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A B S T R A C T

Software-defined Radio (SDR) is a programmable transceiver with the capability of operating various wireless
communication protocols without the need to change or update the hardware. Progress in the SDR field has led
to the escalation of protocol development and a wide spectrum of applications, with a greater emphasis on
programmability, flexibility, portability, and energy efficiency in cellular, WiFi, and M2M communication.
Consequently, SDR has earned a lot of attention and is of great significance to both academia and industry. SDR
designers intend to simplify the realization of communication protocols while enabling researchers to experi-
ment with prototypes on deployed networks. This paper is a survey of the state-of-the-art SDR platforms in the
context of wireless communication protocols. We offer an overview of SDR architecture and its basic compo-
nents, and then discuss the significant design trends and development tools. In addition, we highlight key
contrasts between SDR architectures with regards to energy, computing power, and area, based on a set of
metrics. We also review existing SDR platforms and present an analytical comparison as a guide to developers.
Finally, we recognize a few of the related research topics and summarize potential solutions.

1. Introduction

Advances in wireless technologies have altered consumers’ com-
munication habits. Wireless technologies are an essential part of users’
daily lives, and their impact will become even greater in the future. In a
technical report, the World Wireless Research Forum (WWRF) has
predicted that for 7 billion people, 7 trillion wireless devices will be
deployed by 2020 [1]. When these devices are connected to the Internet
to form an Internet of Things (IoT) network, the first challenge is to
adjust the basic connectivity and networking layers to handle the large
number of end points. There is an increasing number of wireless pro-
tocols that have been developed, such as ZigBee, Bluetooth Low Energy
(BLE), Long Term Evolution (LTE), and new WiFi protocols, that have
been developed to meet the demanding requirements of various do-
mains such as 5G, IoT, and cyber-physical systems [2–4]. Wireless
standards, in general, are adapting quickly in order to accommodate
different user needs and hardware specifications [5,6]. To meet these
specifications, a transceiver needs to be designed with the ability to
handle several protocols, including the existing ones and those being
developed. In order to accomplish this task, one needs to recognize the
protocols’ need for a flexible, re-configurable, and programmable frame-
work.

Both consumer enterprise and military frameworks have a need for
programmable platforms. Due to the rapid and consistent advancement

of wireless protocols, programmability is of central significance to de-
signers in the industry. Hardware needs to be able to keep up with both
the evolution of technology and the changing user demands. For ex-
ample, the authors in [7] proposed a platform called OpenRadio for
programming both Physical (PHY) and Medium Access Control (MAC)
layers while offering a high level of abstraction. Rather than including
yet another piece of equipment to deal with a new standard or recur-
rence band, the equipment of a formerly introduced platform is able to
adjust to the features of another standard. In a military scenario, for
example, the needs of these platforms can change in light of the highly
unpredictable conditions that arise during a mission. While these needs
might not have been envisioned when designed initially, they led to the
development and utilization of new protocols.

Software-defined Radio (SDR) is a technology for radio commu-
nication. This technology is based on software-defined wireless proto-
cols, as opposed to hardware-based solutions. This translates to sup-
porting various features and functionalities, such as updating and
upgrading through reprogramming, without the need to replace the
hardware on which they are implemented. This opens the door to the
possibility of realizing multi-band and multi-functional wireless de-
vices.

The driving factors for the high demand of SDR include network
interoperability, readiness to adapt to future updates and new proto-
cols, and most importantly, lower hardware and development costs. In
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a report [8], the SDR market is projected to be worth more than $29
billion by the year 2021. Global Industry Analysts, Inc. [9] highlights
some of the market trends for SDR as follows: (i) increasing interest
from the military sector in building communication systems and large-
scale deployment in developing countries, (ii) growing demand for
public safety and disaster preparedness applications, and (iii) building
virtualized base stations (BSs). SDRs are also ideal for developing future
space communications [10–12], Global Navigation Satellite System
(GNSS) sensors [13], Vehicle-to-Vehicle (V2V) communication
[14–16], and IoT applications [17,18], where relatively small and low-
power SDRs can be utilized.

The SDR industry flourished due to the Joint Tactical Radio System
(JTRS) program, which was responsible for producing SDRs for the
military. In turn, this led to the creation of an entire world of new
technologies, Software Communications Architecture (SCA), and
Electronic Design Automation (EDA) tools that facilitate the develop-
ment of SDRs [19]. The newly abundant resources made it relatively
feasible to fuel the effort to develop more SDRs, not only for the mili-
tary, but also for civil applications. The first commercial SDR, named
Anywave [20], was a dual-mode base station that supported both
Global System for Mobile communication (GSM) and Code Division
Multiple access (CDMA) concurrently and ran on GPPs. Another tech-
nological advancement with a huge impact on the SDR industry was the
development and release of Radio Frequency Integrated Circuit (RFIC),
which supports most frequency bands in the MHz to GHz range.

Researchers have been studying SDRs for several years and are
striving to find better means of implementing them in order to optimize
their processing and energy efficiency. SDRs are implemented using
various types of hardware platforms, such as General Purpose
Processors (GPPs), Graphics Processing Units (GPUs), Digital Signal
Processors (DSPs), and Field Programmable Gate Arrays (FPGAs). Each
of these platforms is associated with its own set of challenges. Some of
these challenges are: utilizing the computational power of the selected
hardware platform, keeping the power consumption at a minimum,
ease of design process, and cost of tools and equipment. Both the re-
search community and industry have developed SDRs that are based on
the aforementioned hardware platforms. A few examples include USRP
[21], Sora [22], Atomix [23], Airblue [24], and Wireless Open Access
Research Platform (WARP) [25]. Each SDR is unique with regards to
the design methodology, development tools, performance, and end
application.

In this paper, we first present an overview of the SDR architecture,
as well as the analog and digital divides of the system and inter-
connection of components. Then, we introduce the criteria that defines
how the different hardware platforms are classified. We thoroughly
examine the architecture and design approaches employed by these
hardware platforms and present their strengths and weaknesses in the
context of SDR implementation. Furthermore, we provide an analytical
comparison of hardware platforms as a guide for design decision
making. Moreover, we discuss the use of development tools and present
a summary to give a streamlined explanation of their functionalities
and the platforms they support. Afterwards, we review the SDR plat-
forms developed by both industry and academia, analyze them, and
compare them using the criteria that was discussed earlier. Finally, we
identify the current challenges and open research topics that are related
to future SDR development.

This paper is organized as follows: Section 2 provides a description
of SDR architecture and the classification process that is used to sum-
marize the various design approaches adopted. Section 3 provides a
comprehensive study of all the hardware platforms and associated de-
sign methodologies that are used to build SDR platforms. Section 4 lists
some of the corresponding development tools and platforms. Section 5
presents an analysis and comparison of the commercially and acade-
mically developed SDR platforms. Section 6 highlights research ques-
tions and future trends. Section 7 presents an analysis of the existing
literature on SDR surveys. We conclude the paper in Section 8. A list of

key abbreviations used in this paper can be found in Table 1.

2. Concepts and architecture

In this section, we examine the general architecture of SDRs, their
main components, and their processing requirements. As explained in
the previous section, SDRs play a vital role in wireless standard de-
velopment due to their flexibility and ease of programmability. This is
due to the fact that most digital signal processing and digital front end,
which includes channel selection, modulation and demodulation, takes
place in the digital domain. This is usually performed in the software
running on processors, such as GPPs and DSPs. However, it can also run
on programmable hardware, i.e., FPGAs.

In general, from the transmitter’s point of view, first a baseband
waveform needs to be produced and then an Intermediate Frequency
(IF) waveform. A RF waveform will be generated and then sent through
the antenna. From the receiver’s point of view, this RF signal is sam-
pled, demodulated, and then decoded. To provide more details to the
process, we study the receiving end of the system as follows.

The RF signal from the antenna is amplified with a tuned RF stage,
which amplifies a range of the frequency band. This amplified RF signal
is then converted to an analog IF signal. The Analog-to-Digital
Converter (ADC) digitizes this IF signal into digital samples. Then, it is
fed into a mixer stage. The mixer, which is an electrical circuit that
takes in two signals and yields a new frequency, has another input
coming from a local oscillator with a frequency that is set by the tuning
control. The mixer then translates the input signal to a baseband. The
next stage is a Finite Impulse Response (FIR) filter that permits only one
signal. The FIR is a combination of multiply-add units and shift regis-
ters. This filter limits the signal bandwidth and acts as a decimating
low-pass filter. The digital down-converter includes a large number of
multipliers, adders, and shift-registers in the hardware in order to ac-
complish the aforementioned tasks. Next, the signal processing stage
performs tasks such as demodulation and decoding. This stage is typi-
cally handled by a dedicated hardware like an Application Specific
Integrated Circuit (ASIC) or other programmable alternatives like FPGA
or DSP [26].

As shown in Fig. 1(a) and (b), at a high level, a typical SDR trans-
ceiver consists of the following components: Signal Processing, Digital
Front End, Analog RF Front End, and an antenna.

2.1. Antenna
SDR platforms usually employ several antennas to cover a wide

range of frequency bands [27]. Antennas are often referred to as

Table 1
Key abbreviations.

ADC Analog-to-Digital Converter
ASIC Application-Specific Integrated Circuit
BS Base Station
CUDA Compute Unified Device Architecture
DAC Digital-to-Analog Converter
DSP Digital Signal Processor
FFT Fast Fourier Transform
FLOPS Floating Point Operations Per Second
FPGA Field Programmable Gate Array
GPP General Purpose Processor
GPU Graphics Processing Unit
HLS High Level Synthesis
NFV Network Function Virtualization
RTL Register-Transfer Level
SDR Software-Defined Radio
SDN Software-Defined Network
SNR Signal-to-Noise Ratio
SoC System on Chip
USRP Universal Software Radio Peripheral
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“intelligent” or “smart” due to their ability to select a frequency band
and adapt with mobile tracking or interference cancellation [26,28]. In
the case of SDRs, an antenna usually needs to meet a certain list of
requirements such as self-adaptation (i.e., flexibility to tuning to several
bands), self-alignment (i.e., beamforming capability), and self-healing
(i.e., interference rejection) [28].

2.2. RF Front End
This is a RF circuitry where the main function is to transmit and

receive the signal at various operating frequencies. Its other function is
to change the signal to/from the Intermediate Frequency (IF). The
process of operation is divided into two, depending on the direction of
the signal (i.e., Tx or Rx mode):

- In the transmission path, digital samples are converted into an
analog signal by the Digital-to-Analog Converter (DAC), which in
turn feeds the RF Front End. This analog signal is mixed with a
preset RF frequency, modulated, and then transmitted.
- In the receiving path, the antenna captures the RF signal. The
antenna input is connected to the RF Front End using a matching
circuitry to guarantee an optimal signal power transfer. Then, it
passes through a Low Noise Amplifier (LNA), which resides in a
close proximity to the antenna, in order to amplify weak signals and
minimize the noise level. This amplified signal, in conjunction with
a signal from the Local Oscillator (LO), is fed into the mixer in order
to down-convert it to the IF [29].

2.3. Analog-to-Digital and Digital-to-Analog Conversion
The DAC, as mentioned in the previous section, is responsible for

producing the analog signal that will be transmitted from the digital
samples. The ADC resides on the receiver side and is an essential
component in radio receivers. The ADC is responsible for converting
continuous-time signals to discrete-time, binary-coded signals. ADC
performance can be described by various parameters [30,31] including:
(i) Signal-to-Noise Ratio (SNR): the ratio of signal power to noise power
in the output, (ii) resolution: number of bits per sample, (iii) Spurious-
free Dynamic Range (SFDR): the strength ratio of the carrier signal to
the next strongest noise component or spur, and (iv) power dissipation.
Advances in SDR development have provided momentum for ADC
performance improvements. For example, since ADC’s power con-
sumption affects the lifetime of battery-powered SDRs, more energy
efficient ADCs have been developed [32].

