
Cross-Layer Interference Avoidance MAC Protocol for Dense
Wireless Sensor Networks

Behnam Dezfouli, Marjan Radi, Mohammad Ali Nematbakhsh
{dezfouli, radi}@ieee.org

Abstract—In this paper, we propose IAMAC, an Interference
Avoidance MAC protocol to avoid inter-node interference in
dense wireless sensor networks. IAMAC interacts with routing
protocol via cross-layer information sharing between the MAC
and network layer. By providing information from network
layer, we enable the MAC protocol to make proper decisions
which result in fewer inter-node interference and lower delay.
Through interference avoidance, IAMAC reduces energy
consumption per node and leads to higher network lifetime
compared with S-MAC and Adaptive S-MAC. In addition,
IAMAC has lower delay than S-MAC. In our evaluations, we
considered IAMAC in conjunction with two error recovery
methods (ARQ and Seda). Our simulation results show that
our protocol is highly compatible with Seda and this
integration achieves higher network throughput and lifetime.

Keywords-Sensor Networks; Medium Access Control;
IAMAC; Lifetime; Cross-Layer Optimization

I. INTRODUCTION
There have been a lot of efforts [1-3] to investigate

wireless communication characteristics in wireless sensor
networks. These works revealed the irregularity and
unreliability of low power wireless links. Accordingly, three
distinct reception regions can be identified in a wireless link
[1,2]: connected, transitional, and disconnected. In sensor
networks, many links fall into transitional region. As far as
these links exhibit high variations (due to noise, inter-node
interference, etc.), there are many non-perfect links that can
be used in route selection. Neither the routing algorithms
[3,4] nor the MAC protocol collision avoidance methods [5-
8], cannot handle the effects of inter-node interference
completely.

Even though link estimation can help to select the best
next hop neighbour along the path to the sink, but this is not
enough. Concurrent transmissions of neighbor nodes lead to
inter-node interference and increase packet corruption rate.
This issue results in more energy consumption per node
which is in contrast with long lifetime of tiny sensor nodes.

On the other hand, recent studies in designing protocols
for sensor networks reveal the fact that reducing power
consumption cannot be handled completely in one layer of

the protocol stack and without any interaction with other
layers [9-11]. For example, to avoid collision in S-MAC [5],
all the nodes which overhear control packets (RTS and CTS)
are prevented from packet transmission. This mechanism
results in very high end-to-end delay of this protocol. To
improve the latency of S-MAC, Adaptive S-MAC [6] is
proposed and uses adaptive node activation based upon the
estimated transmission duration. This method has two main
drawbacks: (1) due to the variations in wireless channel,
exact time of activation cannot be calculated and many nodes
may suffer from idle listening or overhearing, (2) as the
network density increases, the number of nodes which will
try to adaptively wake up increases and results in higher
energy consumption of the network. According to these two
disadvantages, Adaptive S-MAC has a very low lifetime that
limits its applicability in many applications.

In this paper, we propose an Interference Avoidance
MAC protocol (IAMAC) that its main objective is to provide
higher network lifetime through avoiding inter-node
interference. In addition, we do not compromise delay as S-
MAC does and IAMAC provides lower latency than S-
MAC. By information sharing between IAMAC and network
layer, we make proper decisions in each node to avoid inter-
node interference and reducing delay. Reduction in
interference, leads to fewer data corruptions, which means
fewer active time of each node. The result of this reduction is
significant increase in network lifetime in comparison with
S-MAC and Adaptive S-MAC.

Monitoring and Surveillance are the main applications of
IAMAC. Nodes sample their environment periodically and
send their results to the sink node. Primary demands of these
applications are long network lifetime and transmission
reliability. Usually the delay of several minutes can be
tolerated. It should be noted that other applications can also
be envisioned for this protocol.

II. INTERFERENCE AVOIDANCE PROTOCOL
In this section we introduce our cross-layer MAC

protocol. Although the routing algorithm is not claimed to be
completely new, but it is necessary to be introduced before
we proceed to the MAC protocol description.

