan Radi)

Due to the importance of providing efficient data gath-
ering capability in wireless sensor networks, several data
gathering protocols have been developed over the past
decade. The utilized path cost function is the main fac-
tor that differentiates these protocols [12]. Experimental
studies on the performance of the existing data gathering
protocols show that, while the existing data gathering pro-
tocols provide a basic service for many applications, they
suffer from poor performance in practice (in terms of re-
liable and energy-efficient data delivery) due to the high
dynamics of low-power wireless links [13–15]. According to
these studies, the required number of link layer transmis-
sions (including retransmissions) for successful packet de-
livery from a given source node to the sink over unreliable
links influences the network-wide contentions, throughput
and network energy consumption [16, 17]. Therefore, re-
ducing the required number of link layer transmissions is
critical to provide efficient data gathering in wireless sensor
networks [18, 19]. In this context, the Expected Transmis-
sion count metric (ETX), is widely utilized by the existing
data gathering protocols to provide efficient and reliable
data gathering in wireless sensor networks [12]. The ETX
value of a given link is defined as 1

p×q , where p and q are

Computing
Archives for Scientific Computing
DOI: http://link.springer.com/article/10.1007/s00607-014-0414-9

1

M. Radi et al. — Springer : Link

Figure 1: The influence of link positions on the data transmission
cost of paths.

probabilities that a packet is successfully transmitted and
acknowledged respectively [20]. Based on the definition
of this metric, it assumes the link layer provides an infi-
nite number of transmissions at each link to deliver every
transmitted data packet to the destination [12, 21]. Since
by this assumption the link layer never drops a packet,
the ETX value of each path only depends on the ETX
of its constructed links, while the location of the links on
the path is not important. Therefore, this unrealistic as-
sumption allows a commutative path cost computation,
which simplifies the calculation of the expected number
of transmissions over each path for successful packet de-
livery. However, these protocols may construct paths in-
cluding links which cause a higher number of transmis-
sions than the maximum number of provided link layer
transmissions. Since in practice the link layer provides a
finite number of transmission attempts at each link, ex-
isting data gathering protocols expose low performance
in the real-world implementations. The main reason is
that, packet drops due to the limited number of trans-
missions at the link layer on the links near the destina-
tion are very costly, as the packets have traversed several
links before they are dropped. Figure 1 presents this is-
sue through a simple example. Based on this figure the
ETX summation of the links along both paths are equal
to 4. Assume the link layer provides at most 2 transmis-
sion attempts at each link. Consequently, the probability
that a packet passes the link with an ETX value equal to
3 is 1

3 + (1 − 1
3) × 1

3 = 0.55. Therefore, the probability of
packet drop due to the limited number of link layer trans-
missions on the last link of path1 is higher than path2.
Since packet drops near the destination are very costly,
the data transmission cost of path1 is higher than path2.
However, simple summation of the link ETX values along
the paths does not capture this issue. Expected number of
Transmissions On a Path (ETOP) is a recently proposed
path cost function as a part of Dynamic Source Routing
(DSR) protocol for wireless mesh networks, which esti-
mates the data transmission cost of individual paths with
respect to the limited number of offered link layer trans-
missions at each link [22]. Since, through this cost func-
tion each source node should determine the entire path
towards the destination node by a Dijkstra algorithm, it
cannot be used in wireless sensor networks. The reason is

that, in wireless sensor networks data gathering tree con-
struction process should be initiated by the sink node and
data transmission cost of every path from a given sensor
node towards the sink should be estimated based on the
calculated cost in the reverse direction (from sink towards
the sensor nodes) [23]. However, designing a distributed
data gathering protocols which considers the order of the
links along the paths from sensor nodes towards the sink
is a non-trivial task.

From the discussion given above, it is obvious that ex-
isting data gathering protocols cannot provide an efficient
data gathering service when the link layer provides a finite
number of transmission attempts at individual links. The
reason is that packet drops due to the bounded number of
link layer transmissions on the links close to the sink node
impose a significant packet delivery cost to the network.
Therefore, in order to construct a minimum cost data gath-
ering tree in term of the required number of packet trans-
missions for every single packet delivery, it is required to
develop data gathering protocols which consider the fol-
lowing issues: (1) the maximum number of offered link
layer transmission attempts for delivering a single packet
over each link, (2) relative position of the links along the
paths, and (3) packet delivery probability of individual
links. In this regard the main contributions of this paper
are:

Firstly, we propose a path cost function which considers
the limitation on the number of provided link layer trans-
mission attempts at individual links, relative position of
the links along the paths and packet delivery probability
of every link in order to construct the paths which mini-
mize the required number of transmissions for a successful
packet delivery. The proposed path cost function, called
Successful or Failed packet Transmission Cost (SFTC),
enables every node to estimate data transmission cost
through its neighboring nodes with respect to the relative
position of the links from that particular node towards the
sink based on the calculated cost in the reverse direction
(from sink towards the sensor nodes).

Secondly, we propose a LINK ORDering based data
gathering protocol (LINKORD) which is composed of two
phases: 1) Data gathering tree construction phase, and
2) Data transmission phase. The aim of this protocol is
to provide a high performance data gathering in terms
of data delivery ratio, network goodput, and energy con-
sumption. During the data gathering tree construction
phase every node identifies cost of data transmission to-
wards the sink node through its neighboring nodes using
the proposed SFTC path cost function. Therefore, at the
end of this phase each node has identified several paths
through its neighboring nodes towards the sink in the con-
structed network data gathering tree. The data trans-
mission phase takes care of data forwarding from source
nodes towards the sink during network operation. Fur-
thermore, this phase also handles network congestion and
path failures during the data transmission process. To this
end, a Congestion Control with Parent Change capability

2

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

(CCPC) approach is developed which enables every child
node to change its congested parent node in order to re-
duce the network congestion level.

Thirdly, we implement the proposed data gathering
protocol and evaluate its performance compared to the
TinyOS’s Collection Tree Protocol (CTP) under two differ-
ent scenarios. Comprehensive simulation studies confirm
that LINKORD improves data delivery ratio by 70%, end-
to-end network goodput by 80%, and energy consumption
by 50% compared to the TinyOS’s CTP.

The rest of this paper is organized as follows: Section
?? provides an overview on the existing data gathering
protocols in wireless sensor networks. We introduce the
proposed SFTC path cost function and LINKORD in Sec-
tion 3 and Section 4 respectively. Performance evaluation
and comparison of LINKORD against TinyOS’s CTP is
performed in Section 5. We conclude in Section 6.

2. Related Work

Due to the importance of sensor data gathering, there
has been a huge amount of research over the past decade
to provide efficient data gathering in wireless sensor net-
works [12, 21, 23]. The major difference of these proto-
cols is in their employed cost functions for parent selec-
tion during the network data gathering tree construction
process. Based on the empirical studies on the characteri-
zation of wireless links, data transmission quality of wire-
less links fluctuates highly over time due to the effects of
wireless propagation such as multipath fading, shadowing,
and path loss [24–26]. These studies suggest that employ-
ing link quality-based routing metrics can provide stable
network performance by selecting high-quality links which
reduce the number of packet losses and retransmissions
[16, 27–29]. Therefore, the majority of existing data gath-
ering protocols utilize link-quality based routing metrics
to construct a stable tree routing structure which includes
high-quality paths.

MintRoute was the first proposed data gathering pro-
tocol for wireless sensor networks. This protocol uses a
distance vector routing approach to advertise global rout-
ing state [13]. Furthermore, it uses the ETX [20] as the
routing cost metric to compute the data transmission cost
of available paths. To this aim, MintRoute utilizes rout-
ing tables to preserve the neighborhood information at
individual nodes along with their respective data trans-
mission cost towards the sink node. In MintRoute, the
entire nodes periodically broadcast routing messages to
share their achieved routing information towards the sink
node and update the preserved routing information at in-
dividual nodes.

MultihopLQI is a variation of MintRoute which uses a
hardware-based link quality estimation metric for com-
puting the data transmission cost of different paths [30].
Unlike MintRoute, MultihopLQI uses the link quality in-
dicator (LQI) metric as its routing cost metric which is

provided by 802.15.4 RF transceivers [27]. This proto-
col avoids keeping routing tables through maintaining the
state of the best parent at a given time. Although LQI
can provide immediate approximations regarding to the
bit error rate of the successfully received packets, this in-
formation can be only provided by the CC2420 radio chip
[31]. This limitation causes the MultiHopLQI protocol
to be hardware dependent. Moreover, as this approach
estimates the quality of links based on the successfully
received packets, it cannot differentiate between packet
losses due to the poor link quality or those due to the
collisions [32, 33]. These inaccurate link quality estima-
tions result in frequent network tree reconstruction and
unstable routing topology.

