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Abstract—The visually impaired rely heavily on hearing and
touching (with their cane) to navigate through life. These senses
cannot make up for the loss of vision when identifying objects
in the user’s path. In this paper, we propose NavSense, an
assistive device that supplements existing technology to improve
navigation and peace of mind in day to day life. NavSense relies
on range detection, computer vision, and hardware acceleration
mechanisms to provide real-time object identification and context
to the user through auditory feedback. In particular, we use four
hardware platforms – Raspberry Pi 3 B+, Coral Accelerator,
Coral Development Board, and Intel Neural Computer Stick –
to compare the efficiency of object detection in terms of time
and energy during setup and inference phases. Based on these
results, it is possible to tailor the design for specific energy-
accuracy requirements. Also, we have implemented and used
NavSense in real-world scenarios to show its effectiveness.

Index Terms—Blindness, Accessibility, Computer Vision, Ma-
chine Learning, Object Recognition, Image Classification

I. INTRODUCTION

Visual impairment is a disability that is estimated to affect
1.3 billion people worldwide, the majority of which are
over the age of 50 [1]. According to a 2011 study on 300
legally blind or functionally blind individuals, over 50% of
the participants said that they had had at least one head-level
accident in the last year, while 12% said that they experience
mishaps more than once a month. The same study found that
over 50% of participants have tripped resulting in a fall, once a
year or less with just over 30% occurring once a month or less
[2]. In the United States, it is estimated that costs associated
with visual impairments total upwards of $40 billion a year
with medical costs accounting for $22 billion of that amount
[3].

Navigating while blind or visually impaired can be ex-
tremely dangerous, with each step forward posing a significant
risk for tripping and serious injury. In order to safely navigate,
those affected by visual impairments are typically accompa-
nied by another person or service animal [4]. However, these
methods can limit independence and are often inconvenient
and cumbersome. Current solutions for Electronic Traveling
Aids (ETAs) come with a variety of problems ranging from
the expensive cost of proprietary technology to their large
overbearing sizes. Portable devices for the visually impaired
are often ineffective for everyday use, sometimes even harm-
ing the user’s experience by providing inaccurate or vague
information [5].

While there are many existing ETA products, they present
an abundance of issues. One of the more popular ETA
products, the Sunu Band [6], is a wristband that uses sonar
and haptic feedback (vibrations) to tell the user how far they
are from an object. A big shortcoming of this device is that

it must be pointed in front of the user, meaning that their
arm must be pointed down and their elbow cannot be bent.
Additionally, the user has no way of differentiating the kind of
object that they’re approaching. Another common shortcoming
seen in ETA product design is the interference with a visually
impaired person’s ability to navigate by listening for audial
cues [4]. They use sounds to navigate their surroundings, and
any sounds produced by a device may interfere with their
capability to navigate. This shortcoming has been observed
in products such as the UltraCane, Smart Cane, Silicon Eyes,
and more [5]. Furthermore, they have problems with usability
and high cost.

The most expensive of the four products mentioned pre-
viously is the UltraCane, starting at $720 [7]. The price of
this product is extremely high for consisting mainly of two
ultrasonic sensor and vibration motors. The Sunu Band is
cheaper, starting at $300, but is still expensive compared to
the cost of its components. As mentioned above, the biggest
problem with the Sunu Band is usability. Some products, such
as the UltraCane and Sunu Band, use vibrations rather than
sounds, and visually impaired people often find it difficult to
learn the meanings of different vibrations. Our goal, therefore,
is to improve usability by providing intuitive signals and
warnings, while keeping the cost low.

In this paper, we propose NavSense, a device that increases
independence and mobility for those who are affected by
visual impairments. This solution uses a camera, computer
vision, and range finding sensors to notify a user about obsta-
cles in the environment around them. The technology offers
context – such as object identification – to the user to assist
in navigation. By identifying and classifying objects such as
stairs, people, vehicles, and stationary obstacles, NavSense
enables the user to safely progress along their intended path
and lower the risk of injury. We rely on the user’s side to
side motion when moving the cane or the motion of a guide
dog to frame the camera and get an accurate depiction of the
current environment in front of the user. The small footprint
of this device simplifies integration with white canes without
burdening the user with heavy and cumbersome devices.

