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Abstract—The southbound control protocols used in Software
Defined Networks (SDNs) allow for centralized control and man-
agement of the data plane. However, these protocols introduce
additional traffic and delay between network controllers and
switches. Despite the well understood capabilities of SDNs, cur-
rent representations of control traffic overhead consist of approx-
imations at best. In addition to high reactivity to incoming flows,
the need for resource allocation and deterministic messaging
delay necessitates a thorough understanding and modeling of the
amount of control traffic and its effect on latency. In this work, we
capture the network overhead of various switch configurations on
a testbed and extract mathematical models to predict expected
overhead for arbitrary switch configurations. We demonstrate
that controller-switch traffic patterns are non-negligible and can
be accurately modelled to compute the bandwidth utilization and
latency of controller-switch communication.

Index Terms—Edge, Fog, Cloud, Control Traffic, Resource
Allocation, Determinism, OpenFlow, OVSDB.

I. INTRODUCTION

Software Defined Networks (SDNs) facilitate network mon-
itoring and management by removing the control plane from
switches and placing it in a logically centralized controller.
The two main components of an SDN architecture are the
controller(s) and switches, which represent the control and
data planes, respectively. The controller (e.g., OpenDayLight
(ODL) [1], Ryu [2]) communicates with network applications
through northbound interfaces and with switches through
southbound interfaces. The SDN industry uses various south-
bound protocols, ranging from traditional protocols such as
Simple Network Management Protocol (SNMP) to more
sophisticated ones including OpenFlow [3], Open vSwitch
Database Management Protocol (OVSDB) [4], and NETCONF
[5].

In general, there are two categories of southbound protocols:
management, and control. Management protocols such as
OVSDB and NETCONF are used for tasks such as queue
provisioning, port provisioning, and policy enforcement. On
the other hand, control protocols such as OpenFlow, ForCES,
and I2RS are used to operate on the resources available on the
data plane. Among these protocols, OpenFlow and OVSDB
provide a rich set of features and are supported by most SDN
products.

Although OpenFlow and OVSDB are control-plane and
management-plane southbound interfaces, respectively, we
generalize and refer to all the traffic generated by southbound
protocols as control traffic. Analysis and modeling of control
traffic is essential from multiple perspectives. First, these
southbound protocols can generate a large amount of overhead,

depending on the network. It is particularly important to
understand this overhead in edge and fog computing networks
where the amount of bandwidth between nodes (e.g., when
using wireless links [6], [7]) may be significantly limited com-
pared to the bandwidth in cloud computing networks. Second,
control traffic increases the processing and queuing delays
on switches along the switch-to-controller path. Computing
bandwidth usage and per-switch processing time requires
information about packet size and rate. This is particularly
important for applications where communication resources
must be sliced based on application demands. For example,
QoS-driven resource allocation in edge and fog networks
requires the controller to perform data plane operations to
handle incoming task requests [8]. Accurate modeling of
controller-switch delay is essential to plan an appropriate net-
work topology and configuration that satisfies application re-
quirements. Fourth, from the security standpoint, unpredictable
variations in controller-switch communication may prevent
the controller from immediate reactions to security threats.
Awareness of control traffic behavior reduces the spaces in
which a network intruder can hide their presence, increasing
the controller’s ability to detect and respond to abnormalities
in a network. As the network size and deployment complexity
grows, computing the effect of control traffic on network
performance becomes increasingly important. One example of
complex networks is when Network Function Virtualization
(NFV) is employed, where the interconnection of components
naturally introduces significant complexity to the system.

Existing works either abstract the effect of control traffic
[9]–[11], or rely on unrealistic and incomplete values [7],
[12]–[14]. In particular, the impact of control traffic intensity
is neglected in most of these works and there is a lack
of mathematical models (derived from empirical analysis)
and discussion of polling and configuration traffic between
a switch and its controller [7], [13]. For example, the authors
in [15] assume that the cost of statistic collection from
each switch is always 40 KBps, and [16], [17] use 160-byte
messages sent from switches to controller at the rate of 100 to
400 k/s. Another category of works on reducing the overhead
of switch-controller delay enhances the autonomy of switches
to handle flows [18]–[21]. These works also do not utilize
realistic control traffic in their performance evaluation studies.

