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Abstract—In this paper, we propose IAMAC, an Interference 
Avoidance MAC protocol to avoid inter-node interference in 
dense wireless sensor networks. IAMAC interacts with routing 
protocol via cross-layer information sharing between the MAC 
and network layer. By providing information from network 
layer, we enable the MAC protocol to make proper decisions 
which result in fewer inter-node interference and lower delay. 
Through interference avoidance, IAMAC reduces energy 
consumption per node and leads to higher network lifetime 
compared with S-MAC and Adaptive S-MAC. In addition, 
IAMAC has lower delay than S-MAC. In our evaluations, we 
considered IAMAC in conjunction with two error recovery 
methods (ARQ and Seda). Our simulation results show that 
our protocol is highly compatible with Seda and this 
integration achieves higher network throughput and lifetime. 

Keywords-Sensor Networks; Medium Access Control; 
IAMAC; Lifetime; Cross-Layer Optimization 

I.  INTRODUCTION 
There have been a lot of efforts [1-3] to investigate 

wireless communication characteristics in wireless sensor 
networks. These works revealed the irregularity and 
unreliability of low power wireless links. Accordingly, three 
distinct reception regions can be identified in a wireless link 
[1,2]: connected, transitional, and disconnected. In sensor 
networks, many links fall into transitional region. As far as 
these links exhibit high variations (due to noise, inter-node 
interference, etc.), there are many non-perfect links that can 
be used in route selection. Neither the routing algorithms 
[3,4] nor the MAC protocol collision avoidance methods [5-
8], cannot handle the effects of inter-node interference 
completely.  

Even though link estimation can help to select the best 
next hop neighbour along the path to the sink, but this is not 
enough. Concurrent transmissions of neighbor nodes lead to 
inter-node interference and increase packet corruption rate. 
This issue results in more energy consumption per node 
which is in contrast with long lifetime of tiny sensor nodes. 

On the other hand, recent studies in designing protocols 
for sensor networks reveal the fact that reducing power 
consumption cannot be handled completely in one layer of 

the protocol stack and without any interaction with other 
layers [9-11]. For example, to avoid collision in S-MAC [5], 
all the nodes which overhear control packets (RTS and CTS) 
are prevented from packet transmission. This mechanism 
results in very high end-to-end delay of this protocol. To 
improve the latency of S-MAC, Adaptive S-MAC [6] is 
proposed and uses adaptive node activation based upon the 
estimated transmission duration. This method has two main 
drawbacks: (1) due to the variations in wireless channel, 
exact time of activation cannot be calculated and many nodes 
may suffer from idle listening or overhearing, (2) as the 
network density increases, the number of nodes which will 
try to adaptively wake up increases and results in higher 
energy consumption of the network. According to these two 
disadvantages, Adaptive S-MAC has a very low lifetime that 
limits its applicability in many applications. 

In this paper, we propose an Interference Avoidance 
MAC protocol (IAMAC) that its main objective is to provide 
higher network lifetime through avoiding inter-node 
interference. In addition, we do not compromise delay as S-
MAC does and IAMAC provides lower latency than S-
MAC. By information sharing between IAMAC and network 
layer, we make proper decisions in each node to avoid inter-
node interference and reducing delay. Reduction in 
interference, leads to fewer data corruptions, which means 
fewer active time of each node. The result of this reduction is 
significant increase in network lifetime in comparison with 
S-MAC and Adaptive S-MAC.  

Monitoring and Surveillance are the main applications of 
IAMAC. Nodes sample their environment periodically and 
send their results to the sink node. Primary demands of these 
applications are long network lifetime and transmission 
reliability. Usually the delay of several minutes can be 
tolerated. It should be noted that other applications can also 
be envisioned for this protocol. 