The Collection Tree Protocol (CTP) is the default data
gathering protocol of TinyOS [21]. The main aim of this
protocol is to benefit from integration of the data and con-
trol plans in order to provide quick response against rout-
ing failures during the data transmission process and re-
pair the broken paths with a minimum interruption in the
data gathering performance. As with MintRoute, CTP
also uses a distance vector routing algorithm with ETX
cost metric to establish the paths that minimize the ex-
pected number of transmissions for data delivery. In addi-
tion, this protocol uses the network active traffic to probe
the topology and detect routing problems, while it also
employs the Trickle algorithm [34] to control the beacon-
ing exchange rate of the network nodes. In this protocol
the routing framework consists of three main components:
Routing Engine (RE) that determines the best next-hop
neighboring node towards the sink node as well as up-
dating the routing tables; the Forwarding Engine (FE),
that takes care of forwarding data packets to the deter-
mined nodes by the RE; and the Link Estimator (LE)
that periodically determines the data transmission quality
of available links using the four-bit link quality estima-
tion approach [35]. Furthermore, TinyOS’ CTP is capable
of detecting network congestion during the data transmis-
sion process through setting the congestion flag of the data
packets [12]. In this context, whenever the packet buffer
of a node is at least half full, it sets the congestion flag
of its outgoing packets to 1 in order to notify the child
nodes about its congestion status. If a node identifies its
parent is congested, it stops its packet transmission until
the congestion status of its parent changes or it finds an
alternative path towards the sink. In this protocol a node
will change its current congested parent to another parent
whose multi-hop ETX value is lower than the other avail-
able neighbors.

Hyper is a data gathering protocol which enables mobile
users to access the sensor network data during their envi-
ronmental evaluations or maintenance work. This protocol
uses a distance vector routing strategy for relaying data
packets to the mobile sinks [36]. To support a low-latency
access to the sensor data by mobile users, Hyper provides
fast neighborhood assessment and multiple data gathering
trees for simultaneous utilization by several users. Since

3

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Hyper uses ETX as the routing cost metric to construct
reliable routing trees, it can initialize the tree construction
process whenever the neighborhood connectivity is evalu-
ated. Consequently, each node periodically exchanges bea-
con messages with its neighboring nodes to obtain the re-
quired link quality information for tree construction. Since
the root of each constructed tree is a mobile sink, whenever
a mobile sink arrives to a new location it should initiates
the link estimation process for evaluating its connections
towards its new neighbors by broadcasting a series of bea-
con messages. When each node evaluates its neighborhood
connectivity, sink node initiates the routing tree construc-
tion process by flooding a tree update message into the
network. Since mobile users are practically delay sensitive
and the neighborhood connectivity assessment should be
performed in a short period by the network nodes, this
protocol cannot provide an efficient data gathering ser-
vice in large-scale dense wireless sensor networks. This is
due to the fact that fast neighborhood assessment in high-
density networks intensifies contentions for channel access
and causes a huge number of packet losses which in turn
reduces the accuracy of the collected neighborhood infor-
mation by individual nodes.

CentRoute is another data gathering protocol which
combines a source routing approach with a centralized
route computation mechanism (in a microserver) to res-
cue the nodes from making routing decisions [37]. As with
several other routing protocols, CentRoute uses ETX cost
metric for parent selection. The main idea behind design-
ing this routing framework is that the resource limitations
of sensor nodes influence the correctness and accuracy of
the decision which is made at each mote based on its lim-
ited local information. Therefore, this protocol aims to
employ microservers to make routing decisions based on
the combination of the achieved information from multi-
ple motes. In order to construct a tree topology which is
rooted at a microserver, each node periodically broadcasts
a join request message. If a node that is already joined to
the tree receives this message, it forwards the message to
a microserver via its parent. Then upon reception of this
message at a microserver, it generates a join reply message
and forwards this message towards the sender node using
source routing.

Dozer is another data gathering framework which aims
to fulfill the performance demands of periodic data gath-
ering in monitoring applications [38]. This protocol inte-
grates a tree routing protocol with a TDMA-based MAC
layer to support energy-efficient data delivery by reducing
idle listening and overhearing periods. To this aim, Dozer
constructs a network routing tree in which the entire com-
munications between all the nodes and their parents to-
wards the sink node are coordinated by a TDMA-based
MAC protocol. In order to construct this data gathering
framework, whenever a node joins to the network routing
tree during the data gathering tree construction process, it
broadcasts beacon messages at the start of its time sched-
ule to assign time slots for connection-requests from dis-

connected nodes and enables them to join to the network
tree. Furthermore, each node preserves a list of prospec-
tive parents for fast recovery from route failures during the
data transmission process.

3. Successful or Failed Packet Transmission Cost
Function Design

This section dedicated to describe the proposed path
cost function in this paper. In this regard, the considered
network and packet transmission models for calculating
packet transmission cost of multi-hop paths are given in
the first part of this section. Finally, the last part presents
the design of the proposed SFTC cost function in detail.

3.1. Network Model and Notations
A wireless sensor network can be considered as a di-

rected graph G(N, E, P), where N is the set of sensor
nodes, E is the set of links between nodes, and P is the set
of packet delivery probabilities over the links in set E. Let
Ni be the set of neighboring nodes of node ni. Therefore,
set E should be represented as E={ex,y|x ∈ N and y ∈ Nx}
and each link ex,y∈E has a packet delivery probability
0 < px,y ≤ 1 with a single transmission effort.

The packet transmission process is modelled as follows.
At the start of the data transmission phase, a given source
node n0 starts to transmit its data packets towards the sink
node over a path with n hops through node n1, n2, ..., nn.
Therefore, node n0 will pass its packet to the link layer
which is responsible for transmitting this packet to node
n1. The transmitted packet by node n0 will be received by
node n1 with probability p0,1 after 1 transmission attempt.
If node n1 does not receive the packet transmitted by node
n0, this packet will be transmitted again by the link layer
of node n0. Link layer of node n0 repeats this process
until the maximum number of link layer transmissions (r
transmissions) is reached or the packet is successfully re-
ceived by node n1. If after the rth retry the packet dose
not reach to the receiver node n1, the sender node will
drop the packet. While, if node n1 receives the transmit-
ted packet successfully, it will transmit the packet to node
n2. This process will be repeated between all the nodes on
the selected path, until node nn receives the transmitted
packet from node n0 or the packet drops at an intermedi-
ate node along the path. Let hs be the number of succes-
sive hops that a packet passed successfully from a source
node before it is dropped. Thus, hs=i means that the
transmitted packet from node ni failed to reach to node
ni+1. Therefore, if tx,y signifies the required number of
link layer transmissions for a single packet delivery over
link ex,y, hs=i denotes that ti,i+1 was more than r. Since
the link layer offers a bounded number of transmission at-
tempts at individual links, some packets may be dropped
during the data transmission process somewhere along the
selected paths. By considering this possibility the relative
position of the links highly influences the data delivery cost

4

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

of different paths. Therefore, the data transmission cost
of every path cannot be calculated through a simple sum-
mation of the data transmission quality of its constructed
links which has been employed in the existing data gath-
ering protocols [12, 21].

Consider the case where the link layer provides an infi-
nite number of transmissions for packet delivery over indi-
vidual links. By this assumption, every node can calculate
the required number of packet transmissions for successful
packet delivery to its neighboring nodes as:

E[ex,y] =
∞∑

i=1
i(1 − px,y)i−1px,y = 1

px,y
(1)

where E [ex,y] is the expected number of required trans-
missions for successful packet transmission over link ex,y,
and px,y is the probability of successful packet transmis-
sion from node nx towards node ny. With respect to
the Equation 1, the expected number of required packet
transmissions for successful packet delivery over a path
(n0,n1, ...,nn) can be calculated as:

E[e0,n] =
n−1∑
i=0

1
pi,i+1

(2)

Now assume that link layer performs at most r trans-
mission attempts over each link for a single packet delivery.
In this case the expected number of packet transmission
attempts for transmitting a single packet over link ei,i+1
is:

E[ei,i+1] = (
r∑

k=1

k(1 − pi,i+1)k−1pi,i+1) + r(1 − pi,i+1)r (3)

where (1 − pi,i+1)k−1pi,i+1 is the probability that the
transmitted packet from node ni have been successfully de-
livered to node ni+1 at kth transmission attempt. There-
fore, the expected number of transmissions for successful
packet delivery over link ei,i+1 after performing k trans-
mission attempts is calculated through multiplying this
term by k. Moreover, term r(1 − pi,i+1)r denotes the
expected number of transmission attempts performed by
node ni while node ni+1 could not receive the transmitted
packet. With respect to Equation 3, the expected number
of packet transmissions over a path (n0,n1, ...,nn) in terms
of packet delivery probability of the links and the maxi-
mum number of link layer transmissions over each link can

11

]
[

1,0
1,0

 p
eE

2
1

][
2,1

2,1
p

eE

7

1
]

[

3,2

3,2

p

e
E

1

1]
[

1,0

1,0

p

eE

7
1

][
2,1

2,1
p

eE

2
1

]
[

3,2

3,2

 p

e
E

Path1

Path2

Figure 2: A sample scenario to evaluate data transmission cost over
two different paths from a source node towards a given destination
node.

be expressed as:

E[e0,n] = Ppath(Es[e0,n]) + (1 − Ppath)(Ef [e0,n])
where

Ppath =
n−1∏
i=0

(1 − (1 − pi,i+1)r)

Es[e0,n] =
n−1∑
i=0

E[ei,i+1]

Ef [e0,n] =
n−1∑
i=0

(1 − pi,i+1)r(
i−1∏
j=0

(1 − (1 − pj,j+1)r))(
i∑

l=0

E[el,l+1])

(4)
where

∏−1
j=0=1, Ppath signifies the probability of success-

ful reception of the transmitted packet by source node n0
at the sink node (i.e., node nn), 1-Ppath is the probability
of packet drop over a path from source node n0 towards
the sink node, Es[e0,n] is the expected number of packet
transmissions for packet delivery over path n0, ...,nn, and
Ef [e0,n] is the expected number of packet transmissions
over path n0, ...,nn, while the packet fails to reach the sink
node. Furthermore, term (1 − (1 − pi,i+1)r) indicates the
probability of successfully packet delivery over link ei,i+1
and term (1 − pi,i+1)r represents the probability that a
packet fails to pass the link ei,i+1 after performing r trans-
mission attempts.