This paper presents the following contributions. First
(§III-B), we study the overhead of flow rule installation
transactions and show that this overhead is dependent on the
triggering event and the flow rule complexity. Second (§III-C
and §III-E), we demonstrate that the overhead imposed by
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status update messages is directly correlated to the number
of configured flow rules/queues and the complexity of said
configurations. Third (§III-F), we present observed values for
the overhead of one-time transactions as well as mathematical
models for long-term status update overheads.

II. BACKGROUND

OpenFlow. This protocol allows for remote management
of flow rule tables on switches through the use of various
types of messages, such as configuration request, version
negotiation, and status update messages [22]. For example, the
multipart_request and multipart_reply messages
are used to query status information from the switch.

Open vSwitch Database Management Protocol
(OVSDB). This protocol allows a network application
to configure the non-flow components of the switch such as
queues, QoS, and bridges [23]. OVSDB performs operations
such as insert, update, and delete, as part of “transact”
Remote Procedure Call (RPC) requests [24] to the switch.
Bandwidth slicing is accomplished by configuring QoS on the
switch with OVSDB. When combined with flow rules, this
allows for the routing of data flows into queues that enforce
QoS. The relevant tables in the switch database for queue
management are port, qos, interface, and queue.

Open vSwitch (OVS). Open vSwitch (OVS) [25]–[27]
is an open-source, production-quality switch implementation.
Although OVS was originally built for connectivity in vir-
tual environments, its evolution has extended its applications
to areas such as the control stack of white-box switches.
Furthermore merging paradigms such as forwarding plane
programmability seek to further streamline the flow of control
messages via FPGA-enabled and programmable NICs. OVS
is extensively used in cloud computing infrastructures such as
OpenStack [28] and Open-Nebula [29].

Open Daylight (ODL). ODL is a widely-used SDN
controller that supports a variety of southbound protocols.
Through a RESTCONF [30] north-bound interface, ODL pro-
vides access to the many necessary southbound protocols used
for network configuration, such as OpenFlow and OVSDB.

III. CONTROL TRAFFIC CHARACTERIZATION

In this section, we evaluate and characterize the communica-
tion between switch and controller. We first present empirical
evaluation of control traffic considering flow table and queue
configurations. Then, we present mathematical modeling of
control flow characteristics.

A. Methodology

We set up a testbed consisting of one machine running
ODL Oxygen as the SDN controller, and another machine
running OVS 2.9.5 as the software switch. OpenFlow packets
exchanged between ODL and OVS are collected by tshark
[31] and are characterized with the following metrics: traffic
rate, packet size, and packet rate. These metrics were cho-
sen because traffic rate characterizes bandwidth utilization,
while packet size and packet rate are used to determine
queuing and transmission delays. Packet size and rate are

TABLE I: Summary of key notations

Notation Description
pi A packet
s(pi) Size of packet pi
τ Polling period (seconds)
F The set of flow rules on a switch
fi A flow rule
s(fi) Size of flow rule fi
Q The set of queues on a switch
qi A queue configuration
s(qi) Size of queue configuration qi
Rb Switch-to-controller data rate (bps)
R0

b Data rate (bps) when no flow rules/queues are configured
Rp Switch-to-controller packets per second (pps)
Sp̄ Switch-to-controller average packet size (byte)

D0
Amount of data (bytes) sent from switch to controller per
polling period when no flow rules/queues are configured

P0
Number of packets sent from switch to controller per

polling period when no flow rules/queues are configured

important variables for determining message delivery delay
with scheduling algorithms such as Weighted Fair Queuing
(WFQ) and Hierarchical Token Bucket (HTB). Packet size
is especially significant because it is used to calculate the
effective service rate of a queue. We analyze these metrics with
regards to varying numbers of flow rules/queues and different
configurations of flow rules. Table I presents a summary of
the key notations.