Proceedings of the International Conference on Networks & Communications (NetCom 2009)
IEEE Computer Society
doi:10.1109/NetCoM.2009.44

A. Routing Protocol
We use spanning tree optimization as the routing

algorithm. In the first step, each node broadcasts a fixed
number of control packets and records the number of
successfully received packets from its neighbors. After this
step, a preliminary neighbor table containing link qualities is
formed. Each pair of nodes has a link cost corresponding to
forward and backward packet reception rates. We use ETX
[4] as our link cost function. In the second step, sink node
sets its cost to zero and broadcasts this cost to its neighbors.
This broadcast is performed by transmitting Synch/Routing
packet. A lightweight time synchronization protocol [12] is
also used to synchronize sleep and wake schedules among
the nodes. Thereby, a Synch/Routing packet contains time
synchronization data along with the current cost of each node
to the sink. Upon receiving such a broadcast packet, each
node adds the received cost to the link cost of the node from
which this packet has been received. For example, consider
that node A receives a Synch/Routing packet from node B.
Then it adds the cost contained in Synch/Routing packet to
the cost of link A-B. If the resulting cost is less than the
current cost of A to the sink, B is selected as A’s parent.
Once the network reaches to a stable condition, each node
follows its sleep/wake schedule. Broadcast interval of
Synch/Routing packets during normal operation of the
network depends on the time synchronization accuracy and
the route change frequency. If the route cost of one node has
been changed, it must be broadcasted to notify its neighbors.

B. MAC Protocol
IAMAC is a sleep/wake MAC protocol. Fig.1 shows the

structure of Time Frame in IAMAC. In order to separate
synchronization from Time Frame duration, we proposed
Time Frame and Super Frame structures. For applications in
which network lifetime and delay are equally important, we
use simple Time Frames, and in applications in which
lifetime is critical, Super Frame structure can be used.

The first slot is devoted to transmission and reception of
the Synch/Routing packets (described in the previous
section). The main interference avoidance algorithm runs in
the RTS Slot. Fig. 2 shows its pseudo code. We have
provided enough comments in the algorithm to be self-

explanatory, but some more comments are worth mentioning
here.

If a node receives a RTS packet that is destined for it, this
RTS packet is added to the received RTSs queue. In this
state, if the RTS transmission from this node is scheduled, it
must be canceled. It should be noted that this node can still
receive more RTS packets. By applying such a mechanism, a
priority scheme can be used: a node with higher priority (e.g.
longer packet queue), schedules its RTS packet transmission
earlier.

If the received RTSs queue is not empty and no RTS
packet is overheard by this node, except the ones destined for
this node’s parent, this node can change its role. It means
that if its data queue is not empty, it will act as a sender and
reschedules its RTS packet transmission. This results in
sequential data transmissions from multiple nodes to a
common parent in one Sleep/Communication Slot.

The proposed algorithm for the RTS Slot is not a
complete solution to prevent inter-node interference.
Therefore, we propose a complementary algorithm to be run
in the CTS Slot. Fig. 3 provides its pseudo code. When the
RTS packets cannot be heard by neighboring nodes, while
CTS packets can be heard, this algorithm prevents inter-node
interference.

By applying a priority scheme in choosing transmission
time of the CTS packet, nodes with higher priority will have
higher chance to send their data packets. Inserting
transmission priority in the RTS packet, informs the receiver
to choose an appropriate reply time according to the
provided priority.

Figure 2. RTS Slot algorithm.

1. ParentAddress denotes the address of this node’s parent;
2. MyAdress denotes the address of this node;
3. CancelRTSTrans=FALSE; //a variable
4. CancelCTSTrans=FALSE; //a variable

5. /*if this node has some data packets to be sent*/
6. If (PacketQueue.Length!=0)
7. Choose a random time for RTS transmission;

8. While (we are in RTS Slot){
9. If (new packet arrives)

(a)

 (b)

Figure 1. Time Frame and Super Frame structures. (a): If the duration between two consecutive RTS Slots is less than 12 seconds, simple Time Frame
structure is used. (b): If the duration between two consecutive RTS Slots is more than 12 seconds, Super Frame structure is applied. In this condition, Time
Frame duration must not exceed 12 seconds.