Figure 2 illustrates two different paths from node n0
towards node n3 to clarify the differences between data
transmission cost of multi-hop paths when the link layer
provides a limited or an infinite number of transmission at-
tempts. In the case that the link layer provides an infinite
number of packet transmissions for a successful packet de-
livery, the data transmission cost of both paths is equal to
10 (according to Equation 2). Consider the scenario where
the link layer provides at most 2 transmission attempts at
each link (i.e., r=2). First assume node n0 wants to trans-
mit a packet to node n3 through path1. The probability
that the transmitted data packet from node n0 passes link
e0,1, link e1,2 and link e2,3 with at most 2 transmission
attempts is 1, 0.75, and 0.26 respectively. Therefore, the
probability of packet drop after performing r transmission

5

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

attempts at each link is equal to 0, 0.25 and 0.73 respec-
tively. Based on Equation 4, data transmission cost of
path1 in the case where the link layer provides at most 2
transmission attempts is equal to 5. While, if node n0 se-
lects path2 to transmit a data packet towards node n3, the
expected number of packet transmissions over this path is
equal to 4.19. The higher data transmission cost of path1
compared to path2 is due to the fact, that in the first
path, the low-quality links with high probability of packet
drop after performing 2 transmission attempts are located
near the destination node. With respect to this example
in the cases where the link layer offers a bounded number
of transmission attempts, packet delivery cost of a multi-
hop path is highly related to the maximum number of link
layer transmissions and relative position of the links along
the path. However, assuming an infinite number of link
layer transmissions over individual links simplifies the cal-
culation of the required number of packet transmissions for
successful packet delivery from a source node towards the
destination node. The reason is that, by this assumption
the link layer never drops a packet over the links along
a path. Therefore, the expected number of packet trans-
missions over a path only depends on the packet delivery
probability of the links along the path, while their arrange-
ment is not important.

3.2. Successful or Failed Packet Transmission Cost of
Multi-Hop Paths

In data gathering protocols the sink node initiates the
construction process of the network data gathering tree
through broadcasting a routing packet to the network. To
this aim, the utilized path cost function in these proto-
cols should be able to estimate the data transmission cost
from each node toward the sink based on the calculated
cost in the reverse direction (from sink towards the sensor
nodes). In this context, the SFTC is designed in such a
way that it can estimate cost of data delivery from every
node to the sink node through the transmitted packet from
the sink node which traverses the backward links towards
the nodes. However, as the proposed routing cost function
considers the relative position of the links along the paths,
estimating the transmission cost from every node towards
the sink based on the calculated cost in the reverse direc-
tion is non-trivial.

According to the given network model and variables in
Section 3.1, SFTC of a path (n0, n1,...,nn) with n hops
from sink node nn towards source node n0 can be repre-
sented as follows:

SF T C = (
1∑

i=n

E[ei−1,i]Ψ(ei,n)) (5)

where Ψ(ei,n) is a the weighting function that scales the
required number of transmission attempts at each link in
order to reflect the influence of link positions and their
respective data transmission quality on the data transmis-
sion cost of a path. The insight behind using this weighting

function is that, it scales the expected number of link layer
transmissions on a given link ei−1,i based on the ratio of
the required number of packet transmissions for success-
ful data delivery over the traversed links from sink node
nn till node ni to the maximum number of offered link
layer transmission attempts. In order to have a success-
ful packet delivery over a given link through performing
at most r transmission attempts, the ratio of the required
number of packet transmissions over that link for success-
ful packet delivery to the r value should be less or equal
to 1. If this ratio is higher than 1, there is a probability
of packet drop after performing r transmission attempts.
Therefore, to calculate the data transmission cost of differ-
ent paths based on the maximum number of provided link
layer transmission attempts at individual links (i.e., r),
weighting function Ψ(ei,n) can take the following values:

Ψ(ei,n) =
{ 1 if n = i∏i+1

j=n Ψ(ej,j−1) if n , i

where

Ψ(ej,j−1) =
{

1 if (1/pj−1,j)
r ≤ 1

(1/pj−1,j)
r if (1/pj−1,j)

r > 1

(6)

Furthermore, the expected number of packet transmissions
over link ei−1,i in terms of packet delivery probability over
the links and maximum number of link layer transmission
attempts in the cases where the link layer provides at most
r transmission attempts has been shown through Equa-
tion 3. By substituting Equation 3 in Equation 5, the
estimated cost for a single packet transmission over a path
(n0, n1,...,nn) with n hops in term of number of packet
transmissions can be calculated as:

SF T C = (
1∑

i=n

((
r∑

k=1

k(1 − pi−1,i)k−1pi−1,i) + r(1 − pi−1,i)r)Ψ(ei,n))

(7)

In order to clarify the differences between∑n−1
i=0 E[ei,i+1] and SFTC in the situations where

the link layer provides a bounded number of transmission
attempts at individual links, Table 1 shows the data trans-
mission cost of different paths through these path cost
functions. As can be seen from this table,

∑n−1
i=0 E[ei,i+1]

provides similar data transmission cost for the paths
with equal number of hops. For instance, path (1,1,0.25)
and path (0.25,1,1) have an equal

∑n−1
i=0 E[ei,i+1] value

regardless of the number of link layer transmissions (i.e., 1
or 3 transmission attempts) and position of the links along
the paths. While employing the SFTC path cost function
to calculate the data transmission cost of different paths
with equal

∑n−1
i=0 E[ei,i+1] values results in dissimilar

values. For instance, through SFTC, path (0.25,1,1) has
lower data transmission cost compared to path (1,1,0.25).
This is due to the fact, that SFTC prefers the paths
with high-quality links near the destination. In fact, if
the low-quality links are located near the destination,

6

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Table 1: Comparison of the data transmission cost of multi-hop paths
with assuming a limited and an infinite number of transmission at-
tempts at individual links.

Paths r SFTC
∑n−1

i=0 E[ei,i+1]

Path1=(1,1,0.25) 1 9 6
Path2=(0.25,1,1) 1 3 6
Path3=(0.25,1,1,1) 1 4 7
Path4=(1,1,0.25) 3 9.66 6
Path5=(0.25,1,1) 3 9 6
Path6=(0.25,1,1,1) 3 10 7

high probability of packet loss over these links results in
the waste of network resources to forward data packets
over the previous links along a path before those packets
are dropped. Therefore, although path (0.25,1,1,1) has
more hops and higher

∑n−1
i=0 E[ei,i+1] value compared

to path (1,1,0.25), but in the cases where the link layer
provides 1 transmission attempt SFTC assigns a lower
cost to the first path in comparison with the second
one. However, if the link layer provides 3 transmission
attempts, SFTC prefers path (1,1,0.25) compared to the
path (0.25,1,1,1). The reason is that, in this situation
the required number of transmission attempts over a link
with a p value equal to 0.25 is close to the number of
provided link layer transmission attempts. Therefore, in
this case SFTC gives chance to the packets to reach the
destination with lower network resource utilization by
selecting path (1,1,0.25) with 3 hops instead of selecting
path (0.25,1,1,1) with 4 hops.

4. Link Ordering-Based Data Gathering Protocol

After network initialization, every node should iden-
tify at least one path towards the network data gathering
point (i.e., sink node) [39]. Therefore, LINKORD aims to
construct the minimum cost network data gathering tree
which is rooted at the sink node and provides efficient data
gathering during network operation through two different
phases. The first phase establishes minimum cost paths
from every sensor node towards the sink through the pro-
posed SFTC path cost function. After construction of the
network data gathering tree, the second phase is responsi-
ble for transmitting the collected data by the source nodes
towards the sink. This section provides the detailed oper-
ation of each phase.

4.1. Data Gathering Tree Construction Phase
In the proposed LINKORD protocol every nodes uses

the SFTC path cost function to identify the data trans-
mission cost towards the sink node through its neighbor-
ing nodes. Therefore, each node should be aware about the
data transmission quality of its links towards its neighbor-
ing nodes. We assume a link quality estimation process is
performed at the network initialization phase before the
data gathering tree construction process [20, 40]. So, dur-
ing the data gathering tree construction process all the

nodes can utilize their achieved link quality information
to calculate the data transmission cost of different paths
towards the sink node.