II. INTERFERENCE AVOIDANCE PROTOCOL 
In this section we introduce our cross-layer MAC 

protocol. Although the routing algorithm is not claimed to be 
completely new, but it is necessary to be introduced before 
we proceed to the MAC protocol description. 
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A. Routing Protocol 
We use spanning tree optimization as the routing 

algorithm. In the first step, each node broadcasts a fixed 
number of control packets and records the number of 
successfully received packets from its neighbors. After this 
step, a preliminary neighbor table containing link qualities is 
formed. Each pair of nodes has a link cost corresponding to 
forward and backward packet reception rates. We use ETX 
[4] as our link cost function. In the second step, sink node 
sets its cost to zero and broadcasts this cost to its neighbors. 
This broadcast is performed by transmitting Synch/Routing 
packet. A lightweight time synchronization protocol [12] is 
also used to synchronize sleep and wake schedules among 
the nodes. Thereby, a Synch/Routing packet contains time 
synchronization data along with the current cost of each node 
to the sink. Upon receiving such a broadcast packet, each 
node adds the received cost to the link cost of the node from 
which this packet has been received. For example, consider 
that node A receives a Synch/Routing packet from node B. 
Then it adds the cost contained in Synch/Routing packet to 
the cost of link A-B. If the resulting cost is less than the 
current cost of A to the sink, B is selected as A’s parent. 
Once the network reaches to a stable condition, each node 
follows its sleep/wake schedule. Broadcast interval of 
Synch/Routing packets during normal operation of the 
network depends on the time synchronization accuracy and 
the route change frequency. If the route cost of one node has 
been changed, it must be broadcasted to notify its neighbors. 

B. MAC Protocol 
IAMAC is a sleep/wake MAC protocol. Fig.1 shows the 

structure of Time Frame in IAMAC. In order to separate 
synchronization from Time Frame duration, we proposed 
Time Frame and Super Frame structures. For applications in 
which network lifetime and delay are equally important, we 
use simple Time Frames, and in applications in which 
lifetime is critical, Super Frame structure can be used. 

The first slot is devoted to transmission and reception of 
the Synch/Routing packets (described in the previous 
section). The main interference avoidance algorithm runs in 
the RTS Slot. Fig. 2 shows its pseudo code. We have 
provided enough comments in the algorithm to be self-

explanatory, but some more comments are worth mentioning 
here.  

If a node receives a RTS packet that is destined for it, this 
RTS packet is added to the received RTSs queue. In this 
state, if the RTS transmission from this node is scheduled, it 
must be canceled. It should be noted that this node can still 
receive more RTS packets. By applying such a mechanism, a 
priority scheme can be used: a node with higher priority (e.g. 
longer packet queue), schedules its RTS packet transmission 
earlier. 

If the received RTSs queue is not empty and no RTS 
packet is overheard by this node, except the ones destined for 
this node’s parent, this node can change its role. It means 
that if its data queue is not empty, it will act as a sender and 
reschedules its RTS packet transmission. This results in 
sequential data transmissions from multiple nodes to a 
common parent in one Sleep/Communication Slot. 

The proposed algorithm for the RTS Slot is not a 
complete solution to prevent inter-node interference. 
Therefore, we propose a complementary algorithm to be run 
in the CTS Slot. Fig. 3 provides its pseudo code. When the 
RTS packets cannot be heard by neighboring nodes, while 
CTS packets can be heard, this algorithm prevents inter-node 
interference. 

By applying a priority scheme in choosing transmission 
time of the CTS packet, nodes with higher priority will have 
higher chance to send their data packets. Inserting 
transmission priority in the RTS packet, informs the receiver 
to choose an appropriate reply time according to the 
provided priority. 

 
Figure 2. RTS Slot algorithm. 

1. ParentAddress denotes the address of this node’s parent; 
2. MyAdress denotes the address of this node; 
3. CancelRTSTrans=FALSE; //a variable 
4. CancelCTSTrans=FALSE; //a variable 

 
5. /*if this node has some data packets to be sent*/ 
6. If (PacketQueue.Length!=0)  
7. Choose a random time for RTS transmission; 

 
8. While (we are in RTS Slot){ 
9. If (new packet arrives) 

(a) 

 (b) 

Figure 1. Time Frame and Super Frame structures. (a): If the duration between two consecutive RTS Slots is less than 12 seconds, simple Time Frame 
structure is used. (b): If the duration between two consecutive RTS Slots is more than 12 seconds, Super Frame structure is applied. In this condition, Time 
Frame duration must not exceed 12 seconds. 
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10. Pkt=Arrived Packet; // an RTS packet arrived; 
11. /*transmit RTS packet; set the appropriate variable*/ 
12. If ( (RTS timer is reached) && (channel is empty) ){ 
13. Send RTS to Parent; 
14. CancelCTSTrans=TRUE; } 