NavSense attaches to a user’s preexisting guide dog or white
cane, integrating with the user’s existing routines to minimize
the learning curve associated with obtaining a new assistive
device. The proposed solution improves upon existing sys-
tems and offers a simple, yet informative user experience to
improve the quality of life of the visually impaired. By adding
on top of preexisting technology, users who do not fully trust
the technology can still have peace of mind that the assistive
devices they have become accustomed to are still available as
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a backup.
In conjunction with the Raspberry Pi 3B+ [8], Raspberry Pi

Cam [9], an AI hardware accelerator, and a distance sensor,
we developed a cost effective, low power system capable
of offering real-time context and navigation assistance. In
particular, we compare the efficiency of various hardware
platforms in terms of accuracy, energy, and duration. The main
software libraries we use are: the Neural Compute Stick API,
the Google Edge TPU API, and the Python Imaging Library
(PIL) to gather and process images, perform inference, and list
the identified objects and their classes. It is worth mentioning
that our results are complementary to those of [10], which
does not study hardware-accelerated solutions.

The rest of this paper is organized as follows. Section
II presents the design and implementation of NavSense. We
evaluate the performance of NavSense in Section III. Section
IV concludes the paper.

II. DESIGN AND IMPLEMENTATION

The development of NavSense required a large focus on
user needs. Through surveys, we identified the issues that
visually impaired users found with existing ETAs and were
able to make adjustments to create a more accessible system.
By creating a system that is used with existing technologies
such as white canes and guide dogs, we do not force the
user to abandon technologies that they are comfortable with
already. Figure 1 shows the components of NavSense.

Our largest challenge was creating a user interface with no
visual components. Our interface uses audio to communicate
information and allows the user to physically feel any buttons
they may need to press for operation. Functionally, NavSense,
as shown in Figure 2 goes through several steps in the identi-
fication process to output information to the user. These steps
are: image gathering, processing, feature collection, point
of interest detection, point of interest processing, decision
making, and user notification.

For hardware, we test and compare three different boards:
the Raspberry Pi 3B+ [8], the Xilinx Ultra96 [11], and the
Google Coral Development Board [12]. We also compare
three USB hardware accelerators: the Intel Neural Compute
Stick (NCS) [13], the Intel Neural Compute Stick 2, and the
Google Coral Accelerator [14] for use in conjunction with the
Raspberry Pi 3B+. There were two cameras that we tested for
image capture: the Raspberry PiCam and the Logitech C920
Webcam [15]. In addition, we compare two distance sensors:
the MB1040 LV-MaxSonar-EZ4 ultrasonic sensor [16] and the
TFmini Infrared Time of Flight sensor [17].

For the main programming language, we use Python for
its ease of use with machine learning, and the built in APIs
included with both the Intel Neural Compute Stick and Google
Coral Accelerator which are both written in Python.

A. Image Gathering and Processing

The image gathering process within Navsense uses the
Python Imaging Library (PIL) to gather images from the
PiCam. PIL not only manages when we gather our frames,
but it also keeps track of how many frames per second our
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Fig. 1. The physical component layout of the NavSense system. The USB AI
hardware accelerator, Raspberry Pi 3B+, and PiCam module form the main
components of the system.
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Fig. 2. The software system architecture of the NavSense system detailing
the seven main sections of processing the device completes.

system is able to compute for the benchmarking tests. The
images are taken from the camera and then sent on to Image
Processing.

For the Intel Neural Compute Stick, image processing
occurs on the Raspberry Pi using the OpenCV (CV2) library
[18]. Simple processes such as image resizing and reformat-
ting for float16 calculations are handled by this library in
order to prepare the image to be sent to the Neural Compute
Stick. We use the CV2 library due to its simplicity, widely
available documentation, community support, and the fact
that it is open source. CV2 is written in C and is compiled
in multiple embedded platforms allowing for easy porting
between devices and development [19]. The features found in
the library offer precisely what we need to deliver an image
in the proper format. For the Coral Accelerator and Coral
Development Board, we use the built in machine learning
engine included with installation of either device to run object
detection.