At the start of data gathering tree construction process
through LINKORD protocol, all the nodes initialize their
data transmission cost towards the sink node to an in-
valid value (i.e., -1) to show that they have not identified
any path towards the sink so far. In LINKORD, the sink
node initializes the data gathering tree construction pro-
cess by broadcasting a routing packet towards its neighbor-
ing nodes with Minimum path cost, and Ψ(e) fields which
are initialized to 0 and 1 respectively (Lines 9-14 of Algo-
rithm 1). The main format of this routing packet is illus-
trated in Figure 3. During the path construction process,
whenever node ni receives a routing packet from node nj , it
first searches its neighborhood table to find the preserved
link quality information towards node nj . Node ni utilizes
the preserved neighborhood information regarding neigh-
bor nj and included information in the received routing
packet to calculate the data transmission cost towards the
sink node through node nj (Line 22 of Algorithm 1). When
node ni calculates the data transmission cast towards the
sink node through node nj , it preserves the routing infor-
mation through this node in its routing table (i.e., path
cost, and Ψ(e) value towards the sink node). Further-
more, if node ni has not identified any path towards the
sink so far, (i.e., its preserved minCosti,sink variable is
equal to -1), it records node nj (i.e., the node which has
sent the routing packet) as its parent node. In this case,
node ni also updates the Minimum path cost, and Ψ(e)
fields of the received routing packet according to the lines
18-31 of Algorithm 1 and rebroadcasts this packet again.
While, if node ni has a parent node with minimum path
cost towards the sink, it checks whether node nj offers a
lower cost path compared to its selected parent node be-
fore it decides to rebroadcast the received routing packet.
Node ni will change its parent to node nj , if it provides
a lower cost path towards the sink node compared to the
currently selected path. Since node ni has changed its
parent and it has found a new path with lower cost com-
pared to its previously announced path, it should update
the Minimum path cost towards sink, and Ψ(e) fields of
the received routing packet based on the newly calculated
values and rebroadcasts this packet again (lines 33-46 of
Algorithm 1). While, if the data transmission cost of the
identified path through node nj is higher than the mini-
mum data transmission cost which has been identified by
node ni so far, node ni only preserves the related routing
cost information of node nj (lines 47-49 of Algorithm 1).
This process will be repeated between all the nodes during
the data gathering tree construction process, until all the
nodes identify the data transmission cost towards the sink
node through their entire neighboring nodes.

4.2. Data Transmission Phase
When the network data gathering tree is established,

network nodes can start to forward their collected data

7

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Algorithm 1 Data gathering tree construction algorithm.
1: Notations:
2: RoutingPkt: Transmitted routing packet by sink for constructing the network data gathering tree
3: RecRtPacketj,i: Received routing packet by node ni which has been transmitted by node nj

4: RecRtP acketj,i → minCost: Included value in the Minimum path cost towards sink field of the received routing packet by
node ni which has been transmitted by node nj

5: RecRtP acketj,i → Ψ(ej,sink): Included value in the Ψ(e) field of the received routing packet by node ni which has been
transmitted by node nj

6: minCosti,sink: The minimum data transmission cost towards sink node which have been identified so far by nodes ni

7: P arenti: Current parent of node ni towards the sink node
8: LastSFTC : The last calculated SFTC value
9: if (it is sink node) then

10: create a RoutingP kt
11: RoutingP kt → minCost=0
12: RoutingP kt → Ψ(e)=1
13: broadcast the RoutingP kt
14: end if
15: if (a RoutingP kt is received by node ni from node nj) then
16: search the neighborhood table to find the corresponding entry for node nj

17: fetch pi,j

18: if (minCosti,sink==-1) then
19: for (k=1;1;r) do
20: E[ei,j] = k(1 − pi,j)k−1pi,j + r(1 − pi,j)r

21: end for
22: SF T C=RecRtP acketj,i → minCost+(E[ei,j] × RecRtP acketji → Ψ(ej,sink))
23: RecRtP acketj,i → minCost = SF T C

24: if (1/pi,j

r ≤ 1) then
25: RecRtP acketj,i → Ψ(ei,sink) = RecRtPacket j,i → Ψ(ej,sink) × 1
26: else
27: RecRtPacket j,i → Ψ(ei,sink) = RecRtPacket j,i → Ψ(ej,sink)×(1/pi,j

r)
28: end if
29: P arenti = node nj

30: LastSF T C = SF T C
31: broadcast the RoutingP kt with the updated fields
32: else
33: for (k=1;1;r) do
34: E[ei,j] = k(1 − pi,j)k−1pi,j + r(1 − pi,j)r

35: end for
36: SF T C=RecRtP acketj,i → minCost+(E[ei,j] × RecRtP acketj,i → Ψ(ej,sink))
37: if (SF T C < LastSF T C) then
38: RecRtP acketj,i → minCost = SF T C

39: if (1/pi,j

r ≤ 1) then
40: RecRtP acketj,i → Ψ(ei,sink) = RecRtP acketj,i → Ψ(ej,sink) × 1
41: else
42: RecRtP acketj,i → Ψ(ei,sink) = RecRtP acketj,i → Ψ(ej,sink) × (1/pi,j

r)
43: end if
44: P arenti = node nj

45: LastSF T C = SF T C
46: broadcast the RoutingP kt with the updated fields
47: else
48: preserve the calculated SFTC value and Ψ(ej,sink) for neighbor nj in the

routing table
49: end if
50: end if
51: end if

8

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Preamble SFD MAC header CRC

8 Bytes 2 Bytes

Destination

address
Type

Sequence

number

Source

address
Length

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte

5 Bytes

Ψ(e) value

towards sink

Minimum path

cost towards sink

2 Bytes 2 Bytes 2 Bytes

Physical header MAC payload

Figure 3: Routing packet format.

towards the sink node through the identified paths. In
this context, whenever a node collects some information
from environment or receives a data packet from one of
its child nodes, it forwards these data packets towards the
sink node through its selected parent node during the data
gathering tree construction process. Consequently, upon
reception of a data packet by a given node it first checks
whether the received packet has been received previously.
If it realizes that the received packet is a duplicate packet,
it will discard the packet to avoid waste of network re-
sources. While if the received packet is not duplicated and
the receiver node has a free space in its packet buffer, it
stores the received packet into the packet queue to forward
the packet towards the sink node. Otherwise it drops the
packet because of buffer overflow.

Due to the high dynamics of low-power wireless com-
munications, limited resources of sensor nodes, and shared
wireless communication medium, many-to-one data gath-
ering pattern in wireless sensor networks can easily cause
network congestion and a huge number of packet drops as
the result of packet buffer overflow [41, 42]. Therefore, to
reduce the effects of network congestion on the data gath-
ering performance, the CCPC mechanism is proposed in
conjunction with the developed data gathering protocol.
The proposed technique exploits the incoming and outgo-
ing rates of individual nodes to measure the congestion
degree of nodes based on their data packet reception, data
packet generation and packet transmission rates. To this
aim every node ni calculates the incoming rate from its
individual child nodes (e.g., node nj) as follows:

Rj = 1
Tj

(8)

where Tj is the packet reception interval from node nj .
Furthermore, every node calculates its packet forward-

ing rate by inverting the time period from when a packet
arrives at its MAC layer until the last bit of that packet is
transmitted successfully.

In order to eliminate the overhead of transmitting con-
trol packets for congestion control purpose, CCPC ap-
proach adds some control bits to the data packets during
the data transmission process in order to provide valuable
information for congestion control and route maintenance
purposes. As demonstrated in Figure 4, the required in-
formation to perform the proposed CCPC mechanism is
added to each data packet as a CCPC control frame. As

with routing packet, in this packet 2 bytes are used to in-
clude the data transmission cost from every sender node
towards the sink for path maintenance purpose. The In-
coming rate and Outgoing rate fields share the congestion
degree of every node among its neighboring nodes, which
allows the child nodes of a congested node to change their
current parent to the best potential parent that may re-
duce the network congestion level. Selected child field de-
termines the identity of the child node that should change
its current congested parent node. Finally, the PC bit
shows the parent change eligibility of the sender node, and
CF bit identifies that the sender of the packet is congested.

As can be seen from Figure 5, network nodes can be in
different states during the data transmission phase in or-
der to perform the proposed CCPC approach. Initially a
node ni is in the no-Congestion state. During this stage,
whenever node ni receives a newly generated data packet
from the application layer or a non-duplicated data packet
from one of its child nodes, it checks the filled percentage
of its buffer space. If at the packet reception time the
filled space in its packet buffer is equal or higher than the
user specified threshold value (i.e., TQc), it moves to the
Congestion-Detected state which means that it deals with
congestion.

In the Congestion-Detected state, node ni notifies its
neighbors that its buffer will be overflowed in the near fu-
ture by setting the CF bit of its outgoing data packets to
1. Moreover, node ni waits for a period to find a child
node which is eligible to change its current parent (i.e.,
node ni) through setting a timer as:

Tcs = ρ × 1
Ravg

where

Ravg = Rc
i

ρ

(9)

where Ravg is the average packet reception rate at node
ni from its child nodes, Rc

i is the packet reception rate at
node ni from all of its child nodes, and ρ is the number of
active child nodes of a given node.