Synch/
Routing

Slot

RTS
Slot

CTS
Slot

Sleep/Communication
Slot

Synch/
Routing

Slot

Sleep/Communication
Slot

Synch/
Routing

Slot

RTS
Slot

CTS
SlotSleep State

Time Frame

Super Frame
Inter RTS Slot Duration

Synch/
Routing

Slot

RTS
Slot

CTS
Slot

Sleep/Communication
Slot

Synch/
Routing

Slot

Sleep/Communication
Slot

RTS
Slot

CTS
Slot

Time Frame

Inter RTS Slot Duration

10. Pkt=Arrived Packet; // an RTS packet arrived;
11. /*transmit RTS packet; set the appropriate variable*/
12. If ((RTS timer is reached) && (channel is empty)){
13. Send RTS to Parent;
14. CancelCTSTrans=TRUE; }

15. /*if the channel was not empty*/
16. If ((RTS timer is reached) && (channel is not empty)) {
17. /*an RTS is received, if this packet is destined for this node’s

parent, reschedule RTS transmission*/
18. If (Pkt.RecAdress==ParentAddress)
19. Choose a random time for RTS transmission;
20. Else Deactivate=TRUE; }

21. /*if no previous RTS is transmitted from this node*/
22. If ((A RTS packet arrived) && (CancelCTSTrans==FALSE)) {
23. /*if the received RTS packet is not destined for this node and

this node’s parent*/
24. If ((Pkt.RecAddrees!=MyAdress) &&

 (Pkt.RecAdress!=ParentAddress)) {
25. Clear received RTSs queue;
26. Cancel RTS transmission;
27. CancelRTSTrans=TRUE;
28. /* cancel CTS transmission from this node*/
29. CancelCTSTrans=TRUE;
30. /*This node cannot be the part of any communication in this

Time Frame; deactivate the node (sleep until the next Time
Frame)*/

31. Deactivate=TRUE; }

32. /*if the RTS packet is destined for this node*/
33. Else if (Pkt.RecAddrees==MyAdress) {
34. Add Pkt to the received RTSs queue;
35. Cancel RTS transmission from this node;
36. CancelRTSTrans=TRUE; }

37. /*if this node receives an RTS packet destined for its parent and it

has not overheard any RTS*/
38. Else if (Pkt.RecAdress==ParentAddress) &&

 (CancelRTSTrans==FALSE) {
39. /*this node can be a sender*/
40. /*cancel CTS transmission*/
41. CancelCTSTrans=TRUE;
42. If (PacketQueue.Length==0)
43. Deactivate=TRUE; }

44. /*if this node has received an RTS packet that is destined for its

parent and it has received another RTS packet destined for it, this
node can be a sender*/

45. Else if ((Pkt.RecAdress==ParentAddress) &&
 (CancelRTSTrans==TRUE)) {

46. /*do not respond to previously received RTSs (clear the
received RTSs queue)*/

47. Clear received RTSs queue;
48. CancelRTSTrans=FALSE;
49. CancelCTSTrans=TRUE;
50. /*if this node has something to send, reschedule RTS

transmission*/
51. If (PacketQueue.Length!=0)
52. Choose a random time for RTS transmission;
53. Else Deactivate=TRUE; }
54. }}

Figure 3. CTS Slot algorithm.

1. /*cancelRTSTrans and CancelCTSTrans variables are defined in
RTS Slot algorithm*/

2. /*if received RTSs queue is not empty and this node is allowed to

send CTS packet*/
3. If ((RTSQueue.Length!=0) && (CancelCTSTrans==FALSE))
4. Choose a random time for CTS transmission;
5. While (we are in CTS Slot) {
6. If (new packet arrives)
7. Pkt=Arrived Packet; // a CTS packet arrived
8. /*if it is time to send CTS packet*/
9. If ((CTS timer is reached) && (channel is empty))
10. Send CTS packet;

11. /*overhearing a CTS packet, cancel CTS transmission*/
12. If (Pkt.RecAddress!=MyAddress) {
13. Cancel CTS transmission timer;
14. /*due to link asymmetry, RTS packet may not have been

received correctly, by overhearing a CTS packet which is not
destined for this node, we deactivate this node*/

15. Deactivate=TRUE; }
16. If (Pkt.RecAddress==MyAddress){
17. /*if this node receives a CTS packet, it is allowed to transfer its

data in Sleep/Communication Slot*/
18. } }

C. Durations and Access Methods
The RTS Slot is divided into smaller contention slots

which are named RTS Contention Slot. Each node selects a
random RTS Contention Slot to transmit its RTS packet. In
the rest of the RTS Contention Slots, the node listens to the
channel to receive probable RTS packets. When a node
arrives at its randomly selected RTS Contention Slot, a small
random time is selected and the node continues listening to
the channel. If nothing is sensed during this time, it can send
its RTS packet. Otherwise, if the node receives a RTS packet
destined for its parent, it selects another RTS Contention Slot
among the remaining RTS Contention Slots and repeats
these steps. If the received RTS packet is not destined for
this node or its parent, the node becomes inactive.