B. Flow Rule Installation

Flow rule installation can be a reactive or proactive process.
Although proactive installation of a flow rule onto a switch
only requires one message, the normal scenario involves a
reactive two-message exchange between the switch and con-
troller. A packet_in message is generated by the switch
and sent to the controller when a packet arrives at the switch
and at least one of the following conditions holds: (i) the
packet does not match any existing flow rules on the switch,
(ii) the packet matches a flow rule that explicitly specifies the
generation of a packet_in message, (iii) the packet’s IP
TTL value is invalid. In response to the packet_in message
(pp in), a flow_mod message (pf mod) containing flow rule
data is sent from the controller to the switch. The packet_in
message structure contains two variable-size fields: match and
data. The match field is used to specify the context of the
packet that arrived at the switch and triggered the packet_in
message, and the data field transfers the packet itself for further
inspection by the controller.

We set up a scenario where a packet_in message is
generated by a flow table miss on a switch. We observed that
although there are four potential context fields, only one is
included in the packet header, and the rest always use their
default values. This results in a 108-byte header. When a flow
table miss is caused by an input packet pin, the packet_in
message size can be represented by s(pp in) = 108 + s(pin)
bytes, where s(pin) refers to the size of pin. The flow_mod
message is then generated by the controller to add a new
flow rule to the switch’s tables. Similar to the packet_in
message, the flow_mod message has two variable-size fields:
match and instruction [22]. We focus on variations in match
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TABLE II: Size of a flow_mod packet and flow_stats structure for
common match configurations.

Flow Rule
Configura-

tion

Specified Match
Fields

flow_mod
Packet Size
(s(pf mod))

(bytes)

flow_stats
Struct Size

(s(fi))
(bytes)

(C1) IPv4 src 162 96
(C2) IPv4 src+dst 170 104

(C3) IPv4 src+dst,
switch ingress port 178 112

(C4)
IPv4 src+dst,

switch ingress port,
MAC src

186 120

(C5)
IPv4 src+dst,

switch ingress port,
MAC src+dst

194 128

(C6)

IPv4 src+dst,
switch ingress port,

MAC src+dst,
TCP src+dst

226 160

(C7)

IPv4 src+dst,
switch ingress port,

MAC src+dst,
UDP src+dst

226 160

(C8)

IPv4 src+dst,
switch ingress port,

MAC src+dst,
ICMP src+dst

218 152

field configurations so we only include the default instruction
of output-to-port. Table II (third column) lists the com-
mon match field configurations and the size of a flow_mod
packet to configure a flow rule with these parameters on
a switch. This table also shows the size of flow_stats
structures, which we discuss in §III-C2.

C. Polling Flow Table

1) Variations in Flow Table Size: We install various flow
rules on the switch to measure the overhead of poll messages
between the controller and the switch. These poll messages
are observed for all generalized switch configurations; we
highlight specific interactions between switch configuration
and control overheads. Each flow rule, denoted as fi, contains
a match for IPv4 EtherType, IPv4 source address, and IPv4
destination address. A flow rule with this structure is repre-
sented using 104 bytes in each multipart_reply-flow
message. However, in §III-C2 we show that not all flow rules
require the same amount of data to convey rule information. To
measure the network load caused by status update polling, we
vary the number of flow rules installed on the switch between
0 and 500 flow rules, and capture network traffic between the
switch and controller.

Data Rate. Figure 1(a) shows the relationship between
control traffic bandwidth and the number of flow rules in the
flow table. The amount of utilized bandwidth increases linearly
versus the number of flows. As this figure shows, the traffic
primarily consists of multipart_reply messages from the
switch to the controller to convey the current switch state. The
slope of the data transfer rate from the switch to the controller
is directly correlated to the amount of data required to convey a
single flow rule’s information and the controller’s polling rate.
On the other hand, the traffic rate from the controller to the
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Fig. 1: The network overhead imposed by status update messages increases
as the number of flow rules in the switch’s flow table grows. The traffic is
primarily from the switch to the controller to convey the current status of the
switch.
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Fig. 2: This figure highlights the effect of flow rule match field configuration
on control traffic overhead when there are 100 flow rules on the switch. Values
in this figure are related to the slope of the lines in Figure 1.

switch only exhibits a slight increase and is not significantly
affected by switch state.