When node nj overhears a transmitted packet from its
current parent (i.e., node ni) with the CF bit equal to
1, it identifies that the packet buffer of its current parent
is being overflowed. Therefore, it starts to find another
parent node among its identified potential parent nodes to
change its current parent. To this aim, node nj retrieves

9

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte

2 Bytes 1 Byte 1 Byte 1 Byte

2 Bytes29 Bytes48 Bytes 2 Bytes

Preamble SFD MAC header MAC payload

Destination

address
Type

Sequence

number

Source

address
Length

Incoming

rate

Minimum

path cost

towards sink

1 Bit

CRC

Outgoing

rate

Selected

child
PC CF

CCPC control

frame

Physical header

Figure 4: Data packet format.

no-Congestion Congestion-Detected

Wait-for-Parent-Change-

Confirmation

Wait-for-Stabilization

Condition:

Buffer Size ≥ MaxBuffer Size × TQc

Action:

Set the CF field of data packet to 1

Set the child selection timer

Condition:

child selection timer is over and at least one

eligible child for parent change is found

Action:

Select the best child node to change its

parent

Set the Selected child field of data packet to

the address of the identified best child node

Condition:

overhear a data packet from the

selected child for parent change and

Condition:

 and Buffer Size < MaxBuffer Size × TQc

Action:

Set the CF field of data packet to 0

Condition:

Condition:

overhear a data packet from the

selected child for parent change and

1

o
i

g
i

c
i

R

RR

1

o
i

g
i

c
i

R

RR

1

o

i

g

i

c

i

R

RR

1

o

i

g

i

c

i

R

RR

Figure 5: The state diagram of CCPC.

10

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

the preserved incoming and outgoing rates for its potential
neighboring nodes from its neigborhood table to find the
best parent node nk as follows:

∆R =Ro
k − (Rc

k + Rg
k + Ro

j) (10)

where ∆R indicates the difference between packet recep-
tion rate and packet transmission rate of a node, Ro

k is the
packet transmission rate of node nk, Rc

k is the packet re-
ception rate of node nk from its child nodes, and Rg

k is the
packet generation rate at the application layer of node nk.
Notice that, a potential parent node nk for node nj is a
node which holds the inequality CostToSinkk ≤ MinCost-
Val+ β× MinCostVal. In this inequality, CostToSinkk is
the data transmission cost from node nk towards the sink
node, MinCostVal is the minimum data transmission cost
that node ni have been calculated so far, 0 ≤ β ≤ 1 is a
threshold value to select a neighboring node towards the
sink as a potential parent.

If node nj finds a potential parent node to change its cur-
rent parent, it sets the PC bit of its outgoing data packets
to 1. When node ni which is in the Congestion-Detected
state receives a data packet from a child node nj with PC
bit equal to 1, it updates the related information regard-
ing the parent change eligibility of this child node in its
neighborhood table. If the waiting time for child selection
(i.e., Tcs) is over, node ni searches its neighborhood ta-
ble to find a child node with maximum data transmission
rate which is eligible to change node ni to another parent
node. Afterwards, node ni sets the Selected child field of
its outgoing data packets to the address of the selected
child node and changes its current state to the Wait-for-
Parent-Change-Confirmation.

If node nj overhears a data packet from its current par-
ent (i.e., node ni) with the Selected child field equal to its
address (i.e., node nj), it should change its current parent
from node ni to its identified best potential parent nk.

Whenever node ni which is in the Wait-for-Parent-
Change-Confirmation state overhears a transmitted data
packet from its selected child (i.e., node nj) for parent
change process, it realizes that child node nj has changed
its current parent to another node. Therefore, node ni up-
dates the preserved packet reception rate information in
its neighborhood table regarding to this child node to 0.
Furthermore, it checks its current congestion status as:

CD =
Rc

i + Rg
i

Ro
i

(11)

If Rc
i + Rg

i exceeds the Ro
i , there still some backlogged

packets in node ni’s packet buffer. Thus, node ni should
change it state to the Congestion-Detected state again
to balance its packet reception and transmission rates.
While, if packet arrival rate of node ni’s buffer is smaller
or equal to its outgoing rate, ni realizes that congestion is
abated and it can move to the Wait-for-Stabilization state.

During the Wait-for-Stabilization state, whenever node
ni receives a data packet, it checks the ratio of its packet

incoming rate plus its packet generation rate to its packet
outgoing rate. If this ratio is lower than 1, node ni recog-
nizes that the congestion is alleviated. So it can move to
the no-Congestion state when the filled space in its packet
buffer is lower than the user specified threshold value. Oth-
erwise, it should enter the Congestion-Detected state again
to equalize its packet reception and transmission rates.

LINKORD also utilizes the network traffic to update
the preserved link quality information at individual nodes
and detects routing problems during the data transmission
process. In this context, every node updates the preserved
information regarding the data transmission quality of its
links towards its potential parents nodes based on num-
ber of acknowledged, unacknowledged and overheard data
packets from them. Moreover, every node updates the pre-
served neighborhood information in its neighboring table
during the data transmission process using the Minimum
path cost towards sink field of the transmitted packets. In
addition, whenever a node receives a data packet, it com-
pares the included path cost in the packet with its own
path cost towards the sink to identify if there exists any
routing inconstancy. If the data transmission cost of the
receiver node is higher than the included cost in the data
packet, the receiver node starts to update the routing state
of its neighboring nodes.

5. Performance Evaluation

This section analyzes and compares performance of
LINKORD against default CTP of TinyOS [12, 21]. First
we describe the considered simulation framework, simu-
lation scenarios and performance parameters for perfor-
mance evaluation. Then we analyze and discuss the simu-
lation results.

5.1. Simulation Setup
We have performed our performance evaluations using

the OMNeT ++ framework. In order to provide an accu-
rate wireless channel model and improve the accuracy of
the simulation results, we have developed a physical layer
module that considers path loss, multipath effect, trans-
mission power variations, noise floor variations and the
capture effect based on the presented models in [43–46].
The radio parameters are chosen based on the Mica2 mote
specifications. Furthermore, we have implemented B-MAC
[47] as the underlying MAC protocol in our simulation
software. In all of the figures, each result point shows the
median of 20 simulation runs, while the error bars repre-
sent the upper and lower quartiles. Table 2 represents the
default simulation parameters of this paper in detail.

Since LINKORD lies in the similar subset of the design
space as the default CTP of TinyOS [12, 21], this protocol
is selected as the benchmark for performance evaluations
under two different simulation scenarios as follows:

i. First Simulation Scenario: This scenario aims to
evaluate the efficiency of LINKORD and TinyOS’s

11

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Table 2: Simulation parameters.
Radio

Average noise power [dBm] -106
Noise figure [dB] 13
Switch to TX/RX [µs] 250
Radio sampling [µs] 350
Evaluate radio sample [µs] 100
Noise bandwidth [Hz] 30000
Modulation NC-FSK
Encoding Manchester
Baud rate [Bauds per second] 38400
Transmission power [dBm] 0
Standard deviation of transmission power heterogeneity 1.2
Standard deviation of noise floor heterogeneity 0.9
Number of settling bits 49
Radio speed after encoding [bits per second] 19200
Reference distance [m] 1
PL (d0) [dB] 55

Environment

Ambient temperature [C◦] 27
Path loss exponent (outdoor) 4.7
Multipath channel variations (outdoor) 3.2

B-MAC

Initial backoff [slots] 32
Congestion backoff [slots] 16
Sampling interval [ms] 20

Other parameters

Network topology Random
Number of nodes 400
Area size 40mX40m, 60mX60m
Packet buffer size [packets] 12
TQc 0.5
β 0.1

CTP to discover high performance paths from sensor
nodes towards the sink. Since the position of the links
along the paths with small number of hops has little
or no impact on the network data gathering perfor-
mance, the location of source and sink nodes should be
adjusted in a way, that results in construction of long
distance paths. Therefore, source nodes should be at
the farthest distance from the sink node to maximize
the length of established paths from source nodes to-
wards the sink. To achieve this goal, in this scenario
only 20 nodes with the largest distance from sink node
are considered as the source nodes and each one gener-
ates 20 data packets destined to the sink node. This
setting provides a framework to evaluate the effec-
tiveness of considering link positions during the data
gathering tree construction process to achieve an ef-
ficient data transmission over long paths in wireless
sensor networks. Furthermore, to study the influence
of number of offered link layer transmission attempts
per packet delivery, different performance parameters

are evaluated under situations where the link layer
provides 1 and 3 transmission attempts at individual
links.

ii. Second Simulation Scenario: The second simu-
lation scenario is intended to study the proficiency
of different protocols to reduce the effects of network
congestion on the data gathering performance in the
applications where all the nodes generate data at a
same rate. Therefore, in all the experiments un-
der this scenario, the congestion control capability
of TinyOS’s CTP is enabled [12], and the proposed
CCPC approach is used during the data transmis-
sion phase of LINKORD. Furthermore, every sensor
node generates 30 data packets destined to the sink
node. As with the first simulation scenario, all the
performance parameters are evaluated under situa-
tions where the link layer provides 1 and 3 transmis-
sion attempts at individual links to study the effects
of the number of provided transmission attempts per
packet at the link layer on the network data gathering

12

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

performance. In order to be sure that different proto-
cols are compared in the situation where the network
gets congested, various performance metrics are eval-
uated against packet generation interval of the sensor
nodes ranges from 1 to 64 seconds. Since the link
level throughput in the developed simulation frame-
work is approximately 28 packets per second and the
considered network topology has 399 sensor nodes, so
the network should become congested when each node
generates a data packet every 14 seconds.