The required number of RTS transmissions in each RTS
Slot is the number of nodes which can transmit their data
packets sequentially at one Time Frame. This is dependent
on the maximum number of the nodes with a common
parent. If the children of a node compete to grasp the channel
and their RTS transmissions collide at the parent, they will
suffer more delay, since they cannot transmit their data
packets at the same Time Frame. This condition happens
when the children cannot hear each other’s transmissions.
Considering n nodes with this condition, and with a common
parent, the probability of correct reception of RTS packets
from these nodes (i.e. no collision) is as follows (w is the
number of RTS Contention Slots):

n

w
n

n
w

p ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1!..0

(1)

Accordingly, the RTS Slot duration depends on the
number of children per node. Since the RTS Slot duration
should be equal for all the nodes in the network, scalability
problems may be arisen. In order to remedy this problem, we
can limit the maximum number of children per node. It
means that, when a node decides to select its parent, it also
considers the current number of children whose neighboring
nodes currently have. Each node looks for a qualified node

Figure 4. Summation of each node’s CSNi in each Time Frame. As the
sampling interval increases, contention for packet transmission reduces.
Therefore, the number of interfering nodes per Time Frame reduces.
(Time Frame duration=1 sec.)

0

0.5

1

1.5

2

2.5

3

0 60 120 180 240 300 360

In
te

rf
er

in
g

N
od

es
 p

er
 T

im
e

Fr
am

e

Sampling Interval (second)

Control	
 Packet	
 Size:	
 18	
 bytes
Control	
 Packet	
 Size:	
 28	
 bytes

(in terms of cost, and number of children) and then selects its
parent.

When the sender nodes can hear each other while the
receivers cannot, random listening time at the start of the
selected RTS Contention Slot plays an important role. In this
situation, if two or more sender nodes select the same RTS
Contention Slot and receivers receive their corresponding
RTS packets, concurrent transmission of sender nodes may
be resulted in inter-node interference. Selection of random
listening time at the start of the RTS Contention Slot solves
this problem.

In the CTS Slot, when two or more nodes send their CTS
packets simultaneously, no one can be aware of the other’s
transmission. This can be resulted in severe interference at
the receiver. Therefore, it is essential to avoid concurrent
transmission of CTS packets. Due to fewer contentions in
transmitting CTS packets, we can consider a CTS Slot that is
not divided into any more contention slots. Each node
chooses a random time in the CTS Slot to transmit its CTS
packet. When the CTS Slot starts, the node begins listening
to the channel until the randomly selected time reaches.
During this time, any overhearing of CTS packet prohibits
this node from CTS transmission. In this way, the probability
that two nodes concurrently transmit their CTS packets is so
small, because the signal propagation delay in wireless
sensor networks is insignificant. According to these points
and our simulation results, CTS Slot duration can be
equivalent to the duration of transmitting three CTS packets.

III. EVALUATION
The simulation application is programmed in OMNeT++

framework. Table 1 represents our general simulation
settings (similar to the characteristics of MICA2 motes). In
evaluating our proposed protocol, we may change some of
these parameters.

A. Interferer Nodes per Time Frame
In this section, we evaluate the proposed protocol in the

context of interference avoidance. In order to measure the
interference avoidance level, we define CSNi as the colliding
set of node Ni. CSNi is the number of nodes in the
neighborhood of node Ni which send their data packets
concurrently with Ni reception in the same Time Frame. It
should be noted that CSNi excludes the node that is currently
sending to Ni. When a node is receiving data packets while
its CSNi is not zero, inter-node interference is possible.