 
15. /*if the channel was not empty*/ 
16. If ( (RTS timer is reached) && (channel is not empty) ) { 
17. /*an RTS is received, if this packet is destined for this node’s 

parent, reschedule RTS transmission*/ 
18. If (Pkt.RecAdress==ParentAddress) 
19. Choose a random time for RTS transmission; 
20. Else Deactivate=TRUE; } 

 
21. /*if no previous RTS is transmitted from this node*/ 
22. If ( (A RTS packet arrived) && (CancelCTSTrans==FALSE) ) { 
23. /*if the received RTS packet is not destined for this node and 

this node’s parent*/ 
24. If ( (Pkt.RecAddrees!=MyAdress) && 

  (Pkt.RecAdress!=ParentAddress) ) { 
25. Clear received RTSs queue; 
26. Cancel RTS transmission; 
27. CancelRTSTrans=TRUE; 
28. /* cancel CTS transmission from this node*/ 
29. CancelCTSTrans=TRUE; 
30. /*This node cannot be the part of any communication in this 

Time Frame; deactivate the node (sleep until the next Time 
Frame)*/ 

31. Deactivate=TRUE; } 
 

32. /*if the RTS packet is destined for this node*/ 
33. Else if (Pkt.RecAddrees==MyAdress) { 
34. Add Pkt to the received RTSs queue; 
35. Cancel RTS transmission from this node; 
36. CancelRTSTrans=TRUE;  } 

 
37. /*if this node receives an RTS packet destined for its parent and it 

has not overheard any RTS*/ 
38. Else if (Pkt.RecAdress==ParentAddress) && 

 (CancelRTSTrans==FALSE) { 
39. /*this node can be a sender*/ 
40. /*cancel CTS transmission*/ 
41. CancelCTSTrans=TRUE; 
42. If (PacketQueue.Length==0) 
43. Deactivate=TRUE; } 

 
44. /*if this node has received an RTS packet that is destined for its 

parent and it has received another RTS packet destined for it, this 
node can be a sender*/ 

45. Else if ( (Pkt.RecAdress==ParentAddress) && 
 (CancelRTSTrans==TRUE) )  { 

46. /*do not respond to previously received RTSs (clear the 
received RTSs queue)*/ 

47. Clear received RTSs queue; 
48. CancelRTSTrans=FALSE; 
49. CancelCTSTrans=TRUE;  
50. /*if this node has something to send,  reschedule RTS 

transmission*/ 
51. If (PacketQueue.Length!=0)  
52. Choose a random time for RTS transmission;  
53. Else Deactivate=TRUE; }   
54. }} 

 
 

Figure 3. CTS Slot algorithm. 

1. /*cancelRTSTrans and CancelCTSTrans variables  are defined in 
RTS Slot algorithm*/ 

2. /*if received RTSs queue is not empty and this node is allowed to 

send CTS packet*/ 
3. If ( (RTSQueue.Length!=0) && (CancelCTSTrans==FALSE)) 
4. Choose a random time for CTS transmission; 
5. While (we are in CTS Slot) { 
6. If (new packet arrives) 
7. Pkt=Arrived Packet; // a CTS packet arrived 
8. /*if it is time to send CTS packet*/ 
9. If ( (CTS timer is reached) && (channel is empty) ) 
10. Send CTS packet; 

 
11. /*overhearing a CTS packet, cancel CTS transmission*/ 
12. If (Pkt.RecAddress!=MyAddress) { 
13. Cancel CTS transmission timer; 
14. /*due to link asymmetry, RTS packet may not have been 

received correctly, by overhearing a CTS packet which is not 
destined for this node, we deactivate this node*/  

15. Deactivate=TRUE; } 
16. If (Pkt.RecAddress==MyAddress){ 
17. /*if this node receives a CTS packet, it is allowed to transfer its 

data in Sleep/Communication Slot*/  
18. } } 

C. Durations and Access Methods 
The RTS Slot is divided into smaller contention slots 

which are named RTS Contention Slot. Each node selects a 
random RTS Contention Slot to transmit its RTS packet. In 
the rest of the RTS Contention Slots, the node listens to the 
channel to receive probable RTS packets. When a node 
arrives at its randomly selected RTS Contention Slot, a small 
random time is selected and the node continues listening to 
the channel. If nothing is sensed during this time, it can send 
its RTS packet. Otherwise, if the node receives a RTS packet 
destined for its parent, it selects another RTS Contention Slot 
among the remaining RTS Contention Slots and repeats 
these steps. If the received RTS packet is not destined for 
this node or its parent, the node becomes inactive. 