5.2. Performance Parameters
We have evaluated and compared the performance of

the LINKORD and TinyOS’s CTP using following param-
eters:

i. Data delivery ratio: This metric measures the ratio
of successfully received data packets by the sink node
to the total number of transmitted data packets by
the source nodes. Therefore, it indicates the ability
of different protocols to enhance the data transmission
reliability.

ii. End-to-end network goodput: This metric is mea-
sured as the ratio of the total number of successfully
received data bits by the sink node to the data trans-
mission duration. In other words, this metric shows
how different data gathering protocols influence the
rate of successful packet delivery to the sink node.

iii. Average Consumed Energy for Packet Trans-
missions: This metric reveals the average consumed
energy by individual sensor nodes for transmitting
data packets towards the sink node which is presented
as the percentage of total battery capacity of a sensor
node.

iv. Packet delivery overhead: This metric indicates
the overhead cost of running different data gathering
protocols to provide data gathering service in wireless
sensor networks through measuring the ratio of all
the transmitted packets during the data transmission
process to the number of successfully received data
packets at the sink node.

5.3. Performance Evaluation Under First Simulation Sce-
nario

This section compares the performance of LINKORD
with default data gathering protocol of TinyOS in order
to validate the effects of link positions along the paths on
the network data gathering performance in the cases where
the link layer provides a bounded number of transmissions.

5.3.1. Data Delivery Ratio
Figure 6 shows the ratio of the received data packets at

the sink node to the transmitted data packets by the source
nodes through employing LINKORD and TinyOS’s CTP.
As can be seen from this figure, in the cases where the link

Figure 6: Data delivery ratios achieved by LINKORD and TinyOS’s
CTP versus network traffic load under the first simulation scenario.

layer provides 1 and 3 transmission attempts at each link
LINKORD improves data delivery ratio about 70% and
33% compared to the TinyOS’s CTP respectively. The rea-
son behind this trend is that, LINKORD constructs more
reliable paths compared to the TinyOS’s CTP which calcu-
lates the data transmission cost of different paths through
a simple summation of the ETX values of the links along
the paths. According to the LINKORD design, this pro-
tocol calculates the data transmission cost of each path
based on the required number of transmission attempts
for successful packet delivery over individual links of that
path and the maximum number of offered link layer trans-
missions. Therefore, LINKORD assigns higher data trans-
mission cost to the paths with links where the expected
number of transmission attempts for successful packet de-
livery is higher than the maximum number of offered link
layer transmissions. However, as TinyOS’s CTP assumes
there is an infinite number of transmission attempts at in-
dividual links, in the cases where the link layer provides
a limited number of transmissions, it selects paths that
are more unreliable compared to the selected paths by the
LINKORD. Consequently, as the number of offered link
layer transmission attempts increases the achieved data
delivery ratio through both approaches is getting close to
each other. In both approaches by increasing the neighbor-
hood density of nodes from 20 to 40 nodes, the data deliver
ratio elevates about 33%. The reason for this incremental
trend is that, elevating the neighborhood density decreases
the number of packet drops due to the hidden node ter-
minal problem. Furthermore, raising the network density
results in the paths with a lower number of hops. Con-
sequently, data transmission over shorter paths reduces
the channel access contentions and wireless interference
between network nodes which in turn improves the data
delivery ratio.

13

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Figure 7: The end-to-end network goodput achieved by LINKORD
and TinyOS’s CTP versus network traffic load under the first simu-
lation scenario.

5.3.2. End-to-End Network Goodput

Figure 7 depicts the measured end-to-end goodput for
LINKORD and CTP of TinyOS against packet genera-
tion rate of the source nodes. As it can be observed, in
insensitive traffic loads LINKORD improves the end-to-
end network goodput about 80% and 70% compared to
the TinyOS’s CTP in the situations where the link layer
provides 1 and 3 transmission attempts. By reducing the
network traffic load, still LINKORD provides higher end-
to-end network goodput relative to the TinyOS’s CTP.
This behavior is mainly due the fact that LINKORD con-
siders the relative position of the links along the paths
with respect to their packet delivery probability and the
number of offered link layer transmission attempts. Since
the network traffic is convergecast, the traffic load of the
nodes near the sink node is always higher than the other
nodes. Therefore, as LINKORD prefers the paths with
high-quality links near the sink node and low-quality links
near the source nodes, it can help to reduce the traffic load
of the nodes near the sink node and improves the end-to-
end network goodput. Another observation that can be
drawn from this figure is that, as the neighborhood size of
nodes raises from 20 to 40 the provided end-to-end network
goodput by both approaches elevates. This observation
can be described as follows: Firstly, as discussed in the
previous section, increasing the neighborhood size of indi-
vidual nodes reduces the number of packet drops due to
the hidden node terminal problem which in turn improves
the network goodput. Secondly, increasing the neighbor-
hood density results in the paths with a lower number of
hops from every sensor node towards the sink. Therefore,
data transmission over paths with lower number of hops
reduces the channel contention level among the network
nodes which in turn elevates the network goodput.

Figure 8: Percentage of average consumed energy for packet trans-
mission towards the sink node by LINKORD and TinyOS’s CTP
versus network traffic load under the first simulation scenario.

5.3.3. Average Consumed Energy for Packet Transmis-
sions

Figure 8 demonstrates the percentage of average con-
sumed energy for packet delivery to the sink node
against network traffic load through using LINKORD and
TinyOS’s CTP. As expected, LINKORD reduces the per-
centage of average consumed energy for transmitting data
packets towards the sink node about 50% and 30% com-
pared to the TinyOS’s CTP in the cases where the link
layer provides 1 and 3 transmission attempts respectively.
This is mainly due to the utilized path cost function in
LINKORD. In fact, LINKORD assigns higher data trans-
mission cost to the paths with low-quality links near the
sink node by using the SFTC path cost function. Thus,
it significantly reduces the number of packet drops due to
the limited number of link layer transmissions on the links
near the sink node. As a consequence, LINKORD highly
reduces the network energy waste due to transmitting data
packets over a large number of hops which will be dropped
somewhere close to the sink node.

5.3.4. Packet Delivery Overhead
In order to study the overhead caused by different pro-

tocols to transmit data packets towards the sink node, this
section analyzes the packet delivery overhead of different
protocols which is defined as the total number of transmit-
ted packets during the data transmission phase to the num-
ber of received packets at the sink node. Figure 9 presents
the packet delivery overhead caused by employing differ-
ent protocols as a fraction of the network traffic load. As
expected LINKORD reduces the packet delivery overhead
by 41% and 30% compared to the TinyOS’s CTP when
the link layer provides 1 and 3 transmission attempts at
each link. This is a direct result of considering the relative
position of the links along the paths with respect to their

14

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Figure 9: Packet delivery overhead of LINKORD and TinyOS’s CTP
various network traffic load under the first simulation scenario.

packet delivery probability and maximum number of pro-
vided link layer transmissions. In fact, LINKORD reduces
packet delivery overhead through selecting paths which in-
cur a lower number of transmissions while they provide
higher data delivery ratio. Furthermore, increasing the
neighborhood size from 20 to 40, reduces the packet deliv-
ery overhead of both protocols. This decreasing trend can
be explained as: Raising the neighborhood size of nodes
results in the paths with lower number of hops which in
turn reduces the total number of packet transmissions for
a single packet delivery over each path.

5.4. Performance Evaluation Under Second Simulation
Scenario

This section studies the network data gathering perfor-
mance through employing LINKORD, and TinyOS’s CTP
in the cases where all the nodes generate data at a same
rate and both protocols utilize congestion control mecha-
nism during the data transmission process.

5.4.1. Data Delivery Ratio
Figure 10 presents the achieved data delivery ratio

through different protocols as a function of packet gen-
eration rate of sensor nodes under the second simulation
scenario. This figure reveals that LINKORD provides up
to 60% and 50% higher data delivery ratio compared to the
TinyOS’s CTP in the cases where the link layer provides
1 and 3 transmission attempts at each link respectively.
This performance improvement is mainly due to two rea-
sons. The first reason is that, LINKORD considers the
position of the links along the paths based on their packet
delivery probability and the number of offered link layer
transmissions at each link. Thus, these results confirm the
inefficiency of calculating data transmission cost of multi-
hop paths through summation of their link ETX values in

Figure 10: Data delivery ratios achieved by LINKORD, and
TinyOS’s CTP versus network traffic load under the second simu-
lation scenario.

the cases where the link layer provides a limited number
of transmission attempts at every link. The second rea-
son is that by employing the CCPC approach during the
data transmission phase, whenever a given child node re-
alizes its current parent may face packet drop in the near
future due to buffer overflow, it starts to forward its pack-
ets towards the sink node through another eligible parent
node. In CCPC approach, every node which conceives it
should change its current parent, considers the packet re-
ception and transmission rate of its potential parents to
select the best potential parent node instead of making
a blind parent selection (e.g., in TinyOS’s CTP a child
selects a new parent based on its offered data transmis-
sion cost). Through the CCPC approach, each node first
perceives how much would be the ratio of packet input
rate to the output rate of a potential parent node, if it
selects that node as its parent. In other words, through
the CCPC approach each child node can choose a parent
which has less probability of being congested compared to
the other potential parents when this child node switches
to that newly selected parent. In TinyOS’s CTP, every
node which realizes its current parent is congested, blindly
changes its parent to another one which provides lower
multi-hop ETX towards the sink node compared to other
neighbors. Therefore, since in TinyOS’s CTP nodes do not
consider the incoming and outgoing rates of their neigh-
bors to change their congested parent node, the achieved
data delivery ratio through this protocol is significantly
lower than LINKORD.