Therefore, we sum CSNi of each node over the entire network
in each Time Frame. Fig. 4 depicts this sum at two sizes of
control packet (18 and 28 bytes, except the physical and
MAC headers). The only occasion in which CSNi is not zero
is when RTS or CTS packets are not received correctly. This
situation can happen due to unreliable wireless
communication and packet corruption. According to Fig. 4,
the protocol has been able to avoid inter-node interference in
the network. The average of each node’s CSNi throughout a
network composed of 200 nodes is about 2.5 nodes per Time
Frame, for sampling interval of 30 seconds. As the sampling
interval increases, the number of interfering nodes per Time
Frame decreases. This is due to the lower contention for
packet transmission.

Although we cannot expect the protocol to eliminate
inter-node interference completely (due to unreliable
wireless links and control packet corruption), these
interferences have no severe effect on the packet reception
rate. Simulation results have demonstrated that for
transitional region radius of 20 meters and control packet
size of 18 bytes, about 70% of the interferer nodes reside 18
meters away from the receiver and about 97% of them reside
16 meters away from the receiver.

B. Throughput
One of the effective factors on the network throughput is

the number of concurrently transmitting nodes in each Time
Frame. As the radius of the transitional region grows,
IAMAC prevents more nodes from transmission and it
reduces the number of nodes concurrently transmitting in
each Time Frame. The same effect happens by increasing the
output power level. Fig. 5 shows the average number of
sender nodes in each Time Frame. Starting from 0 dBm, as
the output power level reduces, the number of sender nodes
per Time Frame increases. This is caused by less interference
among the contending nodes. For each network density, this
increment stops at a certain output power level. When the
output power level goes below this threshold level, the
number of nodes with a common parent decreases.
Therefore, the number of sender nodes in each Time Frame
reduces. The optimal output power level is inherently a
cross-layer parameter which mainly depends on the network

TABLE 1. DEFAULT SIMULATION SETTINGS

Radio
Modulation FSK Encoding NRZ

Output Power 0 dBm Frame 45 bytes
Transmission Medium

Path Loss Exponent 4 PLD 0 55 dBm
Noise Floor -105 dBm D0 1 m

Other Parameters
Number of Nodes 200 Area 100×100 m2

Figure 5. Average number of sender nodes in each Time Frame. Each
network density corresponds to an optimal output power level which
trades off between the radio interference level and the number of nodes
with common parent. (Time Frame duration=1 sec, Sampling
interval=60 sec.)

0

2

4

6

8

10

12

0 -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 -­‐18 -­‐20

Se
nd

er
 N

od
es

 p
er

 T
im

e
Fr

am
e

Output Power Level (dBm)

Area:	
 100mx100m Area:	
 50mx50m

density, output power level, routing protocol, and sampling
rate. Notice that the output power levels less than -8 dBm
caused the 100×100 m2 network to be disjointed and
therefore there is no result for this condition.

In order to measure the maximum network throughput,
we forced each node to sample the environment as fast as it
can and transmit its data packets with maximum capacity.
We used two error recovery methods (ARQ and Seda [13])
in conjunction with IAMAC. Fig. 6 shows the results. As it
can be observed, combination of IAMAC with Seda achieves
higher throughput. This is due to less packet corruption and
more efficient error recovery of Seda. In Fig. 6, notice the
rise and fall of the network throughput that is similar to Fig.
5.

C. Lifetime
In this section, we evaluate energy consumption of

IAMAC. Exact energy consumption of each operation (radio
operations and sampling) is provided in [8].

Fig. 7 demonstrates the lifetime of IAMAC against S-
MAC and Adaptive S-MAC. It is evident that IAMAC
provides higher lifetime than Adaptive S-MAC. Lower
lifetime of Adaptive S-MAC is due to its adaptive listening
mechanism, which is provided to reduce delay. This issue
restricts its applicability in many scenarios.

With equal Time Frame durations, IAMAC provides
lower lifetime compared with S-MAC. Although this is true

for equal frame durations, but generally IAMAC has higher
performance than S-MAC in terms of lifetime and delay.
This will be discussed later.