The required number of RTS transmissions in each RTS 
Slot is the number of nodes which can transmit their data 
packets sequentially at one Time Frame. This is dependent 
on the maximum number of the nodes with a common 
parent. If the children of a node compete to grasp the channel 
and their RTS transmissions collide at the parent, they will 
suffer more delay, since they cannot transmit their data 
packets at the same Time Frame. This condition happens 
when the children cannot hear each other’s transmissions. 
Considering n nodes with this condition, and with a common 
parent, the probability of correct reception of RTS packets 
from these nodes (i.e. no collision) is as follows (w is the 
number of RTS Contention Slots): 

n

w
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(1) 

Accordingly, the RTS Slot duration depends on the 
number of children per node. Since the RTS Slot duration 
should be equal for all the nodes in the network, scalability 
problems may be arisen. In order to remedy this problem, we 
can limit the maximum number of children per node. It 
means that, when a node decides to select its parent, it also 
considers the current number of children whose neighboring 
nodes currently have. Each node looks for a qualified node 



Figure 4. Summation of each node’s CSNi in each Time Frame. As the 
sampling interval increases, contention for packet transmission reduces. 
Therefore, the number of interfering nodes per Time Frame reduces. 
(Time Frame duration=1 sec.) 
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(in terms of cost, and number of children) and then selects its 
parent. 

When the sender nodes can hear each other while the 
receivers cannot, random listening time at the start of the 
selected RTS Contention Slot plays an important role. In this 
situation, if two or more sender nodes select the same RTS 
Contention Slot and receivers receive their corresponding 
RTS packets, concurrent transmission of sender nodes may 
be resulted in inter-node interference. Selection of random 
listening time at the start of the RTS Contention Slot solves 
this problem. 

In the CTS Slot, when two or more nodes send their CTS 
packets simultaneously, no one can be aware of the other’s 
transmission. This can be resulted in severe interference at 
the receiver. Therefore, it is essential to avoid concurrent 
transmission of CTS packets. Due to fewer contentions in 
transmitting CTS packets, we can consider a CTS Slot that is 
not divided into any more contention slots. Each node 
chooses a random time in the CTS Slot to transmit its CTS 
packet. When the CTS Slot starts, the node begins listening 
to the channel until the randomly selected time reaches. 
During this time, any overhearing of CTS packet prohibits 
this node from CTS transmission. In this way, the probability 
that two nodes concurrently transmit their CTS packets is so 
small, because the signal propagation delay in wireless 
sensor networks is insignificant. According to these points 
and our simulation results, CTS Slot duration can be 
equivalent to the duration of transmitting three CTS packets. 

III. EVALUATION 
The simulation application is programmed in OMNeT++ 

framework. Table 1 represents our general simulation 
settings (similar to the characteristics of MICA2 motes). In 
evaluating our proposed protocol, we may change some of 
these parameters. 

A. Interferer Nodes per Time Frame 
In this section, we evaluate the proposed protocol in the 

context of interference avoidance. In order to measure the 
interference avoidance level, we define CSNi as the colliding 
set of node Ni. CSNi is the number of nodes in the 
neighborhood of node Ni which send their data packets 
concurrently with Ni reception in the same Time Frame. It 
should be noted that CSNi excludes the node that is currently 
sending to Ni. When a node is receiving data packets while 
its CSNi is not zero, inter-node interference is possible. 

Therefore, we sum CSNi of each node over the entire network 
in each Time Frame. Fig. 4 depicts this sum at two sizes of 
control packet (18 and 28 bytes, except the physical and 
MAC headers). The only occasion in which CSNi is not zero 
is when RTS or CTS packets are not received correctly. This 
situation can happen due to unreliable wireless 
communication and packet corruption. According to Fig. 4, 
the protocol has been able to avoid inter-node interference in 
the network. The average of each node’s CSNi throughout a 
network composed of 200 nodes is about 2.5 nodes per Time 
Frame, for sampling interval of 30 seconds. As the sampling 
interval increases, the number of interfering nodes per Time 
Frame decreases. This is due to the lower contention for 
packet transmission. 