5.4.2. End-to-End Network Goodput
Figure 11 shows the achieved end-to-end goodput by

LINKORD compared to the TinyOS’s CTP under the sec-

15

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Figure 11: The end-to-end network goodput achieved by LINKORD
and TinyOS’s CTP versus network traffic load under the second sim-
ulation scenario

ond simulation scenario. As with the achieved results
under the first simulation scenario, the goodput of both
protocols increases as the network traffic load intensifies.
Again in this scenario, LINKORD improves the end-to-
end network goodput compared to the TinyOS’s CTP.
The first reason behind this behavior is that, TinyOS’s
CTP assumes the link layer offers an infinite number of
transmissions per packet and it does not consider the po-
sition of the links along the paths. Therefore, when the
link layer provides a bounded number of transmissions, the
selected paths through TinyOS’s CTP may include links
which require a higher number of transmissions for success-
ful packet delivery than the maximum number of offered
link layer transmissions. While, LINKORD arranges the
links along the paths based on their packet delivery prob-
ability and maximum number of achievable transmissions
at the link layer. Moreover, these results confirm that un-
der high traffic loads where the probability of congestion
is very high, balancing the incoming and outgoing traffic
rates of network nodes results in efficient network band-
width utilization. Since the proposed CCPC approach ad-
justs the data reception rate of very node based on its ser-
vice rate, it allows the nodes to efficiently use the network
resources for delivering the collected data from environ-
ment to the sink node.

5.4.3. Average Consumed Energy for Packet Transmis-
sions

Figure 12 plots the percentage of average consumed en-
ergy for packet transmission towards the sink node through
different protocols under the second simulation scenario.
As can be seen from this figure LINKORD reduces the
consumed energy for packet transmission up to 30% and
20% compared to the TinyOS’s CTP when the link layer

Figure 12: Percentage of average consumed energy for packet trans-
mission towards the sink node by LINKORD and TinyOS’s CTP
versus network traffic load under the second simulation scenario.

provides 1 and 3 transmission attempts at every link re-
spectively. This performance improvement is a direct con-
sequence of using SFTC path cost function during the data
gathering tree construction phase of LINKORD. Another
reason is that CCPC enables every child node of a con-
gested parent to change its current parent to another node
which can handle the outgoing rate of this child node with-
out any congestion. In fact, this approach helps each con-
gested node to reduce the number of packet drops due to
the buffer overflow through adjusting its packet incoming
rate according to its packet outgoing rate. Consequently,
by reducing the probability of packet drops due to the
buffer overflow, the consumed energy for packet transmis-
sion is reduced.

5.4.4. Packet Delivery Overhead
Figure 13 depicts the ratio of the total number of trans-

mitted packets during the data transmission phase to the
number of received packets at the sink node as a function
of network traffic load for different protocols. This fig-
ure shows that under this new scenario the delivery cost
of LINKORD is still 43% and 30% lower than TinyOS’s
CTP when the link layer provides 1 and 3 transmission
attempts at each link respectively. This is because of the
utilized route selection mechanism in LINKORD which al-
lows the nodes to select paths that cause a lower number
of transmissions and higher data delivery ratio compared
to the TinyOS’s CTP. Furthermore, as the required infor-
mation to perform CCPC approach is added to the data
packets as a CCPC control frame, employing this approach
in conjunction with LINKORD has not increased the data
delivery overhead compared to TinyOS’s CTP. Moreover,
as CCPC approach enables every node to adjust its packet
incoming rate based on its packet outgoing rate, it signifi-

16

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

Figure 13: Packet delivery overhead of LINKORD and TinyOS’s
CTP versus network traffic load under the second simulation sce-
nario.

cantly reduces the total number of transmission attempts
for a successful packet delivery.

6. Conclusion

This paper proposed a data gathering protocol called
LINKORD to provide efficient data gathering with respect
to the bounded number of link layer transmissions and
packet delivery probability of network links. In the sit-
uations where the link layer provides a limited number
of transmissions attempts at each link, the reliability and
cost of data delivery is not only related to the number of
hops along the paths or their respective data transmission
quality. In fact, since packet drops near the sink node due
to the bounded number of link layer transmissions is very
costly, the relative position of the links along each path
plays an important role in computing the data transmis-
sion cost of individual paths. Therefore, the main aim
of LINKORD is to calculate the data transmission cost
of every path based on the relative position of the links
along that path. In this context, this paper also proposes
a SFTC path cost function which is a non-commutative
function of the packet delivery probability of the links.
The proposed path cost function is utilized by the net-
work nodes during the data collection tree construction
process to identify low-cost paths towards the sink. Fur-
thermore, a CCPC approach is developed in conjunction
with LINKORD in order to provide efficient data delivery
during the data transmission phase. This approach allows
every node to adjust its packet incoming rate based on
its packet outgoing rate whenever it identifies its packet
buffer will be overflowed in the near future, through noti-
fying the child nodes to change their congested parent.

The simulation results show the higher performance of
LINKORD compared to the TinyOS’s CTP in terms of
data delivery ratio, end-to-end network goodput, energy
consumption and packet delivery overhead. The achieved
results reveal that, by taking into consideration the rela-
tive order of the links along the paths and controlling the
incoming rate of the nodes during the data transmission
phase, data gathering performance improves significantly
when the link layer provides a bounded number of trans-
mission attempts per packet delivery.

References

[1] J. Yick, B. Mukherjee, D. Ghosal, Wireless Sensor Network
Survey, Computer Networks 52 (2008) 2292–2330.

[2] C. F. García-hernández, P. H. Ibargüengoytia-gonzález,
J. García-hernández, J. A. Pérez-díaz, Wireless Sensor Net-
works and Applications: A Survey, International Journal of
Computer Science and Network Security 7 (2007) 264–273.

[3] E. E. P. K. Gilbert, K. Baskaran, E. B. Elijah Blessing, Research
Issues in Wireless Sensor Network Applications: A Survey, In-
ternational Journal of Information and Electronics Engineering
2 (2012) 702–706.

[4] T. Arampatzis, J. Lygeros, S. Manesis, A Survey of Applications
of Wireless Sensors and Wireless Sensor Networks, in: Proceed-
ings of the 2005 IEEE International Symposium on Control and
Automation Intelligent Control, IEEE, Limassol, Cyprus, 2005,
pp. 719–724.

[5] D. England, B. Veeravalli, A Robust Spanning Tree Topology
for Data Collection and Dissemination in Distributed Environ-
ments, IEEE Transactions on Parallel and Distributed Systems
18 (2007) 608–620.

[6] B. Dezfouli, M. Radi, S. A. Razak, K. Whitehouse, K. A. Bakar,
T. Hwee-pink, Improving Broadcast Reliability for Neighbor
Discovery , Link Estimation and Collection Tree Construction
in Wireless Sensor Networks, Computer Networks 62 (2014)
101–121.

[7] M. Radi, B. Dezfouli, K. A. Bakar, M. Lee, Multipath Routing
in Wireless Sensor Networks: Survey and Research Challenges,
Sensors 12 (2012) 650–685.

[8] M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, M. A. Ne-
matbakhsh, Interference-Aware Multipath Routing Protocol for
QoS Improvement in Event-Driven Wireless Sensor Networks,
Tsinghua Science & Technology 16 (2011) 475–490.

[9] M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, T. Hwee-Pink,
IM2PR: interference-minimized multipath routing protocol for
wireless sensor networks, Wireless Networks (2014).

[10] S. Moeller, A. Sridharan, B. Krishnamachari, Routing Without
Routes: The Backpressure Collection Protocol, in: Proceedings
of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN ’10), Stockholm, Sweden,
pp. 279–290.

[11] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, A. Woo,
The Collection Tree Protocol (CTP), Technical Report, TEP
123, TinyOS Network Working Group, 2006.

[12] U. Colesanti, S. Santini, The Collection Tree Protocol for the
Castalia Wireless Sensor Networks Simulator, Technical Re-
port, No 729, Department of Computer Science, ETH Zurich,
Switzerland, 2011.

[13] A. Woo, T. Tong, D. Culler, Taming the Underlying Chal-
lenges of Reliable Multihop Routing in Sensor Networks, in:
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, ACM, Los Angeles, CA, USA, 2003,
pp. 14–27.