As the sampling interval increases, the number of
generated packets in each node reduces. This results in lower
active time (i.e. lower duty cycle) and higher lifetime of the
network. Notice that by increasing the sampling interval, we
cannot increase the lifetime indefinitely, since: (1) each node
has a limited initial energy (we have considered a 2400 mAh
battery per node), (2) synchronization overhead limits the
maximum network lifetime, (3) by increasing the Time
Frame duration, the number of queued packets in each node
is also increased and this results in shorter sleep time.

An interesting behavior in Fig. 7 is the slight rise and fall
of the IAMAC’s lifetime around a particular sampling
interval. At this point, a trade off is established between the
node active time, number of serial transmissions per Time
Frame, and the number of deactivated nodes. This condition
results in maximum lifetime. At this point, in addition to the
large number of transmissions per Time Frame, many nodes
are deactivated by control packet overhearing.

According to Fig. 7, Seda can improve the lifetime of
IAMAC and this improvement is more evident with low
sampling intervals and longer Time Frame durations. When
the number of data packets to be transmitted in each Time
Frame is high, Seda can benefit from its low packet
corruption rate and its efficient error recovery.

D. Latency
In Fig. 8, the latency of IAMAC is evaluated and

compared with S-MAC and Adaptive S-MAC.
The interference avoidance capability of IAMAC comes

at a cost. When IAMAC senses probable inter-node
interference and prevents some nodes from data
transmission, data packets experience a delay equal to the
Time Frame duration. With low sampling intervals, there
will be a high contention between neighboring nodes.
Therefore, many nodes are prohibited from communication
and delay increases. When the sampling interval increases,
channel contention is decreased and this results in lower
delay. In addition, periodic sleep and wake schedules avoid
the nodes from being active all the times. Therefore, each
node must wait to arrive at a new Time Frame to start its
contention for packet transmission.

Comparing to S-MAC, IAMAC provides smaller delay.
Multiple transmissions to a common parent in each Time
Frame, and lower contention period of IAMAC, caused its
lower delay. In addition, as we have mentioned before,
IAMAC completely surpasses S-MAC in terms of lifetime
and delay. For example consider IAMAC (10 sec) versus S-
MAC (5 sec) in Fig. 7. It can be seen that IAMAC provides
higher lifetime than S-MAC. Also, according to Fig. 8,
IAMAC (10 sec) has lower delay than S-MAC (5 sec).
Therefore, IAMAC provides higher lifetime and lower delay
compared with S-MAC.

Even though Adaptive S-MAC demonstrates lower delay
than IAMAC (Fig. 8), but according to Fig. 7, Adaptive S-
MAC has a very low lifetime.

Figure 6. Effect of output power level on network throughput. (Time
Frame duration=1 sec, Sampling interval=1.1 sec.)

0

50000

100000

150000

200000

0 -­‐2 -­‐4 -­‐6

Da
ta

 T
hr

ou
gh

pu
t (

bp
s)

Output Power Level (dBm)

IAMAC w/ARQ IAMAC w/Seda

IV. CONCLUSION
In this paper, we proposed IAMAC, an Interference

Avoidance MAC protocol to avoid inter-node interference
and increasing network lifetime in WSNs. By conducting
extensive simulations, we evaluated IAMAC in real network
conditions. According to the results, IAMAC has higher
lifetime compared with S-MAC and Adaptive S-MAC, while
it has lower delay than S-MAC. Therefore, in lifetime critical
applications, IAMAC is a good solution. In addition, unlike
S-MAC and Adaptive S-MAC, IAMAC separates
synchronization from Time Frame duration. This results in

higher flexibility of IAMAC and allows the user to trade off
between delay and lifetime, depending on the application.
Furthermore, since IAMAC tries to reduce packet
corruptions due to inter-node interference, ARQ and Seda
are considered as its error recovery mechanisms and higher
performance of Seda is demonstrated.

REFERENCES
[1] M.Z. Zamalloa and B. Krishnamachari, “An analysis of unreliability

and asymmetry in low-power wireless links,” ACM Trans. Sen.
Netw., vol. 3, 2007, p. 7.

[2] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges
of reliable multihop routing in sensor networks,” Proceedings of the
1st international conference on Embedded networked sensor systems,
Los Angeles, California, USA: ACM, 2003, pp. 14-27.

[3] Q. Cao, T. He, L. Fang, T. Abdelzaher, J. Stankovic, and S. Son,
“Efficiency centric communication model for wireless sensor
networks,” Infocom 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, 2006, pp. 1-12.