2.4. Digital Front End
The Digital Front End performs two functions [31]:

- Sample Rate Conversion (SRC), which is a functionality that con-
verts the sampling from one rate to another. This is necessary since
the two communication parties must be synchronized.
- Channelization, which includes up/down conversion in the trans-
mitter and receiver side, respectively. It also includes channel fil-
tering, where channels that are divided by frequency are extracted.
Some examples include interpolation and low-pass filters, as de-
picted in Fig. 1.

In a SDR transceiver, the following tasks are executed in the digital
front end:

- On the transmitting side (Fig. 1(a)), the Digital Up Converter
(DUC) translates the baseband signal to IF. The DAC, which is
connected to the DUC, then converts the digital IF samples into an
analog IF signal. Afterwards, the RF up-converter converts the
analog IF signal to RF frequencies.
- On the receiving side (Fig. 1(b)), the ADC converts the IF signal
into digital samples. These samples are subsequently fed into the
next block, which is the Digital Down Converter (DDC). The DDC
includes a digital mixer and a numerically-controlled oscillator. The
DDC extracts the baseband digital signal from the ADC. After it is
processed by the Digital Front End, this digital baseband signal is
forwarded to a high-speed digital signal processing block [33].

A new alternative to the classical approach is a concept known as
Direct RF Sampling (DRFS). In DRFS, the RF sampling ADC replaces the
analog processing blocks, such as the mixer, local oscillator and filters,
and moves the processing to the digital domain. This significantly im-
proves the design for the receiver. Here, the signal is converted by the
ADC and handed over to the signal processing block in order to extract
the data [34]. Based on the sub-sampling or bandpass sampling theory,
which uses the alias of the signal in order to sample, it requires a much
lower sampling rate. A bandpass filter is placed in front of the ADC to
avoid sensitivity loss. The advantages of DRFS are supporting a very
wide bandwidth and offering higher power efficiency [35].

2.5. Signal processing
Signal processing operations, such as encoding/decoding, inter-

leaving/deinterleaving, modulation/demodulation, and scrambling/
descrambling are performed in this block. Encoding for the channel
serves as an error correcting code. Specifically, the encoded signal in-
cludes redundancy that is utilized by the receiver’s decoder to re-con-
struct the original signal from the corrupted received signal. Examples
of error correcting codes include Convolutional Codes, Turbo Codes,
and Low Density Parity Check (LDPC) [36]. The decoder constitutes the
most computationally intensive part of the Signal Processing block, due
to data transfer and memory schemes [37]. The second part that is
regarded as highly complex and expensive, in terms of area and power,
is the Fast Fourier Transform (FFT) and Inverse FFT (IFFT), as part of
the modulation phase [38].

The signal processing block is commonly referred to as the baseband
processing block. When discussing SDRs, the baseband block is at the
heart of the discussion, since it makes up the bulk of the digital domain
of the implementation. This implementation runs on top of a hardware
circuitry that is capable of processing signals efficiently. Some examples
include ASICs, FPGAs, DSPs, GPPs, and GPUs. The second part of the
implementation is the software, which provides the functionality and
high-level abstractions needed to execute the signal processing opera-
tions. In the next section, we examine the aforementioned hardware
platforms and analyze in detail the various design approaches.
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Fig. 1. SDR architecture. Sub-figure (a) shows SDR from a receiver’s point of
view, and sub-figure (b) shows SDR from a transmitter’s point of view.
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3. Design approaches

In this section, we discuss the classification of the various SDR de-
sign methodologies of the baseband processing block, namely GPP,
GPU, DSP, FPGA, and co-design based methodologies. In this classifi-
cation, we analyze and compare SDR platforms based on a set of per-
formance metrics in the following criteria:

-Flexibility and reconfigurability. The capability for the modulation
and air-interface algorithms and protocols to evolve by merely
loading new software onto the platform [12].
-Adaptability. The SDR platform can adjust its capabilities based on
network dynamics and user demands.
-Computational power. The processing rate of the SDR platform,
namely Giga Operations per Second (GOPS).
-Energy efficiency. The total power consumption (typically within a
few hundreds milliwatts), especially for mobile and IoT deploy-
ments [39,40].
-Cost. The total cost of the SDR platform, including time to market,
development, and hardware costs.

3.1. GPP-based

One of the first approaches to realizing SDR platforms is using a
General Purpose Processor (GPP), or the commonly known generic
computer microprocessors such as x86/64 and ARM architectures.
Some examples of SDR platforms that utilize GPPs are Sora [22], KUAR
[41], and USRP [21].

3.1.1. Definition and uses
A GPP is a digital circuit that is clock-driven and register-based. It is

capable of processing different functions and operates on data streams
represented in the binary system [42]. These GPPs can be used for
several purposes, making them extremely useful for an unlimited
number of applications. This eliminates the need for building applica-
tion-specific circuits, reducing the overall cost of running applications.
GPPs are generally a preferable hardware platform by researchers in
academia due to their flexibility, abundance, and ease of program-
mability, which is one of the main requirements in SDR platforms [43].
In addition, researchers prefer GPPs, since they are more familiar with
them and their software frameworks when compared to DSPs and
FPGAs. From the performance point of view, GPPs are being enhanced
rapidly. This advancement is not only credited to technological ad-
vances in terms of Complementary Metal Oxide Semiconductor (CMOS)
technology [44] but also to the increase of the average number of in-
structions processed per clock cycle. The latter is achieved through
different means, and in particular, utilizes parallelism within and be-
tween processors. This has led to the evolution of multi-core GPPs [45].

3.1.2. Adoption and GPUs
Architecturally, the instruction set of GPPs includes instructions for

different operations such as Arithmetic and Logic Unit (ALU), data
transfer, and I/O. A GPP processes these instructions in a sequential
order. Because of sequential processing, GPPs are not convenient for
high-throughput computing with real-time requirements (i.e., high
throughput and low latency) [46]. For example, using GNU Radio [47]
to implement IEEE 802.11 standard, which requires a 20 MHz sampling
rate, would be challenging, since GNU Radio is restricted by the limited
processing capabilities of GPPs. This leads to the GPP cores (of the PC
attached) to reach saturation and to frames becoming corrupted and
discarded. Moreover, wireless protocols require predictable perfor-
mance in order to guarantee that they meet the timing constraints.
However, conditional branch instructions in the GPP’s instruction sets
lead to out-of-order execution, which makes it unfeasible to achieve
predictability.

To overcome the limitation of GPPs, researchers have proposed

multiple solutions, one of which is the addition of co-processors, such as
the Graphic Processing Unit (GPU) [48]. GPUs are processors specifi-
cally designed to handle graphics-related tasks, and they efficiently
process large blocks of streaming data in parallel. SDR platforms that
are comprised of both GPPs and GPUs are flexible and have a higher
level of processing power. However, this results in a lower level of
power efficiency (e.g., GPP’s power efficiency is ≈ 9GFLOPS/W for
single-precision, compared to 20GFLOPS/W for GPU [49]). GPUs act as
co-processors to GPPs because a GPP is required to act as the control
unit and transfer data from external memory. After a transfer is com-
pleted, the GPU executes signal processing algorithms.

While GPUs are typically used for processing graphics, they are also
used for signal processing algorithms. Over the past few years, the
theoretical peak performance for GPUs and GPPs for single and double
precision processing has been growing [50]. For example, when com-
paring Intel Haswell’s 900 GFLOPs [51] with NVIDIA GTX TITAN’s
4500 GFLOPS [52] for single precision, it is apparent that GPUs have a
computational power that far exceeds their GPP counterparts [50].
Their multi-core architectures and parallel processors are the main at-
tractive features, in addition to their relatively reasonable prices and
small, credit card-like size. These features make them good candidates
for co-processors in GPP-based SDRs, where they can play a vital role in
accelerating computing-intensive blocks [53]. Another advantage is
their power efficiency, which keeps improving with every new model
(e.g., it went from 0.5 to 20GFLOPS/W for single-precision) [49]. To
take full advantage of GPUs, it is a condition that the algorithms con-
form to their architecture. From an architectural perspective, GPUs
have a number of advantages that make them preferable solutions to
applications like video processing. In particular, GPUs employ a con-
cept called Single Program Multiple Data (SPMD) that allows multiple
instruction streams to execute the same program. In addition, due to
their multi-threading scheme, data load instructions are more efficient.
GPUs also present a high computational density, where the cache to
ALU ratio is low [54].

In Table 2, the authors of [53] confirmed that the signal detection
algorithm, which includes intensive FFT computations, shows a faster
parallel processing in the case of GPU over GPP, while operating in real-
time (by orders of magnitude). This is due to the availability of the
compute unified Fast Fourier Transform (cuFFT) library which was
developed for NVIDIA GPUs for more efficient FFT processing [55].
With regards to the architectural advantage of GPUs, several hundred
CUDA cores can perform a single operation at the same time, as op-
posed to a few cores in the case of multi-core GPPs.

An example of using GPUs alongside GPPs to build SDR platforms is
found in the work in [56], where the authors built a framework on a
desktop PC in addition to using a GPU to implement an FM receiver.
Additionally, the authors in [53] studied real-time signal detection
using an SDR platform composed of a laptop computer and an NVIDIA
Quadro M4000M [52]. Examples of GPUs available in the market can
be found in Table 3. In this table, we show two examples of high per-
forming GPUs (> 5500 GFLOPS), suitable for SDRs with strict timing
and performance requirements. We also show two more examples of
less powerful and less expensive GPUs, suitable for prototyping SDRs in
academic environments.

Table 2
Performance of signal detection algorithm on GPP and GPU [53].

ADC Data
length (ms)

Processing platform of signal detection algorithm

GPP Serial
processing (ms)

GPP Parallel
processing (ms)

GPU Parallel
processing (ms)

1 13.487 1.254 0.278
10 135.852 12.842 2.846
100 1384.237 131.026 29.358
1000 13946.218 1324.346 321.254
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3.1.3. Shortcomings
State-of-the-art GPP and GPU-based platforms, such as Sora [22]

and USRP [21], utilize desktop computers to realize the systems.
However, these platforms consume a significant amount of power for a
performance goal, and their form factor (i.e., shape and physical size) is
large, making real-world deployment a challenging task. It is worth
noting that GPPs and GPUs alike present scaling limitations while
meeting Koomey’s Law. This law states that the energy efficiency of
computers doubles roughly every 18 months [58]. This limitation calls
for alternatives that provide higher computing power while keeping the
energy efficiency the same. One alternative is the hybrid or co-design
approach, where software and hardware implementations are com-
bined. This will be discussed in more details in Section 3.4.

When both GPPs and GPUs are used for a SDR design, data transfer
operations between the GPP and GPU can create bottlenecks and cause
performance loss, especially when trying to meet real-time require-
ments [59]. However, there are continuous efforts to reduce or elim-
inate the time overhead of data transfers by introducing multi-stream
scheduling for pipelining of the memory copy tasks. This would ensure
that there are no stalls in the pipeline, which would enhance processing
parallelism [60,61]. Finally, although the processing power of micro-
processors is constantly being improved, the balance between sufficient
computing power and meeting a specific goal for energy consumption
and cost will remain a very difficult task, both in the present day and in
the future. This is true especially with the growing need for more data
to be processed and blocks that can handle data processing in parallel.

3.2. DSP-based

The DSP-based solution can be considered as a special case of GPP-
based solutions, but due to its popularity and unique processing fea-
tures, it deserves a separate discussion. An example of DSP-based SDR is
the Atomix platform [23] which utilizes TI TMS320C6670 DSP [62].