The choice to use the Raspberry PiCam was made due to
its ability to easily interface with the Raspberry Pi and the
pre-processing features it offers on the board, which helps
offloading processing away from the CPU [20]. The simple
calling function for the capture of an image helps speed
up the image gathering process. The customizability of the
image capture process, with variables that are adjustable by
the programmer such as the preview time and the format of the
image speeds up image processing. The small form factor of
the PiCam allows us to place the camera with the Raspberry
Pi board together in a small package. With four mounting
holes on the PCB, we are also able to create custom mounts
and angle the camera in a way we see fit.

The other option for camera that we experimented with was
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the Logitech C920 Webcam. While this device offers higher
resolution pictures, its large form factor, bulky USB connector,
and incompatible mount led us to believe that it would not be
a good fit for NavSense. Since the device must be mounted
on a white cane or guide dog, any increase in size or weight
decreases the comfort for the user.

B. Point of Interest Detection and Decision Making

For the Intel Neural Compute Stick (NCS), the work of
image analysis and object recognition using machine learning
models is handled by the Neural Compute Stick API. The
chosen recognition model is processed using the Neural Com-
pute Stick SDK to produce a graph file compatible with the
device. This graph file is loaded into the NCS’s memory and
used to complete a forward pass over the image using its 12
SHAVE cores to identify points of interest and identify the
objects associated with them using a MobileNetSSD graph
file [21] and relay the locations and names of those objects
back to the Raspberry Pi 3B+. The Coral Accelerator uses
its own engine to process object detection and comes with its
own EdgeTPU ASIC machine learning accelerator to process
TensorFlow Lite models, and can be used through API calls
similarly to the NCS.

We use the Single Shot Detection (SSD) models due to their
general accuracy improvement over YOLO networks [22].
While speed is certainly important to our system, we believe
that the most important aspect to the safety of the user is
that the predictions made by the system and the information
delivered to the user are as accurate as possible [4].

We use the MobileNet v2 Convolutional Neural Network
due to the speed advantages offered over its previous gener-
ation. By using depthwise separations, Mobilenet is able to
preform two layers of convolution – depthwise and pointwise
– to gather and filter information from the image at a faster
speed. Furthermore, Version 2 projects the layers further apart
so as to reduce bottlenecking in the analysis of the features.
By directly decompressing, filtering, analyzing, and then re-
compressing the data, Mobilenet V2 [23] is able to achieve
the performance of larger models using fewer resources and
at faster speeds.

C. Distance Measuring

In order to measure distance, we compare two different sen-
sors: the MB1040 LV-MaxSonar-EZ4 (Ultrasonic) produced
by MaxBotix, and the TFmini Infrared Time of Flight Sensor.
Both of the sensors we evaluate can measure distances at least
20 feet away. NavSense needs to be able to accurately measure
the distance of objects in front of the user. This allows the
user to better visualize their surroundings. Since NavSense is
attached to a white cane, which continuously moves side to
side in a horizontal motion, we will have to ensure that the
distances provided to the user are fast and accurate, relating
to the same objects detected by the camera.

To set up either sensor, the VCC pin on the sensor is
connected to the 5V output on the Raspberry Pi, ground on the
sensor is connected to ground, and the TX pin on the sensor is
connected to the RX pin on the Raspberry Pi. The Raspberry

Pi provides the Python library RPi.GPIO [24], that allows the
user to access and control the GPIO pins on the board. The
value read from the RX pin on the Raspberry Pi is mapped to
a certain distance. The reading of the RX pin is synchronized
with the camera taking an image so that we know the distance
read is corresponds to the object at the center of the image.

D. User Notification

As mentioned in the introduction, the goal of this project
is to improve usability by making NavSense’s responses
intuitive. For this reason, we have decided that audial cues
will be the clearest way to communicate what the system is
observing. We determined that the simplest and clearest way
to do so is using text-to-speech. For this project we are using
pyttsx [25], a Python text-to-speech library that utilizes espeak.
This functionality can be accessed through both Bluetooth and
the built-in headphone port on the Raspberry Pi 3B+. Our
research into current ETA products shows that audial cues
can interfere with navigation when used incorrectly, so we
are extra careful with how we present information to the user
[5]. We allow the user to adjust both the volume and speaking
speed of the device, in order to cater to their needs.