Although we cannot expect the protocol to eliminate 
inter-node interference completely (due to unreliable 
wireless links and control packet corruption), these 
interferences have no severe effect on the packet reception 
rate. Simulation results have demonstrated that for 
transitional region radius of 20 meters and control packet 
size of 18 bytes, about 70% of the interferer nodes reside 18 
meters away from the receiver and about 97% of them reside 
16 meters away from the receiver. 

B. Throughput 
One of the effective factors on the network throughput is 

the number of concurrently transmitting nodes in each Time 
Frame. As the radius of the transitional region grows, 
IAMAC prevents more nodes from transmission and it 
reduces the number of nodes concurrently transmitting in 
each Time Frame. The same effect happens by increasing the 
output power level. Fig. 5 shows the average number of 
sender nodes in each Time Frame. Starting from 0 dBm, as 
the output power level reduces, the number of sender nodes 
per Time Frame increases. This is caused by less interference 
among the contending nodes. For each network density, this 
increment stops at a certain output power level. When the 
output power level goes below this threshold level, the 
number of nodes with a common parent decreases. 
Therefore, the number of sender nodes in each Time Frame 
reduces. The optimal output power level is inherently a 
cross-layer parameter which mainly depends on the network 

TABLE 1. DEFAULT SIMULATION SETTINGS 

Radio 
Modulation FSK Encoding NRZ 

Output Power 0 dBm Frame 45 bytes 
Transmission Medium 

Path Loss Exponent 4 PLD 0 55 dBm 
Noise Floor -105 dBm D0 1 m 

Other Parameters 
Number of Nodes 200 Area 100×100 m2 

 

 



Figure 5. Average number of sender nodes in each Time Frame. Each 
network density corresponds to an optimal output power level which 
trades off between the radio interference level and the number of nodes 
with common parent. (Time Frame duration=1 sec, Sampling 
interval=60 sec.) 
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density, output power level, routing protocol, and sampling 
rate. Notice that the output power levels less than -8 dBm 
caused the 100×100 m2 network to be disjointed and 
therefore there is no result for this condition. 

In order to measure the maximum network throughput, 
we forced each node to sample the environment as fast as it 
can and transmit its data packets with maximum capacity. 
We used two error recovery methods (ARQ and Seda [13]) 
in conjunction with IAMAC. Fig. 6 shows the results. As it 
can be observed, combination of IAMAC with Seda achieves 
higher throughput. This is due to less packet corruption and 
more efficient error recovery of Seda. In Fig. 6, notice the 
rise and fall of the network throughput that is similar to Fig. 
5. 

C. Lifetime 
In this section, we evaluate energy consumption of 

IAMAC. Exact energy consumption of each operation (radio 
operations and sampling) is provided in [8]. 

Fig. 7 demonstrates the lifetime of IAMAC against S-
MAC and Adaptive S-MAC. It is evident that IAMAC 
provides higher lifetime than Adaptive S-MAC. Lower 
lifetime of Adaptive S-MAC is due to its adaptive listening 
mechanism, which is provided to reduce delay.  This issue 
restricts its applicability in many scenarios. 

With equal Time Frame durations, IAMAC provides 
lower lifetime compared with S-MAC. Although this is true 

for equal frame durations, but generally IAMAC has higher 
performance than S-MAC in terms of lifetime and delay. 
This will be discussed later. 

As the sampling interval increases, the number of 
generated packets in each node reduces. This results in lower 
active time (i.e. lower duty cycle) and higher lifetime of the 
network. Notice that by increasing the sampling interval, we 
cannot increase the lifetime indefinitely, since: (1) each node 
has a limited initial energy (we have considered a 2400 mAh 
battery per node), (2) synchronization overhead limits the 
maximum network lifetime, (3) by increasing the Time 
Frame duration, the number of queued packets in each node 
is also increased and this results in shorter sleep time. 

An interesting behavior in Fig. 7 is the slight rise and fall 
of the IAMAC’s lifetime around a particular sampling 
interval. At this point, a trade off is established between the 
node active time, number of serial transmissions per Time 
Frame, and the number of deactivated nodes. This condition 
results in maximum lifetime. At this point, in addition to the 
large number of transmissions per Time Frame, many nodes 
are deactivated by control packet overhearing. 