3.2.1. Definition and uses
DSP is a particular type of microprocessor that is optimized to

process digital signals [63]. To help understand how DSPs are dis-
tinguished from GPPs, we should first note that both are capable of
implementing and processing complex arithmetic tasks [64]. Tasks like
modulation/demodulation, filtering, and encoding/decoding are com-
monly and frequently used in applications that include speech re-
cognition, image processing, and communication systems. DSPs, how-
ever, implement them more quickly and efficiently due to their
architecture (e.g., RISC-like architecture, parallel processing), which is
specifically optimized to handle arithmetic operations, especially mul-
tiplications. Since DSPs are capable of delivering high performance
with lower power, they are better candidates for SDR deployment [65]
compared to GPPs. Examples of DSPs that are specifically designed for
SDR platforms are TI TMS320C6657 and TMS320C6655. These DSPs
are both equipped with hardware accelerators for complex functions
like the Viterbi and Turbo Decoders [66].

3.2.2. Adoption
As discussed in the previous section, GPPs provide an average

performance for a wide range of applications. Needless to say, this
performance level might be sufficient for research and academia, but if
the system is to be deployed commercially, certain performance re-
quirements must be met. To this end, compared to GPPs, DSPs are
tailored for processing digital signals efficiently, utilizing features like
combined multiply-accumulate operations (MAC units) and parallelism
[67]. DSP manufacturers usually sell these products in two categories:
optimized for performance and optimized for energy. Therefore, when
used in SDRs, high performance and energy efficient products can be
employed in BSs and edge devices, respectively.

In terms of the instruction set, DSPs can be categorized into two
groups: (i) Single Instruction Multiple Data (SIMD) architecture, and
(ii) Multiple Instruction Multiple Data (MIMD) architecture, as de-
scribed by Michael J. Flynn in what is known as Flynn’s Taxonomy
[68,69]. This taxonomy is a method of classifying various architectures
depending on the number of concurrent instructions and data streams,
as follows:

– A SIMD-based DSP can execute an instruction on multiple data
streams at the same time. This architecture can be very efficient in
cases when there exists high data parallelism within the algorithm
[70]. This indicates that there are similar operations that can be
performed on different datasets at the same time. Examples of SIMD-
based DSPs include the Cell processor presented in [71] which
supports 256 GFLOPS. More examples of DSPs that are optimized for
low power are NXP CoolFlux DSP [72] and Icera Livanto [73]. A
SDR employing a SIMD DSP is the SODA architecture [74]. It has
been a common practice to add more cores in order to achieve a
better trade-off between performance and power. With each extra
core utilizing Very Long Instruction Word (VLIW), a higher level of
parallelism can be accomplished as well.
– On the other hand, MIMDs have the ability to operate on multiple
data streams executing multiple instructions at any point in time.
This is essentially an extension of the SIMD architecture, where
different instructions or programs run on multiple cores con-
currently. This is especially important and useful in cases where
parallelism is not uniform across different blocks. However, the
MIMD architecture allows for parallel execution, leading to speed
improvements. Examples of MIMD-based DSPs include Texas
Instruments SMJ320C80 and SM320C80 DSPs with 100 MFLOPS
[66].

Since DSPs are customized to meet certain signal processing-related
needs, it is crucial to clarify these customizations in order to understand
how DSPs stand out and how they are successful at not only meeting the
requirements but also in how they are becoming a vital player in the
wireless communication field. These customizations, which are mostly
architecture-related, are as follows.

In [75], the authors discuss the energy efficiency of DSPs. In gen-
eral, DSPs consume more power than ASICs, however, there are DSPs
that are optimized for low power wireless implementations, such as TI
C674x DSP [66]. One of the methods to lower power consumption is to
use multiple data memory buses (e.g., one for write, and two for reads).
This paves the way for higher memory bandwidth and allows for
multiple operand instructions, resulting in fewer cycles. As discussed
above, VLIW architectures, along with specialized instructions, can
provide a higher level of efficiency, which lowers energy consumption.
These improvements can be seen in DSPs like TI TMS320C6x [66] and
ADI TigerSHARC [76]. These techniques, coupled with proven power-
saving techniques, such as clock gating and putting either parts of or the
entire system in sleep mode, further reduce power consumption. Ex-
amples of DSPs available in the market can be found in Table 4. In this
table, we present three examples of DSPs that do not include co-pro-
cessors, and three DSP-based SoCs that, in addition to DSP cores, in-
clude extra soft cores as control processors.

Table 3
Comparison of GPUs.

NVIDIA
GeForce GTX
980 Ti [52]

AMD
Radeon R9
390X [57]

NVIDIA
GeForce GTX
680 [52]

AMD
Radeon RX
560 [57]

GFLOPS 5632 5913 3090 2611

Power onsumption (W) 250 363 356 180

Frequency (MHz) 1000 1050 1006 1175

Cost (USD) 870 520 300 150
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3.2.3. Shortcomings
Despite the ubiquity of DSPs in SDR implementations for the past

two decades [79], they do present some shortcomings. First, as more
applications call for increasing parallelism and reconfigurability in
order to handle computationally intensive tasks, DSPs can be in-
sufficient. Second, programming DSPs to achieve higher levels of par-
allelism predictability can be challenging. This opened the door for
parallel architectures, such as FPGAs, multi-core GPPs, or even a hybrid
of both, to be adopted for SDRs. Third, power consumption of DSPs is
generally higher than FPGAs due to them operating at high frequencies.

3.3. FPGA-based

Another approach towards realizing SDRs is to use a programmable
hardware such as FPGAs. Example of FPGA-based SDR platforms are
Airblue [24], Xilinx Zynq-based implementation of IEEE 802.11ah [80],
and the work found in [81] that used the same FPGA board to imple-
ment a complete communication system with channel coding.

3.3.1. Definition and uses
An FPGA is an array of programmable logic blocks, such as general

logic, memory, and multiplier blocks, that are surrounded by a routing
fabric, which is also programmable [82]. This circuit has the capability
of implementing any design or function and is able to be easily updated.
Although FPGAs consume more power and occupy more area than
ASICs, the programmability feature is the reason behind their in-
creasing adoption in a wide range of applications. Furthermore, when
the reconfiguration delay is in the order of milliseconds, the SDR can
switch between different modes and protocols seamlessly [83]. Another
major difference is that, ASIC fabrication is expensive (at least a few
tens of thousands of dollars), and the process requires a few months. In
contrast, FPGAs can be quickly reprogrammed, and their cost is within
a few tens to a few thousands of dollars, at most. The low-end product
cycle, along with attractive hardware processing advantages, like high-
speed performance, low power consumption and portability, when
compared to processors such as GPPs and DSPs, present FPGAs as
contenders that offer the best of both worlds [82].

In a study by the authors in [84], they compared the performance of
Xilinx FPGAs [85] against 16-core GPPs. The calculation of peak per-
formance for GPPs was performed by multiplying the number of
floating point function units on each core by the number of cores and by
the clock frequency. For FPGAs, performance is calculated by picking a
configuration, adding up the Lookup Tables (LUTs), flip-flops and DSP
slices needed, and then multiplying them by the appropriate clock
frequency. The authors calculated the theoretical peaks for 64-bit
floating point arithmetic and showed that Xilinx Virtex-7 FPGA is about
4.2 times faster than a 16-core GPP. This is shown in Fig. 2. Even with a
one-to-one adder/multiplier configuration, the V7-2000T achieved
345.35GFLOPS, which is better than a 16-core GPP. From Intel [51],
Stratix 10 FPGAs can achieve a 10 Tera FLOPS peak floating point
performance [86]. This is due to the fixed architecture of the GPP
where not all functional units can be fully utilized, the inherent

parallelism of FPGAs, and their dynamic architecture. In addition, de-
spite having lower clock frequencies (up to 300 MHz), FPGAs can
achieve better performances due to their architectures which allows for
higher levels of parallelism through custom design [87]. Furthermore,
the authors in [88] compared the performance and power efficiency of
FPGAs to that of GPPs and GPUs using double-precision floating point
matrix-vector multiplication.The results show that FPGAs are capable
of outperforming the other platforms while maintaining their flex-
ibility. In addition, the authors in [54] thoroughly analyzed and com-
pared FPGAs against GPUs via the implementations of various algo-
rithms. The authors concluded that although both architectures support
a high level of parallelism, which is crucial to signal processing appli-
cations, FPGAs offer a larger increase in parallelism, while GPUs have a
fixed parallelism due to their data path and memory system.

3.3.2. Adoption
Over the past decade, FPGAs have significantly advanced and be-

come more powerful computationally. They now exist in many different
versions such as Xilinx Kintex UltraScale [85] and Intel Arria 10 [51]
[89,90]. In addition, the availability of various toolsets gave FPGAs an
advantage by making them more accessible. This is supported by the
availability of compilers that have the capability of generating Register-
transfer Level (RTL) code, such as Verilog and Very high speed in-
tegrated circuits Hardware Description Language (VHDL), that is
needed to run on FPGAs, from high-level programming languages. This
process is typically referred to as High Level Synthesis (HLS). Examples of
such compilers include HDL Coder [91] for MATLAB code [92] and
Xilinx HLS [93] or Altera Nios II C2H compiler [94] for C, C++, and
SystemC. We will explain some of these tools in Section 4.

HLS allows software engineers to design and implement applica-
tions, such as SDRs, on FPGAs using a familiar programming language
to code, namely C, C++, SystemC, and MATLAB, without the need to
posses a prior rich knowledge about the target hardware architecture
(refer to Section 4.1). These compilers can also be used to speed up or
accelerate parts of the software code running on a GPP or DSP that are

Table 4
Comparison of DSPs and DSP-based SoCs.

DSP only SoC

TI C66x (TMS320C6652)
[66]

CEVA (XC-
4500) [77]

Analog Devices
(ADSP-21369) [76]

TI Keystone II
(66AK2G02) [66]

Analog Devices
(ADSP-SC573) [76]

Qualcomm Snapdragon 820
(Hexagon 680) [78]

GFLOPS 9.6 40 2.4 28.8 5.4 No Floating Point
Memory (Kb) 1088 No Info 2000 1024 768 No Info
Frequency (MHz) 600 1300 400 600 450 2000
Cost (USD) ≈ 25 No Info ≈ 20 ≈ 20 ≈ 20 ≈ 70
Soft Core N/A N/A N/A ARM Cortex-A15 ARM Cortex-A5 Qualcomm Kyro 385 (CPU)

Adreno 530 (GPU)

Fig. 2. Peak performance of GPPs versus FPGAs when performing 64-bit
floating point operations [84]. It can be observed that FPGAs increased their
floating point performance by an order of magnitude compared to GPPs.
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causing slowdowns or setbacks to the overall performance. This will be
further discussed in Section 3.4. Further, FPGAs can achieve high per-
formance while still consuming less energy than the previously dis-
cussed processors [95] (e.g., Intel Stratix 10 FPGA can achieve up to
100 GFLOPS/W [96], compared to 23 GFLOPS/W for NVIDIA GeForce
GTX 980 Ti [52]). In addition, power dissipation can be further lowered
through the implementation of several techniques at a system, device,
and/or architecture level like clock gating and glitch reduction [83].
Table 5 presents a summary of the widely-used FPGA platforms.

3.3.3. Shortcomings
One of the challenges of using FPGAs, however, is the prior

knowledge about the target hardware architecture and resources that a
developer needs to possess in order to design an application efficiently
for FPGAs. In the SDR domain, designing the platform has typically
been the job of software engineers, and thus the process can be time-
consuming and less trivial to incorporate this experience into hardware
design. However, as it will be discussed in Section 4.1, the adoption of
FPGA solutions can be made more feasible through HLS tools.