When the user has the device in audio mode, NavSense
scans the environment about every 5 seconds, an image is
taken, the distance sensor value is read, and inference is run
on that picture. Once the object at the center of the image
is found, the distance to the object is put into a string, and
concatenated to the object label string. This string is then
passed to the text-to-speech library and read to the user. The
user will also be provided with a button, so that they can
interrupt the device at any time and choose when the inference
and distance measuring is performed in real-time. The reason
why the object detection is done every 5 seconds is to ensure
that the user is not bombarded with too much information,
most of which would have already been presented to the user
the last time an inference was taken. Continuous running of
the device would also increase the power usage, decreasing
the battery lifespan of NavSense.

E. Challenges Faced

Over the course of development we researched and devel-
oped on different possible platforms and technologies for use
in NavSense. The development boards used were the: Xilinx
Ultra96, Google Coral Development Board, and Raspberry Pi
3B+. We had initially planned development with the Intel
Neural Compute Stick 2 in conjunction with the Raspberry
Pi 3B+, however we soon learned that this device was not
initially compatible with the Raspberry Pi. The OpenVino
[26] toolkit that is used to interface with the Intel Neural
Compute Stick 2 was not compatible with ARM processors
such as the Raspberry Pi until very recently and the version
that was compatible was a stripped down subset of the toolkit
which did not contain the features that we need, such as
object recognition support or a working installer. This led us to
look into development with the original Intel Neural Compute
Stick that was built specifically for the Raspberry Pi. The
biggest difficulty with this device was finding object detection
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models that are compatible with it. There was a lack of pre-
compiled graphs, which are necessary for inference detection
with this device, so we had to find pre-trained models and
convert them to graphs. It was difficult to find models in
the correct format that could be converted to graphs. Most
of the TensorFlow and Caffe models that we have found to
be compatible were image classification models and are not
able to detect multiple objects in a scene. The model we have
chosen is a MobileNetSSD v2 model trained on the COCO
dataset [27].

Working with the Ultra96 posed several problems in the
development process. The first problem encountered was with
installing libraries. TensorFlow [28] and OpenCV (CV2) both
were difficult to install due to the lack of aarch64 architecture
wheels available on their respective websites that would com-
pile for this particular platform. The Xilinx Object Detection
GitHub repository [29] will install CV2, however, this version
of CV2 does not have the Deep Neural Networks (DNN)
module included. We managed to install the most recent
version of CV2 through a bash script, whereas TensorFlow
was installed after being directed to a user GitHub repository
containing the installation files that we needed [30].

The next problem was figuring out which models would
run the fastest and most accurate on the Ultra96. Most of
the object detection programs that we found ran extremely
slow on this board due to the lack of hardware acceleration
utilization of those algorithms. In order to fully take advantage
of the FPGA, we needed to find a program that worked with
hardware acceleration. We found three different programs:
QNN [31], BNN [32], and FINN [33] built for the Ultra96.
The first program QNN was only built for use with TinyYolo
[34]. This model only provides 20 classes, and was insufficient
for our purposes. The second program, BNN, was trained on
CIFAR 10 [35] which only has 10 classes. We could retrain
the overlay, however the maximum number of classes for the
overlay is 64, which isn’t enough to hold the 90 classes from
the COCO [27] data set that we wanted to use. The third
program, FINN, does not compile on our machine.

III. EVALUATION

In this section, we evaluate the performance, accuracy, and
power consumption of the Raspberry Pi 3B+ in combination
with the Coral Accelerator and the Intel Neural Compute
Stick. We also evaluate the performance and the accuracy of
the Coral Development Board.