Average Packet Size. The average packet size function is
an asymptotic function with regards to the number of flow
rules on the switch. As Figure 1(b) shows, the average packet
size of the two traffic directions are significantly different.
This is because the size of most data packets in the switch-
to-controller direction is the Maximum Transmission Unit
(MTU), while traffic in the other direction mostly consists of
small multipart_request messages. The average packet
size curves at both directions are asymptotic (the controller
to switch curve is very flat), with the average packet size of
traffic in the controller-to-switch direction approaching the size
of a TCP ACK packet, 66 bytes, and the average packet size
of traffic in the switch-to-controller direction approaching the
1500-byte MTU.

2) Variations in Flow Rule Match Field Configurations:
In this section, we study the effect of different match field
configurations in the flow rules. We vary the flow rules pushed
to the switch in the specificity of their match fields. The
variations in specified match fields range from only matching
a source IP address to matching specific IP protocols from
specific machines. We use a total of eight common types of
match field configurations. We present the results in Figure 2.
Naturally, increasing the number of match fields in each flow
rule increases the amount of data needed to transfer state in-
formation from the switch to the controller via flow_stats
structures. This highlights the benefits of having simpler flow
rules that require less data to transfer between switch and
controller.
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Fig. 3: The network overhead imposed by status update messages increases as
the number of queues in the switch database increases. These figures show the
same patterns as Figure 1; however, since representing each queue requires
less number of bytes compared to a flow rule, the rate of increase in each
figure is lower.

D. Queue Configuration

In an ODL-OVS system, flow rules are configured through
the OpenFlow protocol, and everything else in the switch
database is configured through OVSDB, including queues and
queuing disciplines. Assuming that queuing disciplines have
already been configured on each relevant port, adding a queue
to a switch involves a three-message exchange between the
controller and the switch. There are two messages from the
controller to the switch: one message to add the queue to the
switch database, and another message to add the new queue
to a queuing discipline. Both messages from the controller
to the switch are insert actions as part of a “transact”
RPC request. After these messages have been received by the
switch, the switch responds with an “update” RPC request to
inform the controller about the changes made to its database.
Unlike with flow rules, the switch and controller do not
periodically exchange status updates through OVSDB after
the queue has been configured; any status updates are handled
through OpenFlow messages.

E. Polling Queue Status

1) Variations in Number of Queues: In our testbed, each
queue pushed to the switch is constructed using an identical
structure. A total of 500 queues are created and pushed to
the switch in increments of 10 queues. Each of our specified
queues is represented with 36 bytes in a multipart_reply
message. The packet capture method for queues is similar to
the packet capture method for flow rules in §III-C1: control
traffic data is captured via tshark for each state where the
switch has {0, 10, 20, ..., 500} queues in its database.

Date Rate. Figure 3(a) presents the relationship between
the number of queues in the switch database and the overhead.
Similar to the observations in §III-C1, the data rate follows a
linear trend, with most of the data traveling in the switch-
to-controller direction. However, since a queue status update
requires fewer bytes than a flow rule, the slope of the linear
trend is lower. The network traffic overhead of conveying 500
queues’ status information is less than the traffic overhead of
conveying 500 flow rules’ information: 81.8 Kbps vs 176.3
Kbps.