3.4. Hybrid design (a.k.a., co-design)

The fourth approach towards realizing SDRs is the hybrid approach,
where both hardware and software-based techniques are combined into
one platform. This is commonly referred to as the co-design or hybrid
approach. Examples of SDRs that adopted the co-design approach in-
clude WARP [25] and CODIPHY [99].

3.4.1. Definition
Hardware/software co-design as a concept has been around for over

a decade, and it has evolved at a faster rate in the past few years due to
an increasing interest in solving integrated circuit design problems with
a new and different approach. Even with GPPs becoming more powerful
than ever, and with multi-core designs, it is clear that in order to
achieve higher performance and create applications that demand real-
time processing, designers had to shift attention to new design schemes
that utilize hardware solutions, namely, FPGAs and ASICs [100,101].
Co-design indicates the use of hardware design methodology, re-
presented by the FPGA fabric, and software methodology, represented
by processors.

As more applications in the automotive, communication, and
medical fields grow in complexity and size, it has become a common
practice to design systems that integrate both software (like firmware
and operating system) and hardware [102]. This has been made feasible
in the recent years thanks to the advances in high-level synthesis and in
developing tools that not only have the capability to produce efficient
RTL from software codes, but also define the interface between both
sides. The industry has identified the huge market for co-design and has
provided various SoC boards that, in addition to the FPGA fabric,
contain multiple processors. For example, the Xilinx Zynq board [85]
includes an FPGA fabric as well as two ARM Cortex-A9 processors
[103]. In addition to the aforementioned advantages, there are other

reasons that make co-design even more interesting, such as faster time
to market, lower power consumption (when optimized for this), flex-
ibility, and higher processing speeds, as the hardware in these systems
is typically used as an acceleration to software bottlenecks [104].

Adopting the co-design methodology in essence is a matter of par-
titioning the system into synthesizable hardware and executable soft-
ware blocks. This process depends on a strict criteria that is developed
by the designer [105,106]. The authors in [107] and [108] discuss their
partitioning methodologies and present the process of making the
proper architectural decisions. Common methods typically provide
useful information to the designer in order to make the best decision of
what to implement in hardware and what to keep in software. This
information can include possible speedups, communication overheads,
data dependencies, and the locality and regularity of computations
[108]. Examples of SoC boards available in the market can be found in
Table 5.

3.4.2. Adoption
As mentioned in Section 2, SDRs can be considered inherently hy-

brid or heterogeneous systems, implying the need for both hardware
and software blocks. This is due to the fact that the control part is
usually taken care of by a general processor. Other functions, such as
signal processing, are taken care of by a specialized processor like DSPs,
and they are sometimes accelerated using dedicated hardware like
FPGAs [109]. This design approach fits well with SDRs and can be fully
utilized to meet certain requirements that pertain to their attractive
features. For example, accelerating portions of a block or moving it
entirely to the FPGA fabric can help to push the processing time to the
limit in order to achieve a real-time performance for real-life deploy-
ment. In addition, through careful implementation of RTL optimization
techniques, the development of power efficient systems for mobile and
IoT applications would be possible. On the other hand, running most of
the MAC layer operations on a processor, or multi-processors, can be
advantageous for easy reconfiguration. Therefore, different partitioning
schemes can be adopted to meet the requirements of the application at
hand.

It is worth noting that FPGA vendors, namely Intel [51] and Xilinx
[85], are widening their product base with more SoCs and Multi-pro-
cessor SoCs (MPSoCs) [110], due to the growing demand for such de-
vices. An example of an SDR realized on an MPSoC is the work by
[111]. In a white paper, National Instruments, the company that owns
USRP [21], predicts that the future of SDRs is essentially a co-design
implementation [112], especially due to the introduction of FPGAs that
are equipped with a large number of DSP slices that are used for
handling intensive signal processing tasks, as depicted in Fig. 3. This
also can be seen from USRP E310 model, which incorporates a Xilinx
Zynq SoC [85].

3.4.3. Shortcomings
A downside of adopting SoCs for co-design is that their prices are

generally higher, compared to the previously mentioned design ap-
proaches, because they have multiple components on the same board,

Table 5
Comparison of FPGAs and FPGA-based SoCs.

FPGA only SoC

Xilinx Kintex-7
(XC7K70T) [85]

Intel Cyclone V GX
(C5) [51]

Lattice ECP3-70
(LFE3-70EA) [97]

Xilinx Zynq-700 (Z-7020
XC7Z020) [85]

Intel Cyclone V SE SoC
(A5) [51]

Microsemi SmartFuion2
(M2S090) [98]

Logic Cells (K) 65.6 77 67 85 85 86.31
Memory (Mb) 4.86 4.46 4.42 4.9 3.97 4.488
DSP Slices 240 150 128 220 87 84
Cost (USD) 130 185 80 110 110 155
Soft Core N/A N/A N/A Dual-core ARM Cortex-A9 Dual-core ARM

Cortex-A9
ARM Cortex-M3
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i.e., processor and FPGA fabric. Other factors that contribute to this are
extra memory and sophisticated interfaces. Another challenge of co-
design is the shared memory access, e.g., external DDR memory, be-
tween the processor and FPGA fabric. The study of [113] shows that the
number of memory read and write operations performed by a GPP is
higher than that of FPGAs. This is due to the fact that processors per-
form operation on registers, while FPGAs operate on buffers. Since
memory accesses add up to the overall latency, this can cause a bot-
tleneck to the overall performance. In addition, the authors have de-
veloped a methodology for predicting shared memory bandwidth by
using a functionally-equivalent software. This enables the designers to
be aware of any bottlenecks before implementing the entire co-design.

3.5. Comparison

When we covered different design methodologies and hardware
platforms for a wide selection of SDRs, we intended to compare them
analytically one-on-one using a cross-platform implementation of one
of the wireless communication protocols, which means the software can
be implemented on multiple hardware platforms. However, the litera-
ture showed a series of abstract comparisons using a set of benchmarks
that targeted High Performance computing but not necessarily SDR
applications. It is somewhat difficult to draw conclusions from these
numbers alone, since a performance comparison in the SDR field re-
quires real-world testing.

In Table 6, we provide a high-level comparison between three major
design approaches as a guideline for designers towards choosing the
method that best meets their application requirements.To help us
compile the information mentioned in the table, we use prominent
examples from corresponding vendors. These examples include Intel
Core i5 [51] for GPPs, TI C66x [66] for DSPs, and Xilinx Virtex [85] for
FPGAs. In this comparison, we used the criteria that was introduced at
the beginning of Section 3. However, we do not make assumptions on
what the best approach is and believe it is the developer’s responsibility

to make the best judgment depending on the application area. Please
note that in this table we did not include GPUs, as they typically act as
co-processors to GPPs, and their addition generally improves perfor-
mance. We also did not include co-design, since it combines GPPs with
FPGAs.

As Table 6 shows, while GPPs are easy to program and extremely
flexible, they lack the power to meet specifications in real-time and are
very inefficient in terms of power. To increase their performance,
multiple cores with similar instruction sets are included in the same
GPP platform to exploit parallelism and perform more operations per
clock cycle. However, hardware replication (i.e., adding more cores to
GPPs) may not necessarily translate to a higher performance. GPUs
tackle this by offering the same control logic for several functional
units. The sequential portion of the code runs on the GPP, which can be
optimized on multi-core GPPs, while the computationally intensive
portion runs on a several-hundred-core GPU, where the cores operate in
parallel. Another example of a customized processor is the DSP. It
performs significantly better than GPPs, while at the same time main-
tains the ease-of-use feature that GPPs possess, making them very at-
tractive options. They are also more power efficient and better fit for
signal processing applications. On the other hand, they are more ex-
pensive, which is the main trade-off. Finally, FPGAs combine the flex-
ibility of processors and efficiency of hardware. FPGAs can achieve a
high level of parallelism through dynamic reconfiguration, while
yielding better power efficiency [49]. FPGAs are typically more suitable
for fixed-point arithmetic, like in signal processing tasks, but in the
recent years their floating-point performance has increased sig-
nificantly [88,114]. However, the designers are expected to know a lot
more about the hardware, which is sometimes a deterring feature.

In a comparative analysis by [115], the authors studied the per-
formance and energy efficiency of GPUs and FPGAs using a number of
benchmarks in terms of targeted applications, complexity, and data
type. The authors concluded that GPUs perform better for streaming
applications, while FPGAs are more suitable for applications that em-
ploy intensive FFT computations, due to their ability to handle non-
sequential memory accesses in a faster and more energy efficient
manner. Similarly, in [49], the authors review and report the sustain-
able performance and energy efficiency for different applications. One
of their findings related to SDRs is that FPGAs should be used for signal
processing without floating point, which confirms the aforementioned
results. In addition, the authors in [116] report that GPUs are ten times
faster than FPGAs with regards to FFT processing, while the authors in
[88] demonstrate that the power efficiency of FPGAs is always better
than GPUs for matrix operations. Finally, the authors in [117] compare
GPPs, GPUs, and FPGAs through the implementation of LDPC decoders,
and their results led to the conclusion that GPUs and FPGAs perform
better than GPPs. It is obvious from the above studies that trade-offs are
to be expected when a particular design methodology is adopted, hence
careful analysis should be carried out beforehand. Other comparative
studies include [118–120] with similar results and conclusions.

Fig. 3. Number of DSP Slices in Xilinx FPGAs [85]. The values on top of the bars
refer to the CMOS technology used.

Table 6
Comparison of SDR design approaches.

GPP [51] DSP [66] FPGA [85]

Computation Fixed Arithmetic Engines Fixed Arithmetic Engines User Configurable Logic
Execution Sequential Partially Parallel Highly Parallel
Throughput Low Medium High
Data Rate Low Medium High
Data Width Limited by Bus Width Limited by Bus Width High
Programmability Easy Easy Moderate
Complex Algorithms Easy Easy Moderate
I/O Dedicated Ports Dedicated Ports User Configurable Ports
Cost Moderate Low Moderate
Power Efficiency Low Moderate High
Form Factor Large Medium Small
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4. Development tools

As we mentioned in Section 3.3, HLS is an abstract method of de-
signing hardware using a high-level programming language. Developers
of FPGA and co-design based SDRs can benefit from HLS since it re-
quires no prior experience with hardware design. Unlike the rest of the
development tools, HLS tools share a common theme and offer similar
features. Thus, we first discuss HLS in this section. Next, we review the
common development tools that are typically used in the process of SDR
design and implementation for different design approaches.

4.1. High Level Synthesis (HLS)

HLS has been a hot research topic for over a decade, with both
academia and industry trying to make hardware design more accessible
to every developer [121]. HLS is the process of converting an algo-
rithmic specification of the design that is described by a high-level
programming language to an RTL implementation. HLS provides a new
level of design abstraction through exploring the micro-architecture
and any hardware constraints. The resulting RTL is highly optimized, in
terms of power, throughput and latency, and it is reasonably compar-
able to a hand-tuned code. Fig. 4 depicts this process. The major dif-
ference between RTL and C is the absence of the timing description in
the high-level model, which is merely a behavioral description of the
system with no details about the underlying hardware. The second
difference is the processing architecture. While GPP architecture is
fixed, the best possible processing architecture is built by the compiler
for FPGA [122]. In addition, HLS can speed up the development cycle
(time to market), going from several months down to several weeks
[123]. This is because the task of producing an optimized RTL is han-
dled by the HLS tool, and the developer’s efforts are focused on de-
scribing the system’s algorithmic description.