According to Fig. 7, Seda can improve the lifetime of 
IAMAC and this improvement is more evident with low 
sampling intervals and longer Time Frame durations. When 
the number of data packets to be transmitted in each Time 
Frame is high, Seda can benefit from its low packet 
corruption rate and its efficient error recovery. 

D. Latency 
In Fig. 8, the latency of IAMAC is evaluated and 

compared with S-MAC and Adaptive S-MAC. 
The interference avoidance capability of IAMAC comes 

at a cost. When IAMAC senses probable inter-node 
interference and prevents some nodes from data 
transmission, data packets experience a delay equal to the 
Time Frame duration. With low sampling intervals, there 
will be a high contention between neighboring nodes. 
Therefore, many nodes are prohibited from communication 
and delay increases. When the sampling interval increases, 
channel contention is decreased and this results in lower 
delay. In addition, periodic sleep and wake schedules avoid 
the nodes from being active all the times. Therefore, each 
node must wait to arrive at a new Time Frame to start its 
contention for packet transmission.  

Comparing to S-MAC, IAMAC provides smaller delay. 
Multiple transmissions to a common parent in each Time 
Frame, and lower contention period of IAMAC, caused its 
lower delay. In addition, as we have mentioned before, 
IAMAC completely surpasses S-MAC in terms of lifetime 
and delay. For example consider IAMAC (10 sec) versus S-
MAC (5 sec) in Fig. 7. It can be seen that IAMAC provides 
higher lifetime than S-MAC. Also, according to Fig. 8, 
IAMAC (10 sec) has lower delay than S-MAC (5 sec). 
Therefore, IAMAC provides higher lifetime and lower delay 
compared with S-MAC. 

Even though Adaptive S-MAC demonstrates lower delay 
than IAMAC (Fig. 8), but according to Fig. 7, Adaptive S-
MAC has a very low lifetime.  

Figure 6. Effect of output power level on network throughput. (Time 
Frame duration=1 sec, Sampling interval=1.1 sec.)  
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IV. CONCLUSION 
In this paper, we proposed IAMAC, an Interference 

Avoidance MAC protocol to avoid inter-node interference 
and increasing network lifetime in WSNs. By conducting 
extensive simulations, we evaluated IAMAC in real network 
conditions. According to the results, IAMAC has higher 
lifetime compared with S-MAC and Adaptive S-MAC, while 
it has lower delay than S-MAC. Therefore, in lifetime critical 
applications, IAMAC is a good solution. In addition, unlike 
S-MAC and Adaptive S-MAC, IAMAC separates 
synchronization from Time Frame duration. This results in 

higher flexibility of IAMAC and allows the user to trade off 
between delay and lifetime, depending on the application. 
Furthermore, since IAMAC tries to reduce packet 
corruptions due to inter-node interference, ARQ and Seda 
are considered as its error recovery mechanisms and higher 
performance of Seda is demonstrated. 
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Figure 7: Lifetime of IAMAC vs S-MAC and Adaptive S-MAC. 
According to this figure and Fig. 8, IAMAC has higher performance 
than S-MAC in terms of lifetime and delay. In addition, Adaptive S-
MAC has a very low lifetime that limits its applicability in many 
situations. 
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Figure 8: End-to-end delay of IAMAC vs S-MAC and Adaptive S-
MAC. It is evident that IAMAC provides much lower delay than S-
MAC. Also, in spite of the lower delay of Adaptive S-MAC compared 
with IAMAC, but Adaptive S-MAC highly trades off lifetime for lower 
delay. 

10

100

1000

10000

100000

60 260 460 660 860 1060 1260 1460 1660 1860

De
la
y	
  (
se
co
nd

)

Sampling	
  Interval	
  (second)

IAMAC	
  w/Seda	
  (5	
  sec) IAMAC	
  w/ARQ	
  (5	
  sec)
S-­‐MAC	
  (5	
  sec) Adaptive	
  S-­‐MAC	
  (5	
  sec)
IAMAC	
  w/Seda	
  (10	
  sec) IAMAC	
  w/ARQ	
  (10	
  sec)
S-­‐MAC	
  (10	
  sec) Adaptive	
  S-­‐MAC	
  (10	
  sec)
IAMAC	
  w/Seda	
  (15	
  sec) IAMAC	
  w/ARQ	
  (15	
  sec)