A. Performance Testing

For performance testing, we modified the NavSense pro-
gram to receive an image as input instead of capturing an
image from the camera. The program calculates the start-
up and inference time of each device. We ran both of these
programs on the Raspberry Pi 3B+ and the Coral Development
Board. We also used the Intel Neural Compute Stick and
the Coral Accelerator in conjunction with the Raspberry Pi
3B+. For the Intel Neural Compute Stick, we are using a
MobileNetSSD V2 Caffe [36] model trained on the VOC data

set that was converted to a graph file to use with the Intel Mo-
vidius SDK. The Coral Accelerator is using a MobileNetSSD
V2 TensorFlow Lite [37] model trained on the COCO [27]
data set and optimized to use with the Coral Accelerator. The
Caffe model we used with the Intel Neural Compute stick
is the same model as the TensorFlow model, but converted
into a Caffe version. The Coral Accelerator is running in
normal mode without the high performance setting turned on.
The high performance mode causes the Coral Accelerator to
become extremely hot to the touch according to the official
Coral website. This problem in conjunction with the higher
power draw of the device is why we did not pursue enabling
this mode for NavSense. The Coral Development board runs
the same program as the Coral Accelerator. The control group
with the Raspberry Pi 3B+ CPU uses the same program as the
Coral Accelerator, but with a regular TensorFlow Lite model
instead of the Coral Accelerator optimized model.

For our testing method, we gathered 10 images, 5 images
of streets, and 5 images of the interiors of houses, and tested
each image 3 times for a total of 30 tests per device. We then
averaged the times for the start-up time and inference time and
compared the results. We did not perform any performance
testing of the Ultra96 because the models that we have on
the Ultra96 are too different than the models of both the
Coral Accelerator and the Intel Neural Compute Stick. The
end result of those tests would not provide us with accurate
data to compare between each device.

The start-up time is measured as the time it takes for the
device to start-up and is only measured once every initializa-
tion of NavSense. As seen in Figure 3, the start-up time of
the Coral Accelerator is almost double the start-up time of
the Intel Neural Compute Stick with an average set-up time
of 3.28 seconds compared to the Intel Neural Compute Stick’s
1.26 seconds. The start-up time for the control group and the
Coral Accelerator was negligible, as expected, since there is
no initialization of hardware required when the program starts.
Since the start-up time is only taken into consideration once
the device is turned on, it is not as important as the inference
time, which will be run every time an image is taken to be
processed.

We took the standard deviation of the data to see how
consistently the start times were as seen in the error bars
of Figure 3. The start-up time of all four devices were low,
with all devices having a standard deviation less than 0.125
seconds. The most inconsistent result was using the Raspberry
Pi 3B+ with the Coral Accelerator which had a standard
deviation of 0.0759 seconds, showing that throughout all of the
tests, the start-up time of each device is extremely consistent
on all platforms. The standard deviation gives us a glimpse
of how reliable NavSense will be, and through our tests, we
have demonstrated that no matter the platform, our results will
always be extremely consistent and predictable.

In Figure 4 we report that the Intel Neural Compute Stick
has an average inference time of 0.196 seconds compared
to 0.281 seconds for the Coral Accelerator. We can observe
that the Intel Neural Compute Stick is slightly faster than the
Coral Accelerator, however for our purposes, the difference
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Fig. 3. Setup time: the average amount of time it takes for each device to
load and initialize the neural network to accept input for prediction.
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Fig. 4. Inference time: the average amount of time it takes the device to
return its predictions once the inference process has been started.

in time for this test is trivial since we will be polling
images from the camera about every 5 seconds, and both of
these inference times are far below the 5 second mark. The
inference time for the control group was twice as slow as the
other hardware accelerated options as expected. The Coral
Development Board had the fastest inference times with an
average of 0.035 seconds per image. However, the greater
power consumption, larger form factor, as well as higher heat
output prevents us from using this device in our project. Once
the program starts to run, inferences will be run every time
the camera captures an image, so optimizing the time it takes
between each inference is extremely important for both the
user experience as well as improving power consumption.

The inference test standard deviation can be also be seen
in Figure 4. All of our tests showed extremely consistent
performance no matter the image being tested. We report the
most inconsistent result being the Raspberry Pi 3B+ with
the Intel Neural Compute Stick with a standard deviation
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Fig. 5. Average time to take a picture. The Logitech WebCam has a faster
capture rate than the Raspberry Pi Cam.

of 0.0669 seconds and the most consistent result being the
Coral Development Board with a 0.00019 seconds standard
deviation.