In [124] the authors presented LegUP, an open-source HLS tool.
This tool is capable of profiling code to identify frequently executed
sections of the code for hardware acceleration (i.e., moving them to the
FPGA fabric). The authors in [125] survey HLS compilers and their
capability to provide an accurate estimation of functional area and
timing, and they compare them with the results from hand-tuned
hardware designs. In an effort to help the developer make the right
decision in picking an HLS tool that yields the best results for their
application, the authors in [123] present a study where they compared
three of the industry tools, namely Vivado HLS [93], Intel FPGA SDK for

OpenCL [126], and MaxCompiler [127], through developing LDPC
decoders, which are often used as error correcting blocks in SDRs. All
three tools successfully synthesized LDPC decoders and implemented
them on Intel [51] and Xilinx [85] FPGA boards. The difference,
however, was in the logic utilization and performance. Similarly, the
authors in [128], compare the same aforementioned list of compilers
quantitatively and qualitatively using several financial engineering
problems (e.g., Monte Carlo-based Option Pricing) and compare the
performance of several FPGA boards. Their results show that both Intel
FPGA SDK for OpenCL and MaxCompiler performed better than Vivado
HLS due to their ability to extract parallelism more effectively. In [129],
the authors comprehensively review recent HLS tools and provide a
methodology based on C benchmarks to compare some of these tools
and their optimization features. The various benchmarks implemented
demonstrate that some tools are better suited for certain applications
than others, with no specific tool dominating the HLS field. The authors
also show that open-source HLS tools, such as LegUP [130], can be as
effective as their commercial counterparts. Other surveys and analyses
include [104,131,132] which focused on open-source tools, and [133],
which studied some of the trade-offs of HLS-generated designs and their
degree of reliability when errors are injected. All of the studies above
prove the feasibility and reliability of HLS tools to generate RTL codes,
despite having different development and optimization solutions.

Examples of HLS tools include Xilinx Vivado HLS [93] and SDSoC
[135]; Intel HLS Compiler [134] and FPGA SDK for OpenCL [126];
Cadence Stratus High-level Synthesis, which combines Cadence C-to-
Silicon and Forte Cynthesizer [136]; Synopsys Synphony C Compiler
[137]; Maxeler MaxCompiler [127]; MATLAB HDL Coder [91]; and
LegUP [130], which unlike the rest of the tools is vendor-independent
(works with all types of FPGA boards like Xilinx [85], Intel [51], Lattice
[97], and Microsemi [98]).

Table 7 presents a summary of the commercial HLS tools. While
some of them are vendor-specific, other tools work with a variety of
FPGA boards. The examples mentioned in the table all provide a set of
area and timing optimizations such as resource sharing, scheduling, and
pipelining. However, not all of them are capable of generating test-
benches for the design.

4.2. Tools

In this section we review the existing software tools for SDR de-
velopment. For each design methodology, we discuss a compatible
development tool and list its features. We also provide an overall
comparison between them to highlight the differences. This review is
particularly important in order to make the right decision of picking the
most fitting tool for the intended application. Learning about the fea-
tures offered by each tool helps the developers fully utilize the available
tools. Table 8 presents an overview of these tools.

4.2.1. MATLAB and Simulink
Most designers start with modeling and simulating the system using

Mathworks MATLAB [92] and Simulink [140]. With the availability of
a wide range of built-in functions and toolboxes, especially for signal
processing and communication, developing and testing applications
became very common and widely adopted. However, in order to use

High-Level Language

HLS Tool

Synthesizable HDL Code

RTL Synthesis and Place-and-Route Tool

Bit Stream

C / C++ / MATLAB / openCL

Pipelining / dataflow / unrolling

Verilog / VHDL

Vivado / Quartus

FPGA Implementation

Fig. 4. HLS design flow commonly adopted by Xilinx [93], Intel [134], and
MATLAB [91].

Table 7
HLS tools.

Xilinx Vivado HLS [93] Intel FPGA SDK for OpenCL
[126]

Cadence Stratus High-level Synthesis
[136]

Synopsys Synphony C
Compiler [137]

Maxeler MaxCompiler
[127]

Input C/C++/SystemC C/C++/SystemC C/C++/SystemC C/C++ MaxJ
Output VHDL/Verilog/SystemC VHDL/Verilog VHDL/Verilog VHDL/Verilog/SystemC VHDL
Testbench Yes No Yes Yes No
Optimizations Yes Yes Yes Yes Yes
Compatibility Xilinx FPGA Intel FPGA All All All
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these models for different platforms, developers would need to use
MATLAB Coder [141] and Simulink Coder [142] to generate C/C++
codes. The generated codes can be used with Embedded Coder [143] to
optimize them and generate software interfaces with AXI drivers for the
sake of running on embedded processors and microprocessors, like the
dual ARM cortex A9 MPcore [103] on the ZedBoard [144]. Alter-
natively, developers can use the HDL Coder [91] to generate synthe-
sizable RTL (Verilog or VHDL) code to be implemented on FPGAs or
ASICs. It also has support for Xilinx [85] and Intel [51] SoC devices by
providing some information and optimizations that pertain to resource
utilization and distributed pipelining. Fig. 5 shows the design flow for
SoC platforms that the aforementioned tools offer and how they are
connected. Examples of using MATLAB and Simulink to develop an SDR
are found in the works by [145] and [146], where the authors used the
RTL-SDR very low-cost SDR dongle [147] (≈ $20) with a desktop
computer (GPP) to design an academic curriculum for teaching DSP and
communications theory.

4.2.2. Vivado HLS and SDSoC
Xilinx Vivado HLS [93] is a design environment for high-level

synthesis. This tool offers a variety of features to tweak and improve the
RTL netlist output that is compatible and optimized for Xilinx FPGA
boards. It accepts input specifications described in several languages
(e.g., C, C++, SystemC, and OpenCL) and generates hardware modules
in Verilog or VHDL. Developers are provided with several options to
optimize the solution in terms of area and timing through the use of
directives, which are guidelines for the optimization process, and
pragmas for RTL optimization. These optimizations include loop un-
rolling, loop pipelining, and operation chaining. SDSoC [135] is an-
other tool by Xilinx [85]. The major difference between the two tools is
that the latter has the capability to provide solutions for SoCs. SDSoC is
built on top of Vivado HLS and has the same C-to-RTL conversion
capability. The main advantage of using SDSoC is that it automatically
generates data movers, which are responsible for transferring data be-
tween the software on the processor and the hardware on the FPGA.

A similar tool to SDSoC that is open-source is LegUP [130]. It was
developed at the University of Toronto, as part of an academic research
effort to design an HLS tool that is capable of taking in C code as an
input and providing three possible outputs: a synthesizable RTL code
for an FPGA, a pure software executable, and a hardware/software co-
design solution for a SoC.

4.2.3. GNU Radio
It is an open-source software development toolkit that provides

signal processing blocks to implement SDRs [47,148]. It runs on
desktop or laptop computers and can build a basic SDR, with the ad-
dition of simple hardware such as USRP B200 [21]. It is often used by
academia and the research community for simulation, as well as to
quickly set up SDR platforms. Similar to the System Generator tool
[149] and Simulink [140], it includes different kinds of blocks such as
decoders, demodulators, and filters. It is also capable of connecting
these blocks and managing data transfer in a reliable fashion. In addi-
tion, it supports the popular USRP systems [21]. One of the attractive
features of GNU Radio is the ability to define and add new blocks
through programming in C++ or Python. An example of using GNU
Radio is in the work by [150], where the author uses it with a USRP to
realize different types of transceivers such as Time Division Multiplexed
Access (TDMA) and Carrier Sense Multiple Access (CSMA). Similarly,
the authors in [151] successfully achieve real-time communication
between two computers using USRP [21] and RTL-SDR [147].

4.2.4. LabVIEW
A widely used tool from National Instruments [139] that offers a

visual programming environment for test, automation and control ap-
plications used by both industry and academia. It is similar to GNU
Radio and Simulink, where the design can be constructed schematically
by connecting a chain of various blocks together, each of which per-
forms a certain function. It also offers complete support for USRP [21]
to enable rapid prototyping of communications systems. Designing
different blocks of the system can be achieved using high-level lan-
guages, such as C or MATLAB, or using a graphical dataflow. An SDR
platform development using LabVIEW is found in the work by [152],
where the author describes a wireless communication course design
that incorporates USRP and LabVIEW, due to their ease of use, in order
to help teach students basic concepts. Similarly, in [153] the authors
designed an SDR platform, namely FRAMED-SOFT, that includes two
types of USRPs and is intended for an academic environment.

4.2.5. CUDA
Developed by NVIDIA, it issues and manages computing platforms

and programming models for data-parallel computing on GPUs [55].
Developers typically use CUDA when GPUs are part of the processing
architecture as co-processors; they want to take full advantage of their
power by speeding up applications. As discussed in Section 3.1.2, in
order to identify application components that should be run on a GPP
and the parts that should be accelerated by the GPU, one needs to look
at the tasks at hand. Programming languages that can be used in CUDA
include C, C++, Python, FORTRAN, and MATLAB [92]. In addition to
the rich library full of GPU-related acceleration functions, the toolkit
includes a compiler, development tools, and a CUDA runtime library. It
is used to develop applications and optimize them for systems that in-
corporate GPUs.

5. Platforms

In this section, we list the different types of SDRs from the archi-
tecture and design point of view. We analyze them, examine their
strengths and shortcomings, and discuss their impact on SDR

Table 8
Development tools and platforms.

MATLAB & Simulink [138] Vivado HLS & SDSoC [85] LegUP [130] GNU Radio [47] LabView [139] CUDA [55]

Input MATLAB/Graphical C/C++/SystemC C Graphical/Python/C++ Graphical C/C++/FORTRAN/Python
Output MATLAB/C++/RTL C/RTL C/RTL C/RTL C/RTL Machine Code
Platform GPP/GPU/DSP/FPGA GPP/FPGA GPP/FPGA GPP/GPU/DSP/FPGA GPP/GPU/DSP/FPGA GPU
Licence commercial commercial open-source open-source commercial commercial

MATLAB/Simulink
Algorithm Design & Modeling

HDL Coder

Embedded System Tool Integration Simulink Coder + Embedded Coder

FPGA Bitstream SW Code

Xilinx/Intel SoC Device

Fig. 5. Mathworks SoC design flow [138].
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development. The depth and elaboration level of each platform depends
on its novelty, complexity, popularity in the SDR developers’ commu-
nity, and whether it played a vital role in developing new im-
plementations.

5.1. GPP-based

USRP N-Series. Universal Software Radio Peripheral (USRP) is the
most common SDR platform known to the developers’ community [21].
The cost of this platform is around $4000–5000. It provides a hardware
platform for the GNU Radio Project [148]. There are two generations
available: USRP1 and USRP2. USRP1, released in 2004, is connected to
a generic computer through USB, with the addition of a small FPGA.
The FPGA board has two roles: routing information, and limited signal
processing. This generation was capable of supporting a ≈ 3MHz
bandwidth due to USB 2.0 limitation. The second generation, USRP2,
was released in 2008, and it supports 25MHz bandwidth by utilizing
gigabit Ethernet. It includes a Xilinx Spartan 3 FPGA [85] for local
processing operations.

USRP, in general, is a board with ADC and DAC, an RF front end, a
PC host interface, and an FPGA. This board consists of a motherboard
and, typically, four daughterboards (two transmitters Tx and two re-
ceivers Rx), as depicted in Fig. 6. The daughterboards process analog
operations like filtering and up/down conversions. They are modular,
so they can deal with applications operating up to 6 GHz. Depending on
the USRP series, the FPGA board handles a few signal processing op-
erations, and the majority of operations are offloaded to the connected
host system. USRP platforms can be easily set up to use. However, while
their performance is suitable for research experiments and quick pro-
totyping, these platforms do not necessarily meet the requirements of
communication standards. In fact, the minimum bandwidth of the RF,
PC host, or FPGA component used affects the throughput and timing
characteristics of the platform.