Average Packet Size. The average packet size function
of controller-to-switch control traffic is similar to that in
§III-C1—asymptotic. However, since the amount of informa-
tion associated with a queue is less than that of a flow, Figure

TABLE III: Baseline variables

Variable Description Value
τ Polling period 3 s
M Maximum Transmission Unit 1514 bytes
R0

b See Table I 19610.67 bps
D0 See Table I 7354 bytes
P0 See Table I 12 packets
H0

f multipart_reply-flow header size 82 bytes
H0

q multipart_reply-queue header size 122 bytes

3(b) approaches the asymptote less aggressively than Figure
1(b). Comparing 500 queues to 500 flow rules, the average
packet size of transmitting information about 500 queues is
1024 bytes/packet while the average packet size of transmitting
information about 500 flow rules is 1225 bytes/packet. Due
to the asymptotic nature of the average packet size function,
greater amounts of flow rules and queues in the switch have
increasingly lesser effects on average packet size.

F. Empirical Models

In this section, we leverage the observations made in
§III-C and §III-E to develop mathematical models of switch-
controller overhead. We create a set of generalized models
based on empirical analysis of a switch-controller system
that can be used to predict realistic control traffic overheads.
These models include variables obtained through empirical
observation, and these variable values are presented in Table
III.

We observed that switch status update messages occur at
regular intervals (3 seconds in our experiments), and that the
size of multipart_reply-flow messages varies depend-
ing on the number and configurations of flow rules on the
switch. However, the size of multipart_reply-queue
messages only vary depending on the number of queues on the
switch. We combine these observations with those of Figures
1, 2, and 3 to present a generalized form of the rate of control
traffic (bps) from the switch to the controller:

Rb(F ,Q) =∑
∀fi∈F s(fi) +

∑
∀qj∈Q s(qj)

τ
+R0

b (1)

where F is the set of flow rules on the switch, Q is the set of
queues on the switch, s(fi) is the size of flow rule fi, s(qi)
is the size of queue qi, R0

b is the baseline transfer rate when
there are no configured flow rules or queues on the switch,
and τ is the polling period by the controller. Note that s(fi)
depends on the configuration of the flow table entry.

Next, the average packet size of the control traffic from the
switch to the controller is represented as:

Sp̄(F ,Q) =∑
∀fi∈F s(fi) +

∑
∀qj∈Q s(qj) +D0

d (
∑

∀fi∈F s(fi))+H0
f

M e+ d
(
∑

∀qj∈Q s(qj))+H0
q

M e+ (P0 − 2)
(2)

where D0 is the baseline amount of data transmitted
per polling period, P0 is the number of transmitted
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packets that are not multipart_reply-flow or
multipart_reply-queue packets, H0

f is the
multipart_reply-flow header size, H0

q is the
multipart_reply-queue header size, and M is the
MTU. Equation (2) was derived using a similar method as
Equation (1): with the observation that control traffic data is
periodic, we extrapolate that average packet size over a single
burst is equivalent to the average packet size of the entire
flow. From there, extracting an expression for average packet
size consists of calculating the amount of data per burst and
the number of packets per burst, and then combining the two
to express overall average packet size.

Thus, Equations (1) and (2) provide a framework to predict
control traffic from a switch to its controller given any arbitrary
flow rule or queue configurations. These equations accurately
predict control traffic overhead for each switch in the network
and are applicable for multi-switch topologies.

IV. CONCLUSION

Accurate modeling of control traffic is essential for resource
allocation in edge, fog, and cloud computing systems. In this
paper, we first studied control traffic overhead when switches
include varying flow table states and queue configurations.
Analysis of this overhead revealed that the total throughput
and average packet rate of control traffic are directly correlated
with the number of active flow rules and queues. We studied
these factors to highlight the non-negligible impact of control
traffic congestion on resource management and effective net-
work design. The methodology of this paper can be applied
for modeling and analysis of various southbound protocols.

The results presented in this work lay the ground toward
designing networks with reduced and predictable control traffic
delay. Specifically, by carefully controlling network topology
based on switch-controller communication path, we can reduce
the amount of control data. Also, in any given network
topology, control traffic delay can be predicted by combining
the control traffic overhead models proposed in this paper
with analysis of queuing strategies employed by switches.
Developing deterministic-delay resource allocation methods is
left as a future work.
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