Depending on the situation, either the Intel Neural Compute
Stick or the Google Coral Accelerator both provide extremely
high performance with low power consumption. After the
performance tests for object detection, we ran performance
tests on both the Raspberry Pi Camera and the Logitech HD
Pro Webcam C920 webcam. We measured the time it takes to
turn the camera on, capture the image, save it as a file, and
finally turn the camera off. We ran this test 150 times on both
cameras (150 photos on each camera).

The results can be seen in Figure 5. The speed of both
cameras are very similar, with the PiCam being about 100ms
faster. Because we want to minimize the physical size of
NavSense, the PiCam is the better option.

B. Accuracy Testing

The accuracy of each device was found using the output of
the performance test, and then manually finding which objects
were correctly identified in each image. The test program
outputted the first 10 objects detected with a confidence level
of 25% or above if applicable. The Intel Neural Compute Stick
identified 45 objects throughout the 10 images and the Coral
Accelerator identified 46 objects. However, Figure 6 illustrates
how the Coral Accelerator was less accurate than the Intel
Neural Compute Stick by about 10%. We hypothesize these
results could be influenced by the small sample size of these
tests, so we decided not to use this result in our analysis of the
devices. The Coral Accelerator had difficulties misidentifying
objects as people, while the Intel Neural Compute Stick had
difficulties misidentifying bathtubs as boats when detecting at
low confidence levels. The control program is the same as
the Coral Accelerator program, so the errors are the same.
Both programs misidentified objects with a dark background,
therefore we cannot recommend the reliance of object de-
tection in the night time without adequate lighting. The Coral
Accelerator, the Coral Development Board, and the Raspberry
Pi 3B+ CPU all use the program, so accuracy for the Coral
Accelerator is the same for all of these devices. The results
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Fig. 6. Prediction accuracy. The Intel Neural Compute Stick predictions
are nearly 11% more accurate compared to the predictions of the Coral
Accelerator.

of this test reflects the accuracy of the model running on each
device rather than the device itself, as different models will
result in differing accuracy.

C. Power Testing

In this section, we describe the results gathered through our
power testing of the multiple systems we have used in proto-
typing. To do this power testing we have used the EMPIOT
power measurement tool [38]. This board allows us to plug
in the Raspberry Pi 3B+ with the USB accelerators connected
and accurately measure power usage through different phases
of the system processes. In this section, we test two main
phases of the decision making stage of our system: the setup,
and inference. In these tests, we completed 30 iterations of
the setup and inference power usage while averaging the
information gathered. We completed these tests on the Intel
Neural Compute Stick, the Google Coral Accelerator, and by
running a TensorFlow Lite model on the Raspberry Pi 3B+
CPU as a control similar to the performance testing. We did
not perform any power tests on the Ultra96 due to the power
requirements of the Ultra96 being too high to test with the
EMPIOT power measurement tool.

In our first test, we use GPIO interrupts to trigger power
measurements at the beginning and end of the setup period
for the inference engine on all devices. This gave us an
accurate view of exactly how much energy was used by the
different devices through the same phases of their processes.
The results are presented in Figure 7. The standard deviations
of our measurements for the different devices are also shown
in Figure 7.

These figures show that the Google Coral Accelerator uses
more energy while loading the TensorFlow Lite model during
the setup phase. We also test this process on the Raspberry
Pi 3 B+ CPU and see that it uses significantly less energy
than either other device at the expense of speed. Finally,
the Intel Neural Compute Stick offers a trade off between
energy consumption and speed. In the next test we use the
same procedures on the EMPIOT board to measure the energy
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Fig. 7. Setup power usage: the average amount of power used by the device
during the initialization process. The Google Coral Accelerator uses more
power than the Intel Neural Compute Stick.
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Fig. 8. Inference power usage: the average amount of power the device uses
during inference. All three devices use a similar amount of power, but the
Coral Accelerator uses slightly more than the others.

usage during an inference operation. These results are shown
in Figure 8.