KUAR. Another platform that is similar to USRP is the Kansas
University Agile Radio (KUAR) platform [41]. The basic architecture is
composed of a generic computer and a Xilinx Virtex II Pro-P30 FPGA,
which has two PowerPC 405 cores [85]. The main advantage of this
platform is the degree of flexibility that it offers. Developers have the
option of implementing communication standards in three different
methods: (i) They can fit the entire design onto the FPGA and assign few
tasks to the host’s GPP (full hardware); (ii) They can build a full soft-
ware implementation, where the design is implemented entirely on the
GPP with minimal FPGA involvement; and (iii) They can create a hy-
brid hardware/software co-design implementation, where the devel-
oper can partition the design in any way that fits their criteria.

LimeSDR. Resembling the general basic architecture of USRP (e.g.,
USRP B200 [21]), Lime Microsystems [154] developed a series of SDRs

that is based on Lime Microsystems’ latest generation of field pro-
grammable RF transceiver (FPRF) technology, in addition to an Intel
FPGA [51] and a microcontroller. It is then connected to a computer via
USB 3.0. The SDR platform has the responsibility of delivering the
wireless data, while the GPP (computer) has the task of processing the
incoming signals and generating the data to be transmitted by the SDR.
The GPP in this case is the source of computing power for baseband.
LimeSDR supports signal bandwidth ≈ 30–60 MHz. Developers of
LimeSDR also developed LimeSuite software, which is used to model
SDRs. This tool, source code, firmware, and schematics are open-source.

Ziria. It is a programming platform that uses a Domain-Specific
Language (DSL) named Ziria and an optimizing compiler [155]. The
application of Ziria is the implementation of the PHY layer of wireless
protocols. Ziria has a 2-layer design:

- A lower layer that is an imperative language, which is a mixture of
C and MATLAB [92] code, with the features of the two languages
carefully chosen to guarantee efficient compilation.
- A higher layer, which is the language used to specify and stage
stream processors.

The Ziria optimizing compiler consists of two parts: the frontend
and the backend. The frontend parses the Ziria code, puts it in an ab-
stract representation, and then applies several optimizations on it. The
backend compiles the resulting optimized code into an optimized, low-
level execution model.

The particular benefits of this platform are as follows. The first
benefit is easy and dynamic reconfiguration due to the dynamic staging
of the control graph. This is unlike the GNU Radio [47] C++ templates
that only allow limited reconfigurability. In addition, its code optimi-
zation can operate on data-flow components and can often yield a faster
execution on GPPs (e.g., through the use of LUTs). In general, Ziria code
is very concise and easy to use. For example, an implementation of a
WiFi scrambler in Ziria only needs thirteen lines. Ziria is interesting
research that is based on data-flow languages, which are typically used
in embedded systems. It also builds upon popular functional reactive
programming framework.

Sora. Sora is a fully programmable software radio platform on PC
architecture. It requires C programming on multi-core GPP and yields
high performance that includes high processing speed and low latency.
The Sora platform uses the Ziria language discussed above to write
high-level SDR descriptions and is tested for real-time operation [22].
Unlike WARP [25] (which we will explain in Section 5.5), Sora can
accommodate various RF front ends.

Since PC hardware is not intended for signal processing of wireless
protocols, their performance can be limited. We discussed some of the
limitations of GPPs in the context of SDRs in Section 3.1. These lim-
itations were the motivation behind the development of Sora. The
overall setup of Sora includes a soft-radio stack that combines a multi-
core GPP and a radio control board, which consists of a Xilinx Virtex-5
FPGA [85], PCIe-x8 interface, and Double Data Rate 2 (DDR2) Syn-
chronous Dynamic Random Access Memory (SDRAM). Sora uses both
hardware and software techniques to address the challenges of using PC
architectures for high speed SDR. It is the first SDR platform that en-
ables users to develop high speed wireless implementations entirely in
software on a standard PC architecture.

In Sora, new techniques are proposed for efficient PHY im-
plementation. Some of these techniques include: (i) exploiting large
high-speed cache memory to minimize memory accesses, (ii) extensive
use of LUTs, where they would trade memory for calculation and still
fits well into L2 cache, (iii) exploiting data parallelism in PHY, and (iv)
utilizing wide-vector SIMD extension in a GPP. One of the main no-
velties of Sora is its capability of efficiently partitioning and scheduling
the PHY processing across cores in a GPP. The second innovation is core
dedication for real-time support. This was accomplished by exclusively
allocating enough cores for SDR processing in multi-core systems. They

Daughterboard

Rx

ADC

ADC

FPGA
Board

Daughterboard

Tx

DAC

DAC

Daughterboard

Rx

ADC

ADC

Daughterboard

Tx

DAC

DAC

USB
Controller

Fig. 6. USRP board architecture [21]. RF daughterboard selection depends on
the application specifications in terms of frequency coverage.
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showcased its effectiveness through SoftWiFi, which is a full im-
plementation of IEEE 802.11a/b/g PHY and CSMA MAC, using 9000
lines of C code and real-time performance. They also successfully im-
plemented a 3GPP LTE Physical Uplink Shared Channel (PUSCH), or
Soft-LTE, with 5000 lines of C code and a peak rate of 43.8 Mbps with
20 MHz.

Some of the critiques to Sora is that its FPGA is not programmable,
and its capabilities are not fully utilized. In addition, the authors do not
share the details of its internal routines. Lastly, Sora only works on
GPPs, and there is no clear mapping to DSPs.

Iris. It is a cross-platform SDR, developed to support highly re-
configurable radio networks [156]. This is due to its plugin archi-
tecture, namely components, that helps to achieve modularity. These
components process data streams and perform different operations on
them. An engine is used to run, load, and maintain the components.
Similar to the System Generator [149] and Simulink [140] tools, the Iris
engine can be used to link components together to build a complete
radio system. XML is used to specify the components used in the pro-
gram, their parameters, and how they should be linked. The main
features of the Iris architecture include: (i) runtime configurability, (ii)
support for the entire network stack (all layers), not just the PHY layer,
and (iii) support for advanced processing platforms including FPGAs.

There are multiple studies on using Iris. An example is the work in
[157], where the authors discuss the process through which they were
able to implement Iris on Xilinx Zynq SoC [85]. The motivation behind
this work is the fact that communication systems are in a constant state
of development, and they increase in complexity and sophistication.
This calls for higher computational performance and a higher level of
flexibility. In order to implement Iris on the Zynq platform, the com-
ponents are first translated into C++ using Cmake tools, and then they
are ported to the platform. HLS tools, like Xilinx HLS [93], can be used
to accelerate parts of the design that are considered to be the bottle-
necks. This is done by running system profiles, like Linux Perf, on the
software components. Acceleration, in particular, refers to running
parts of the software (after re-writing it in RTL) on the FPGA fabric in
order to achieve higher performance.

5.2. GPU-based

WiMAX SDR. The authors in [158] built a GPU-based platform to
construct a WiMAX system. In their study, they also compared the
performance of GeForce 9800GTX GPU [52] against a TMS320C6416
DSP [66] via implementing the Viterbi decoder algorithm. The results
indicate that the throughput of the GPU is 181.6 Mbps, which is a
considerable difference compared to the DSP’s 2.07 Mbps.

OFDM for WiFi Uplink SDR. In [59], the authors used the WARP
framework [25] as a basis for implementing their NVIDIA GPU-based
SDR platform. They utilized the inherent parallelism of GPUs and, with
the help of CUDA [55], they were able to achieve real-time performance
on WARP. They used this platform to design and implement a Single
Input Single Output (SISO) OFDM system for WiFi uplink communica-
tion. Fig. 7 depicts the architecture of this enhanced (accelerated)

WARP SDR. For this platform, they used: (i) a WARP version 3, which
consists of a Xilinx Virtex-6 FPGA [85] for radio control and interface,
and (ii) a GPU server, which consists of an Intel i7-3930K six-core
3.2GHz CPU [51] for transceiver configuration, and four NVIDIA GTX
TITAN graphic cards [52] for baseband processing. Each TITAN is
comprised of 2880 core Kepler GPU running at 889 MHz. The ac-
celerated WARP achieves less than 3 ms latency and higher than
50Mbps Over-the-Air throughput.

Signal Detection SDR. In [53] the authors designed and studied
real-time signal detection using an SDR platform comprised of a laptop
computer with an Intel Xeon E3-1535M processor [51] and an NVIDIA
Quadro M4000M GPU [52]. For 1000 ms long samples, this design
reduces the parallel processing time by 75%, compared to GPPs.

5.3. DSP-based

Imagine Processor-based SDR. Authors of [159] proposed one of
the earliest SDR solutions that is fully based on a DSP. This SDR em-
ploys the Imagine stream processor, developed at Stanford University in
2001 [160]. The Stanford Imagine project aimed at providing a signal
and image processor that was C programmable and was able to match
the high performance and density of an ASIC. It is based on stream
processing [161–163], which is similar to dataflow programming in
exploiting data parallelism and is suitable for signal processing appli-
cations. This work paved the way to the development of GPUs.

As Fig. 8 shows, the Imagine processor uses VLIW-based ALU clus-
ters that are arranged in a SIMD fashion to handle data streams. At the
middle of the architecture, there is the Stream Register File, which
stores data from other components, thereby minimizing memory ac-
cesses. The performance of this platform has been evaluated by im-
plementing complex algorithms relevant to W-CDMA cellular system.
The results show a higher performance compared to TI C67 DSP [66],
where channel estimation and detection are improved by 48x and 42x,
respectively.

SODA. In [74], the authors introduce the Signal-processing On-
Demand Architecture (SODA), which is an SDR platform based on
multi-core DSPs. It offers full programmability and targets various radio
standards. The SODA design achieves high performance, energy effi-
ciency, and programmability. This is attributed to a combination of
features that include SIMD parallelism and hardware support for 16-bit
computations, since most algorithms operate on small values. The basic
processing element is an asymmetric processor, consisting of a scalar
and SIMD pipeline, and a set of distributed scratchpad memories that
are fully managed in software. SODA is a multi-core architecture, with
one ARM Cortex-M3 processor [103] for control purposes and multiple
processing elements for DSP operations. By using four processing ele-
ments, it is able to meet the computational requirements of 802.11a and
W-CDMA. Compared to WARP and Sora, as a single-chip
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Fig. 7. GPU-accelerated SDR Platform using WARP [59]. The GPU server is
used for baseband processing, while WARP is used for radio control and in-
terface. Offloading signal processing tasks to the GPU has significantly im-
proved the overall performance.
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implementation, SODA is more appropriate for embedded scenarios. As
with WARP, the developers must learn the architecture in order to
implement SDRs.

ARM Ardbeg. In [164], a commercial prototype based on the SODA
architecture was presented. The main enhancements of Ardbeg com-
pared to SODA are optimized SIMD design, VLIW support, and a few
special ASIC accelerators, which are dedicated to certain algorithms
such as Turbo encoder/decoder, block floating point and arithmetic
operations.

Atomix. Typically, programmers need to do one of three tasks to the
software workflow of DSPs: tap into a signal processing chain, tweak a
block, or insert/delete a block. To simplify these tasks, modularity is
crucial. However, designing a modular software for DSPs is challenging
considering the particular requirements that must be supported, such as
latency sensitivity and high throughput. The main challenge is the need
for programmers to define and manage everything manually and ex-
plicitly. In other words, it is necessary to use bare metal features, like
moving data across cores, managing SRAMs, and parallelizing software.