[14] K. Srinivasan, P. Dutta, A. Tavakoli, An Empirical Study of
Low Power Wireless, ACM Transactions on Sensor Networks 6
(2010) 1–49.

17

http://link.springer.com/article/10.1007/s00607-014-0414-9

M. Radi et al. — Springer : Link

[15] S. Das, H. Pucha, K. Papagiannaki, Studying Wireless Rout-
ing Link Metric Dynamics, in: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement (IMC ’07), pp.
327–332.

[16] N. Baccour, M. B. Jamaa, A Comparative Simulation Study
of Link Quality Estimators in Wireless Sensor Networks, in:
Proceedings of 17th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS ’09), London, pp. 301–310.

[17] A. Vlavianos, L. K. Law, I. Broustis, S. V. Krishnamurthy,
M. Faloutsos, L. Kong, Assessing Link Quality in IEEE 802.11
Wireless Networks: Which is the Right Metric?, in: Proceedings
of the 19th International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC ’08), Cannes, French
Riviera, France, pp. 1–6.

[18] K.-H. Kim, K. G. Shin, On Accurate Measurement of Link
Quality in Multi-Hop Wireless Mesh Networks, in: Proceedings
of the 12th Annual International Conference on Mobile Com-
puting and Networking (MobiCom ’06), Los Angeles, CA, USA,
pp. 38–49.

[19] R. Draves, B. Zill, J. Padhye, Comparison of Routing Met-
rics for Static Multi-Hop Wireless Networks, ACM SIGCOMM
Computer Communication Review 34 (2004) 133–144.

[20] D. S. J. D. Couto, D. Aguayo, J. Bicket, R. Morris, A High-
Throughput Path Metric for Multi-Hop Wireless Routing, in:
ACM Mobicom Conference, ACM, San Diego, CA, USA, 2003,
pp. 134–146.

[21] O. Gnawali, R. Fonseca, K. Jamieson, Collection Tree Proto-
col, in: Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys ’09), Berkeley, California,
pp. 1–14.

[22] G. Jakllari, S. Eidenbenz, Link Positions Matter : A Noncom-
mutative Routing Metric for Wireless Mesh Networks, IEEE
Transactions on Mobile Computing 11 (2012) 61–72.

[23] F. Wang, J. Liu, Networked Wireless Sensor Data Collection:
Issues, Challenges, and Approaches, IEEE Communications
Surveys and Tutorials 13 (2011) 673 – 687.

[24] A. Cerpa, J. L. Wong, M. Potkonjak, D. Estrin, Temporal
Properties of Low Power Wireless Links: Modeling and Im-
plications on Multi-Hop Routing, in: Proceedings of the 6th
ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc ’05), Urbana-Champaign, IL, USA,
pp. 414–425.

[25] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, Com-
plex Behavior at Scale: An Experimental Study of Low-Power
Wireless Sensor Networks, Technical Report, UCLA/CSD-TR
02-0013, Computer Science Department, UCLA, 2002.

[26] A. Meier, T. Rein, J. Beutel, L. Thiele, Coping with Unreliable
Channels: Efficient Link Estimation for Low-Power Wireless
Sensor Networks, in: Proceedings of the 5th International Con-
ference on Networked Sensing Systems, Kanazawa, pp. 19–26.

[27] N. Baccour, A. Kouba, L. Mottola, M. A. Zuniga, H. Youssef,
C. A. Boano, M. Alves, Radio Link Quality Estimation in Wire-
less Sensor Networks : A Survey, ACM Transactions on Sensor
Networks 8 (2012) 183–217.

[28] S. Lin, G. Zhou, K. Whitehouse, Y. Wu, Towards Stable Net-
work Performance in Wireless Sensor Networks, in: Proceedings
of the 30th IEEE Real-Time Systems Symposium (RTSS ’09),
Washington, DC, USA, pp. 227 – 237.

[29] V. C. Borges, M. Curado, E. Monteiro, Cross-Layer Routing
Metrics for Mesh Networks: Current Status and Research Di-
rections, Computer Communications 34 (2011) 681–703.

[30] TinyOS Network working group, The MultihopLQI Protocol,
2009.

[31] K. Srinivasan, P. Levis, RSSI is Under Appreciated, in: Pro-
ceedings of the 3th ACM Workshop on Embedded Networked
Sensors (EmNets ’06), Boston, MA, USA, pp. 1–5.

[32] D. Puccinelli, M. Haenggi, Duchy: Double Cost Field Hybrid
Link Estimation for Low-Power Wireless Sensor Networks, in:
Proceedings of the 5th Workshop on Embedded Networked Sen-
sors (HotEmNets’08), Charlottesville, Virginia, USA, pp. 1–5.

[33] C. A. Boano, M. A. Zuniga, T. Voigt, A. Willig, K. Romer,
The Triangle Metric: Fast Link Quality Estimation for Mobile
Wireless Sensor Networks, in: Proceedings of 19th Interna-
tional Conference on Computer Communications and Networks
(ICCCN’10), Zurich, Switzerland, pp. 1–7.

[34] P. Levis, N. Patel, D. Culler, S. Shenker, Trickle : A Self-
Regulating Algorithm for Code Propagation and Maintenance
in Wireless Sensor Networks, in: Proceddings of the First
Symposium on Networked System Design and Implementation
(NSDI ’04), San Francisco, CA.

[35] O. Gnawali, K. Jamieson, P. Levis, R. Fonseca, Four-Bit Wire-
less Link Estimation, in: Proceedings of the 6th Workshop on
Hot Topics in Networks (HotNets ’06), Atlanta, GA, USA, pp.
1–7.

[36] T. Schoellhammer, B. Greenstein, Hyper: A Routing Protocol
to Support Mobile Users of Sensor Networks, Tech Report,
Center for Embedded Network Sensing (CENS) (2006).

[37] J. Heidemann, D. Estrin, Centralized Routing for Resource-
Constrained Wireless Sensor Networks, Technical Report Au-
gust, UCLA, Los Angeles, CA, USA, 2007.

[38] N. Burri, P. V. Rickenbach, Dozer: Ultra-Low Power Data
Gathering in Sensor Networks, in: Proceedings of the 6th
International Conference on Information Processing in Sensor
Networks (IPSN ’07), Cambridge, Massachusetts, USA, pp.
450–459.

[39] M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, M. Lee, Net-
work Initialization in Low-Power Wireless Networks: A Com-
prehensive Study, The Computer Journal In Press (2013) 1–24.

[40] M. Radi, B. Dezfouli, K. A. Bakar, S. A. Razak, Integration and
Analysis of Neighbor Discovery and Link Quality Estimation in
Wireless Sensor Networks, The Scientific World Journal 2014
(2014) 1–23.

[41] W.-w. Fang, J.-m. Chen, L. Shu, T.-s. Chu, D.-p. Qian, Con-
gestion Avoidance, Detection and Alleviation in Wireless Sensor
Networks, Journal of Zhejiang University Science C 11 (2009)
63–73.

[42] V. Deshpande, P. Sarode, S. Sarode, Root Cause Analysis of
Congestion in Wireless Sensor Network, International Journal
of Computer Applications 1 (2010) 31–34.

[43] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, D. Culler, Ex-
ploiting the Capture Effect for Collision Detection and Recov-
ery, in: Proceedings of The 2nd IEEE Workshop on Embedded
Networked Sensors, Sydney, Australia, pp. 45–52.

[44] M. Z. n. Zamalloa, B. Krishnamachari, An Analysis of Unre-
liability and Asymmetry in Low-Power Wireless Links, ACM
Transactions on Sensor Networks 3 (2007) 165–199.

[45] G. Zhou, T. He, S. Krishnamurthy, Models and Solutions for
Radio Irregularity in Wireless Sensor Networks, ACM Transac-
tions on Sensor Networks 2 (2006) 221–262.

[46] B. Dezfouli, M. Radi, S. A. Razak, K. A. Bakar, T. Hwee-pink,
Modeling Low-Power Wireless Communications, Computer net-
works and its Applications (2014) 1–31.

[47] J. Polastre, J. Hill, D. Culler, Versatile Low Power Media Access
for Wireless Sensor Networks, in: Proceedings of the 2nd Inter-
national Conference on Embedded Networked Sensor Systems
(SenSys ’04), Maryland, USA, pp. 95–107.

18

http://link.springer.com/article/10.1007/s00607-014-0414-9

	Introduction
	Related Work
	Successful or Failed Packet Transmission Cost Function Design
	Network Model and Notations
	Successful or Failed Packet Transmission Cost of Multi-Hop Paths

	Link Ordering-Based Data Gathering Protocol
	Data Gathering Tree Construction Phase
	Data Transmission Phase

	Performance Evaluation
	Simulation Setup
	Performance Parameters
	Performance Evaluation Under First Simulation Scenario
	Data Delivery Ratio
	End-to-End Network Goodput
	Average Consumed Energy for Packet Transmissions
	Packet Delivery Overhead

	Performance Evaluation Under Second Simulation Scenario
	Data Delivery Ratio
	End-to-End Network Goodput
	Average Consumed Energy for Packet Transmissions
	Packet Delivery Overhead

	Conclusion