These results show that all three devices use a similar
amount of energy to perform inference. However, the Intel
Neural Compute Stick uses slightly less energy than the
Coral Accelerator and the Raspberry Pi 3 B+ control test.
The standard deviation of the measurements on the Coral
Accelerator are also more significant than the Intel Neural
Compute Stick. Our power testing has shown that a 4000
mAh battery can reach up to 5 hours of continuous battery
life, while a 10,000 mAh battery can reach up to 12.6 hours
of continuous battery life. Our system is completely flexible,
and allows the user to choose the size of the battery that fits
their usage and lifestyle.

D. Distance Measuring

As we mentioned in Section II, both sensors that we
compared, the MB1040 LV-MaxSonar-EZ4 and the TFmini,
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are approximately the same physical size and consume similar
power according the official product specification sheets. The
MB1040 has a maximum range of approximately 21 feet and a
minimum range of 6 inches. The benefit to using an ultrasonic
sensor is that the beam is wider than an infrared pulse, making
it more likely to find the object detected in the inference stage.

The TFmini infrared sensor is more accurate because it has
a narrower and more direct beam. Furthermore, the TFmini
is the more cost efficient option costing $10 less than the
MB1040 at the current time. The MB1040 has a maximum
range of approximately 39 feet and a minimum range of 1 foot.
The problem with the TFMini sensor, is that the narrow beam
makes it easier to miss the object detected during the inference
stage. The sensor must line up exactly with the object, or the
sensor will get in inaccurate or incorrect reading.

IV. CONCLUSION

In this paper we present NavSense, a device capable of
providing important navigational information to visually im-
paired users on the edge. This paper has discussed the benefits
of several different system components including hardware
visual processing accelerators and edge micro-controllers.
Using measured data for performance speeds and power usage,
we identified the best components to be used in conjunction
to make NavSense as fast and energy efficient as possible. For
the hardware accelerators, the Intel Neural Compute Stick and
Coral were unable to detect a number of different objects in
each image, so a more comprehensive dataset should be used
to train a new model in the future to further improve the
amount of inferences in a scene.

The Intel Neural Compute Stick is far faster in terms of
start-up speed compared to the Coral Accelerator. However
since this duration is only taken into account once every time
the program is started, we do not think that if we were to use
the Coral it would negatively affect the user experience. The
inference times for the Intel Neural Compute Stick are slightly
faster than the Coral Accelerator, however for all intents and
purposes, they are about the same. The control group shows
significant slowdowns when processing inferences, and we
believe that since the user can decide whenever they want
to run an inference through the push of a button, that the
inference should be as fast as possible to reduce confusion
caused by a disassociation between the press of the button
and a pause while the program is running. For this reason,
we will not be using the Raspberry Pi 3B+ alone to do the
processing. The Intel Neural Compute Stick model was also
slightly more accurate than the Coral. For these reasons, we
will be pursuing the Intel Neural Compute Stick or Google
Coral Accelerator with the Raspberry 3B+ for the end system.
However, we plan to continue testing with the newly released
Raspberry Pi 4 and on the Raspberry Pi Zero W when official
library support is released.

NavSense achieves a near real-time, affordable, open
source, and portable object detection and recognition system.
This system, designed to aid the blind and visually impaired,
can revolutionize the freedoms of those with visual impair-
ments in countries and environments typically less accessible.

NavSense offers important information to the user completely
isolated from network connectivity and fully on the edge. It
can provide accurate object recognition predictions at a rate
that allows for real world navigation. In conjunction with other
navigation technologies such as a white cane or guide dog,
NavSense can aid the visually impaired in improving their
quality of life and the safety of their transit. By making use
of new technologies in the fields of machine learning and
edge computing, our cutting-edge device is unlike any others
seen throughout our research, offering more context and more
direct information to the user at any given time.

Our open source model allows us to share our work with
the world so that people in all communities can benefit from
our research and development to recreate similar systems.
We hope that NavSense will not only benefit the computer
vision and machine learning fields, but also those with visual
impairments that may use the system to aid in everyday life.
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