[4] D.S.J.D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” Wirel. Netw.,
vol. 11, 2005, pp. 419-434.

[5] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC
protocol for wireless sensor networks,” Infocom 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, 2002, pp. 1567-1576 vol.3.

[6] T.V. Dam and K. Langendoen, “An adaptive energy-efficient MAC
protocol for wireless sensor networks,” Proceedings of the 1st
international conference on Embedded networked sensor systems,
Los Angeles, California, USA: ACM, 2003, pp. 171-180.

[7] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with
coordinated adaptive sleeping for wireless sensor networks,”
IEEE/ACM Trans. Netw., vol. 12, 2004, pp. 493-506.

[8] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” Proceedings of the 2nd international
conference on Embedded networked sensor systems, Baltimore, MD,
USA: ACM, 2004, pp. 95-107.

[9] I. Akyildiz, M. Vuran, and O. Akan, “A cross-layer protocol for
wireless sensor networks,” 40th Annual Conference on Information
Sciences and Systems, 2006, pp. 1102-1107.

[10] M. Sichitiu, “Cross-layer scheduling for power efficiency in wireless
sensor networks,” Infocom 2004. Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies,
2004, pp. 1740-1750 vol.3.

[11] V. Srivastava and M. Motani, “Cross-layer design: A survey and the
road ahead,” Communications Magazine, IEEE, vol. 43, 2005, pp.
119, 112.

[12] J.V. Greunen and J. Rabaey, “Lightweight time synchronization for
sensor networks,” Proceedings of the 2nd ACM international
conference on Wireless sensor networks and applications, San Diego,
CA, USA: ACM, 2003, pp. 11-19.

[13] R.K. Ganti, P. Jayachandran, H. Luo, and T.F. Abdelzaher, “Datalink
streaming in wireless sensor networks,” Proceedings of the 4th
international conference on Embedded networked sensor systems,
Boulder, Colorado, USA: ACM, 2006, pp. 209-222.

Figure 7: Lifetime of IAMAC vs S-MAC and Adaptive S-MAC.
According to this figure and Fig. 8, IAMAC has higher performance
than S-MAC in terms of lifetime and delay. In addition, Adaptive S-
MAC has a very low lifetime that limits its applicability in many
situations.

0

0.5

1

1.5

2

2.5

3

3.5

60 260 460 660 860 1060 1260 1460 1660 1860

Li
fe
tim

e	

(y
ea
r)

Sampling	
 Interval	
 (second)

IAMAC	
 w/Seda	
 (5	
 sec) IAMAC	
 w/ARQ	
 (5	
 sec)
S-­‐MAC	
 (5	
 sec) Adaptive	
 S-­‐MAC	
 (5	
 sec)
IAMAC	
 w/Seda	
 (10	
 sec) IAMAC	
 w/ARQ	
 (10	
 sec)
S-­‐MAC	
 (10	
 sec) Adaptive	
 S-­‐MAC	
 (10	
 sec)
IAMAC	
 w/Seda	
 (15	
 sec) IAMAC	
 w/ARQ	
 (15	
 sec)

Figure 8: End-to-end delay of IAMAC vs S-MAC and Adaptive S-
MAC. It is evident that IAMAC provides much lower delay than S-
MAC. Also, in spite of the lower delay of Adaptive S-MAC compared
with IAMAC, but Adaptive S-MAC highly trades off lifetime for lower
delay.

10

100

1000

10000

100000

60 260 460 660 860 1060 1260 1460 1660 1860

De
la
y	
 (
se
co
nd

)

Sampling	
 Interval	
 (second)

IAMAC	
 w/Seda	
 (5	
 sec) IAMAC	
 w/ARQ	
 (5	
 sec)
S-­‐MAC	
 (5	
 sec) Adaptive	
 S-­‐MAC	
 (5	
 sec)
IAMAC	
 w/Seda	
 (10	
 sec) IAMAC	
 w/ARQ	
 (10	
 sec)
S-­‐MAC	
 (10	
 sec) Adaptive	
 S-­‐MAC	
 (10	
 sec)
IAMAC	
 w/Seda	
 (15	
 sec) IAMAC	
 w/ARQ	
 (15	
 sec)