In order to address these concerns, Atomix [23] describes the soft-
ware in blocks, named atoms. An atom can be used to implement any
operation. This can be signal processing or system handling. Atoms can
be used for constructing blocks, flowgraphs, and states in wireless
stacks. In addition, the simple control flow makes atoms composable.
The easy modification feature mentioned above is due to declarative
language. It is important to note that an Atomix signal processing block
implements a fixed algorithmic function, operates on fixed data lengths,
is associated with a specific processor type, and uses only the memory
buffers passed to it during invocation. The blocks will run fixed sets of
instructions executing uninterrupted on fixed resources using fixed
memories. This results in having fixed execution times. Atoms can also
be combined to build larger atoms. Using Atomix, radio software can be
built entirely out of atoms and is easily modifiable. Atomix-based radio
also meets throughput and latency requirements.

Developers define the atoms using the C language. Then, the blocks
are composed into flowgraphs and states using the Atomix interface.
The next step involves developing a parallelized schedule and resource
assignment in order to meet latency and throughput requirements. The
software is then compiled by Atomix into low-level C. The compiled
code, along with Atomix libraries, is compiled into binary. Atomix was
only used to build the IEEE 802.11a receiver, namely Atomix11a.
Evaluation of Atomix11a shows that it exceeds receiver sensitivity re-
quirements, operates in indoor environments robustly, and has low
processing latency. Additionally, the atoms have low timing variability.
Although the power consumption reported is 7 W, it does not include
the power consumed by the front end, USRP2, which is about 14 W. A
shortcoming of Atomix is that it is intended only for synthesis on a
variety of DSPs, but not for GPPs, GPUs, or FPGAs.

BeagleBoard-X15. A collaborative project between Texas
Instruments [66], Digi-Key [165], and Newark element14 [166], Bea-
gleBoard is an open-source SoC computer [167]. It features TI Sitara
AM5728 [66], which includes two C66x DSPs [66], two ARM Cortex-
A15, two ARM M4 cores [103], and two PowerVR SGX544 GPUs [168].
With its relatively low price (≈ $270), the DSPs along with the co-
processors make a powerful platform for implementing standalone
SDRs. An example of using the BeagleBoard (an older model but with
the same general architecture) is the work by [169], where it was used
to implement the Public Safety Cognitive Radio (PSCR) [170] through
GNU Radio [47]. PSCR is FM radio-based and was developed by the
Center for Wireless Telecommunications (CWT) at Virginia Tech.

5.4. FPGA-based

Airblue. This work [24] introduces an FPGA-based SDR platform
for PHY and MAC layers. Airblue is a method to implement radios on a
FPGA to achieve configurability. This is done using an HDL language
called Bluespec, through which all hardware blocks of a radio

transceiver are written. In Bluespec, a developer describes the execu-
tion semantics of the design through Term Rewriting Systems (TRS).
TRS is a computational paradigm based on the repeated application of
simplification rules [171]. The next step is compiling the TRS into RTL
codes. TRS has the capability of generating efficient hardware designs.
The main difference between a Verilog interface and a Bluespec inter-
face is that the former is merely a collection of wires with no semantic
meaning, while the latter includes handshake signals for block com-
munication. Therefore, Bluespec facilitates latency-insensitive designs,
which are essential to system construction via modular composition.
Using Airblue, developers may find the need to modify the building
blocks, or modules, to add new features, make algorithmic modifica-
tions, tune the performance to meet throughput or timing requirements,
or make FPGA-specific optimizations.

In order to reach modular refinements, the design of a configurable
radio must have two design properties, latency-insensitivity and data-
driven control. In addition to flexibility, Airblue meets tight latency
requirements by implementing both PHY and the MAC on FPGA and
connecting them with streaming interfaces, which allows data to be
processed as soon as it is ready. Another advantage of Airblue is the
implementation of highly reusable designs through parameterizations
(i.e., same RTL block can be instantiated several times using different
parameter values). Also, several techniques that permit designers to
reuse existing designs to implement run-time parameterized designs are
developed.

Airblue essentially is a HLS platform that offers modular refinement,
where modifying one module does not affect the rest of the system,
similar to the approach adopted by Atomix. This is why, when com-
pared to WARP, Airblue is more flexible, since WARP was not designed
with the aforementioned principles in mind. The authors in [24] also
studied HLS tools and compared them to Bluespec. They found them to
be more effective than Bluespec in early stages of the design; never-
theless, Bluespec is capable of yielding a more optimized final RTL.
They argued that HLS will be of limited use in final FPGA im-
plementations, especially for the high-performance blocks required by
future wireless protocols. Therefore, Bluespec is the language of choice
for Airblue. For performance evaluation, the authors have implemented
802.11 and experimented with a set of protocol changes. Airblue de-
monstrated that it was easily modifiable and still meets timing re-
quirements. Airblue achieves a higher speed than Sora for cross-layer
communication (between MAC and PHY layers), which typically has
the latency requirement of a few microseconds.

5.5. Hybrid design

USRP Embedded (E) Series. This is the embedded version of USRP,
where they incorporate Xilinx SoCs [85] to develop standalone SDRs.
USRP E310, for example, is based on Xilinx Zynq 7020, which yields
high performance and is energy efficient. This USRP is stand-alone and
suitable for mobile applications. It supports a frequency range from
70 MHz to 6 GHz and features a 2× 2 Multiple Input Multiple Output
(MIMO) RF Front End.

WARP. The Wireless open-Access Research Platform is another ex-
ample of a co-design that is specifically developed to prototype wireless
protocols [25]. It is programmable and scalable, however, parts of the
device are implemented in ASIC, which makes it less flexible. WARP v3
contains a Xilinx Virtex-6 FPGA [85], which includes two MicroBlaze
processors and a Gigabit Ethernet peripheral. It requires the use of the
Xilinx Embedded Development Kit (EDK) [85] to design SDRs. It is also
open-source, with the 802.11 reference design made available to the
research community. WARP has become widely used in the research
community due to its effectiveness in implementing various wireless
protocols (e.g., 802.11 g/n PHY and MAC) and achieving real-time
performance. It also supports MIMO since it has multiple RF interfaces.

PSoC 5LP. Developed by Cypress Semiconductor [172], this SoC is
composed of an ARM Cortex-M3 GPP [103], an analog system, and a
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digital system that uses Universal Digital Blocks (UDBs). A UDB is a
programmable digital block based on Programmable Logic Devices
(PLDs) for realizing synchronous state machines, i.e., they resemble an
FPGA but are smaller. All parts are reconfigurable and programmable
by using the PSoC Creator software IDE, which includes a graphical
design editor. A few developers have used it to build standalone SDRs
due to its simplicity [173]. In addition to its low price ($15), PSoC is a
good candidate for quickly prototyping and getting familiar with SDRs.

Zynq-based SDR. The authors in [174] developed an SDR using the
Xilinx Zynq ZC706 and ZedBoard SoCs to implement IEEE 802.11a. For
their RF Front End, they used Analog Devices FMComm3 AD9361 [76].
They used two Zynq boards to compare their performances. They both
include dual-core ARM Cortex-A9 [103], with the ZC706 containing
Kintex-7 and the ZedBoard containing Artix-7 FPGAs. In addition to the
HDL Coder [91] and Embedded Coder [143] to generate RTL and
software executable, they used Mathworks Simulink [140] to generate
the model. They reported an average of 2W power consumption for Tx
and Rx, compared to the 5–8 W reported by Atomix [23].

5.6. Comparison

Table 9 compares the SDR platforms discussed above in an effort to
provide a reference guide for developers. SDR platforms are compared
according to the following criteria:

– Programmablity: As protocols evolve, a platform is re-programmed
by simply adding or exchanging parts of the design. For example,
when 3GPP issues an update for the LTE standard, instead of re-
placing the entire radio, an SDR is reprogrammed to accommodate
the upgrade.

– Flexibility: A platform is capable of handling future wireless proto-
cols as requirements become more demanding. This means an SDR
should be able to support tighter timing requirements for next
generation of protocols.

– Portability: A platform is standalone and readily deployed. This is
generally a requirement for mobile and IoT applications.

– Modularity: A design’s components are separated and recombined
without internal module changes. For example, a developer may
need to exchange a Viterbi decoder with a Turbo decoder without
having to worry about the rest of the design.

– Computing power: Since performance depends on the protocol used,
we merely evaluate the capability of platforms to implement a given
protocol. We are not limited to a subset of the protocol (e.g., im-
plementing the Viterbi decoder only).

– Energy efficiency: Similar to computing power, we evaluate the
capability to implement protocols efficiently, while keeping power
consumption at a minimum.

– Cost: The cost of the hardware equipment. If a platform requires a
PC, its cost is not included. Also, when the price of the entire setup is
unknown, the price of the basic platform (not including RF Front
End or interfaces) is shown.

6. Related research and potential solutions

Although in the previous sections we have highlighted some of the
challenges of building SDRs, in this section, we present additional re-
search areas that are still being faced by the research and development
community. These challenges are technical or practical.

6.1. Remote system update

One of the main features and motivations of SDRs is their re-
configurability and flexibility. In order to take full advantage of this,
the process of updating a SDR platform should be quick and easy.
Remote stand alone SDRs are usually FPGA and DSP-based, with more
FPGAs being used. Hence, most of the research has been focused onTa
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remote updates of FPGAs. Since FPGAs are volatile, which means that
they are configured during system power-on through their flash mem-
ories, an update is traditionally done using Joint Test Action Group
(JTAG) method [175]. However, with more SDRs deployed and
adopted in wireless and cellular networks, a remote update becomes
necessary and a challenge. With remote Over the Air (OTA) updates, it
becomes possible to send patches to current designs, or even upload an
entirely new and improved design to mobile networks and BSs
[176,177]. Some of the challenges faced by the research community
include speed, reliability, cost, and security [178].

In [175], the authors introduce a method based on RS-422 serial
communication and High Level Data Link Control (HDLC) protocol to
update DSP and FPGA systems. Their method is fast, stable, and easy to
implement. The authors in [179] show a new method for remotely
updating Xilinx FPGAs [85] by storing the new design or code in Serial
Peripheral Interface (SPI) flash memories. They utilized the Xilinx
Quick Boot application, along with the KC705 Evaluation Kit from Xi-
linx, in order to develop their method. However, it is not always
practical or feasible to use a download cable in order to update the
system. The authors in [178] tackle this issue and the problem of
downtime during an update or in the case of a failure. With this
method, there are two images, namely a factory mode configuration
image, which acts as the baseline, and an application mode config-
uration image, which is used for some specific functions. They show the
capability of updating and running a new application mode (design)
image, in addition to rolling back into the factory mode image when no
application mode image is available. Others have focused their efforts
on improving the security of remote updates, such as [180] and [181].
While there exists a few solutions to the remote update process, a few
challenges, including partial reconfiguration of FPGAs, are not yet re-
solved.

6.2. Centralized algorithms and network slicing

In order to simplify the design and provisioning of large-scale net-
works, Software-Defined Networking (SDN) has been proposed to
centralized network control. In this architecture, a controller (or mul-
tiple controllers) communicates with network devices (data plane) to
collect their status information and configure their operation. Recent
studies show that wireless networks can significantly benefit from the
central network view established in the controller in order to design
more efficient network control algorithms such as channel assignment
and mobility control.

Centralized control of network resources is the enabler of network
slicing, which refers to the abstraction, slicing, and sharing of network
resources. Three levels of slicing are applicable to wireless networks: (i)
spectrum (a.k.a., link virtualization): requires frequency, time or space
multiplexing; (ii) infrastructure: the slicing of physical devices such as
BSs; (iii) network: this refers to the slicing of the network infrastructure.
Compared to wired networks, slicing the resources of wireless networks
is significantly more challenging due to the variable nature of wireless
channel. Meanwhile, since SDRs enable the slicing of resources both at
the spectrum and infrastructure level, they can be used to augment
SDNs towards a fine-grain allocation of resources. For example, com-
pared to ASIC-based transceivers, SDRs provide a significantly higher
level of control over the parameters of PHY and MAC layer.

It should be noted that when centralized network control is em-
ployed, the delay of communication between the controller and SDR
platforms as well as the delay of programming and applying new con-
figurations should be bounded within the specification requirements.
For example, in a dense and mobile environment, the controller may
employ a centralized channel and power control algorithm to instruct
the nodes to adjust their channels based on the decisions made cen-
trally. In this case, it is essential to ensure that the delay of sending
configuration messages to multiple SDR platforms meets the require-
ments of the central algorithm. Furthermore, it is essential to ensure

that all of the SDRs apply the configuration at the same time, otherwise
serious interference and collision might happen. Although protocols
such as OpenFlow [182] and Netconf [183] have been designed for
interactions between the controller and data plane, their implications
on the performance of wireless networks have not been investigated.
Specifically, it is essential to evaluate the effect of hardware platforms
(i.e., GPP, DSP, FPGA) on the delay of applying configurations. These
challenges have not been addressed yet.

6.3. Network Functions Virtualization (NFV)

One of the new topics is the concept of Network Functions
Virtualization (NFV), which offers an alternative way of designing and
managing networking functions. The concept is very similar to SDRs, in
the sense that various network functions can run in software on top of
different hardware platforms. These platforms are typically high-vo-
lume servers, storage devices, and cloud-computing data centers [184].
Some of the functions that are virtualized via this method are load
balancing, firewalls, intrusion detection devices, and WAN accelerators.
In addition to cost reductions, this flexibility is what makes NFV very
attractive for network operators, carriers, and manufacturers [185].
From the SDR point of view, instead of performing signal processing
operations on the platform, these operations are offloaded to a general
computing platform. Such an architecture reduces the load of edge
devices, and BSs can benefit from powerful processors to implement
complex signal processing operations. For example, when multiple
SDRs are connected to a computing platform, sophisticated signal
processing algorithms could be developed to cope with challenges such
as interference.

To leverage NFV for SDRs, developers have been attempting to tie
them together to achieve complete flexibility across the platform
[186,187]. Although several wireless SDN architectures have been
proposed to address the challenges of wireless communication
[188–192], most of them do not benefit from the features of SDRs.

6.4. Energy efficiency

Battery-powered devices in an IoT network face the challenge of
minimizing power consumption in order to extend battery-life before
they are due for a replacement, which is a costly operation. Ready-to-
deploy SDR systems may use high-performing platforms, such as
FPGAs, without providing solutions or alternatives to batteries [193].
Even in the case of BSs with on-grid power sources, it has become
crucial to lower power consumption in order to reduce CO2 emissions
[194]. This is particularly important for cellular network operators,
where BSs consume more than 50% of the total energy consumed in the
network [195]. To address these concerns, energy harvesting mechan-
isms have been introduced. Energy harvesting or scavenging is the
process of deriving power from external sources, such as solar and wind
energies (also, referred to as green energy), and stored for consumption
alongside internal sources (e.g., battery or electrical grid sources)
[196]. As this green energy is a viable option for powering BSs [197],
Ericsson (a major telecommunication company) has invested into and
designed green-energy-powered BSs motivated by environmental and
financial reasons [198]. Therefore, a hybrid power operation has been
accepted as a solution to lower electrical grid energy consumption and
cost [195].

In [196], the authors present a survey on energy harvesting tech-
nologies with regards to transducers, such as antennas and solar cells,
that can utilize renewable energy sources, and cover some of the ap-
plications in the IoT and M2M world. The authors in [197] overview
the cellular network operators that have adopted the hybrid solution
and started using green energies to power their BSs. The authors in
[199] discuss the issue of implementing an energy harvesting trans-
mitter in a cognitive radio. They also derive the optimal spectrum
sensing policy that maximizes the expected total throughput under
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energy causality and collision constraints. Energy causality indicates
that the total consumed energy should be equal to or less than the total
harvested energy. The collision constraint states that the probability of
accessing the occupied spectrum is equal to or less than the target
probability of a collision. The authors concluded that a battery-oper-
ated radio can operate for a long time by optimizing both the energy
and spectral efficiency. Energy harvesting is often associated with what
is known as ”Green IoT”, which is the new trend for IoT networks and
devices, where the main focus is making them more energy efficient.
Another relevant work is [200,201], where the authors present an
overview of the challenges and existing solutions of energy-efficient IoT
systems.

6.5. Co-design

By definition, co-design is the process of realizing system-level goals
by exploiting the trade-offs between software and hardware in an in-
tegrated design. This yields a higher design quality, and optimizes the
cost and design cycle time, which in turn shortens the time to market.
As co-design is adopted for more applications, developers typically face
the problem of partitioning and scheduling. Finding the optimal design
partition is not trivial. While system profilers can assist in providing
insight into the system’s behavior and can help identify the parts of the
code that can be accelerated on hardware, partitioning should be an
automatic process and requires no external involvement. There are
several algorithms proposed to address the challenges of partitioning,
such as PSO, FCM, and FCMPSO [202]. These are optimization algo-
rithms used for mapping embedded applications to Directed Acyclic
Graphs (DAGs) for multi-core architectures. However, in SDRs, the
problem is even more complicated due to having two layers of opera-
tion, namely the PHY and MAC layer. Partitioning needs to take into
account strict real-time requirements. It is a delicate equilibrium be-
tween performance, cost, and correct operation. Even with the process
being more challenging than other design approaches, the benefits of
co-design for complex systems outweigh the initial cost.

6.6. Security

SDRs simplify security provisioning. For example, when a new se-
curity mechanism does not require hardware replacement (e.g.,
802.11i’s WPA), it can be implemented by reprogramming SDRs. The
reprogrammability feature of SDRs exposes security threats, whether
they are standalone or part of a SDN architecture. Assume an 802.11
network employs SDR-based BSs (i.e., access points). In this case, a
Denial of Service (DoS) attack can be implemented by instructing a
large number of clients to associate with a BS. If the controller is
compromised, then all of the SDRs might be reprogrammed to be
nonfunctional. Therefore, it is important to identify security threats and
take them into account when designing SDR-based wireless networks.

Offloading SDR processing to general processing platforms through
NFV enables the deployment of sophisticated central algorithms for
detecting abnormal activities and network breaches. For example, by
analyzing the signal strength received from a client at one or multiple
BSs, a denial of service attack that is caused by generating excessive
interference could be detected. Proposing security mechanisms that
benefit from the features of SDRs is an important future direction,
especially for large-scale and public networks.

7. Existing surveys

Joseph Mitola III was the first to use the term ”Software Radio” in
1993, when he published an important work that introduced and ex-
plained the concept of using software rather than traditionally-used
hardware for designing radio systems [203]. In an early survey in 1999
[204] that was on the ”then” emerging technology of SDR, the authors
made the case that SDRs have a great potential to advance and facilitate

the development of communication standards like WiFi and cellular
networks. In a review that was published a few years later [26], the
author paid close attention to the hardware component of SDRs, such as
programmable RF modules and high-performance DACs and ADCs, as
more technological advancement had been made. Around the same
time, the authors in [205] put forward a survey of the advances that
had been made in the SDR field, exclusively in Japan. They also dis-
cussed several prototypes that were developed by both academia and
industry. They studied the current status of communication systems in
Japan and concluded that SDRs were viable solutions for the challenges
they faced.

There are very few notable works that survey and review different
SDR platforms and testbeds. One such survey is the work by [45], where
the author discusses the challenges faced by SDR developers. These
challenges include size, weight, power, software architecture, security,
certification and business opportunities. While this work is important
for compiling information about these challenges and presenting them
in one place, it abstains from enumerating and discussing the different
SDR platforms, implementation approaches and their applications in
the communication standards world.

In that regard, the authors of [206] compare the SDR platforms
developed by the year 2012 and give a brief description of what each
platform entails. It lacks, however, any detailed comparison based on
the different categories of computational power, energy efficiency,
flexibility, adaptability, and cost. It is through these comparisons that a
designer is able to make an informed decision on what platform to
adopt for their specific application. The authors of [207] attempt to list
and review several DSP-based SDR platforms from both academia and
industry, with more focus on commercial solutions, and then they
provide a simple comparison between them in terms of program-
mability, power, and flexibility. However, what this work lacks, in
addition to being outdated, is a more comprehensive discussion of
FPGAs and hardware/software co-design solutions, as well as a meth-
odical analysis of the different design approaches based on a set of
performance metrics.

The authors of [208] presented a survey of a few SDR platforms that
had been developed more than a decade ago. In [209], the authors
presented a paper that laid out the development and evolution of SDRs
over the past several years and discussed the motivation behind why it
has been recently gaining more attention. Another work is the com-
parison conducted by the authors in [210] between the Imec Bear
platform [211] and a few multicore-based SDR platforms. Other at-
tempts include the work by [212], where the authors focused on dis-
cussing the analog end of the SDR concerning signal sampling, pro-
cessing, as well as the hardware/software responsible for handling
these tasks. The work by [213] compares several SDR platforms to
prove the feasibility and reliability of using SDRs in education, in-
dustry, and government. Another outdated survey is [214].

Another survey that is relevant to SDR platforms is the work by
[215], where the author discusses and reviews the state-of-the-art in
microwave technology in transceivers. The paper explores the devel-
opment of SDRs using different technologies in radio frequency en-
gineering. It is a comprehensive study of several research topics, such as
the design of tunable radio frequency components, linear and power
efficient amplifiers, linear mixers, and interference rejection techni-
ques. Similarly, the authors in [216] present a compilation of several
studies that discuss research topics, ranging from SCA to spectrum
sharing and new signal processing techniques to embedded systems.
The topics are carefully selected in order to update prospective SDR
developers on the latest technology than can help them build more
efficient and powerful SDRs. Whereas, the authors in [217] provide a
very thorough study on the several security threats and challenges in
SDRs and go over their certification process. As SDR platforms grow in
popularity and more communication protocols are realized using them,
it becomes essential that developers are prepared for security issues and
well-equipped with tools that protect their systems.
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From the aforementioned surveys, it is apparent that there is a need
for an up-to-date, comprehensive, and in-depth survey of the most
prominent SDR platforms and development tools. Previous surveys are
outdated, have a limited scope, did not study and analyze the devel-
opment process, and, most importantly, did not offer a complete guide
to future developers on SDR implementation. Furthermore, with more
studies published on the capabilities of various processing devices, we
think there is a significant need to analyze them and present an analysis
of the different processing alternatives.

8. Conclusion

In this paper, we provided a comprehensive overview of the various
design approaches and hardware platforms adopted for SDR solutions.
This includes GPPs, GPUs, DSPs, FPGAs, and co-design. We explained
the basic architectures and analyzed their advantages and dis-
advantages. Due to the different features of design approaches, it was
important to compare them against each other in terms of computa-
tional power and power efficiency. We then reviewed the major current
and past SDR platforms, whether they were developed by the industry
or in academia. Finally, we discussed some of the research challenges
and topics that are predicted to improve in the near future, helping to
advance SDRs and their wide adoption.

We believe that SDR solutions are going to be mainstream and that
their ability to implement different wireless communication standards
with high levels of flexibility and re-programmability will be con-
sidered the norm. This paper poses as an exhaustive overview of this
phenomenon–its enabling technologies, applications, and the current
research that tackles this issue from different angles.
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