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Abstract—Increasing the number of IoT stations or regular
stations escalates downlink channel access contention and queu-
ing delay, which in turn result in higher energy consumption and
longer communication delays with IoT stations. To remedy this
problem, this paper presents Wiotap, an enhanced WiFi access
point that implements a downlink packet scheduling mechanism.
In addition to assigning higher priority to IoT traffic compared
to regular traffic, the scheduling algorithm computes per-packet
priorities to arbitrate the contention between the transmission
of IoT packets. This algorithm employs a least-laxity first (LLF)
scheme that assigns priorities based on the remaining wake-up
time of the destination stations. We used simulation to show
the scalability of the proposed system. Our results show that
Wiotap achieves 37% improvement regarding the duty cycle of
IoT stations compared to a regular access point. In addition, we
developed a testbed to confirm the implementation correctness
and the performance benefits of Wiotap in a network with four
IoT stations and regular traffic. For the edge and cloud scenarios,
our empirical evaluations show up to 44% and 38% improvement
in energy and 52% and 41% improvement in delay, respectively.

Index Terms—802.11, Scheduling, Prioritization, Scalability,
Low-Power, DoS attacks.

I. INTRODUCTION

The Internet of Things (IoT) is the enabler of applications
such as remote medical monitoring, building automation, in-
dustrial automation, and smart cities [1]–[3]. Gartner predicts
that there will be more than 20 Billion connected devices by
2020 [4]. To offer ease of deployment and support mobility,
most of these applications rely on wireless communication.

Various wireless technologies, such as 802.15.4, NB-IoT,
LoRa, LTE, and 802.11, are currently being used to connect
these devices [5], and a wide range of mechanisms from
antenna design [6]–[8] to medium access control [9], [10] to
application layer protocols [11] have been proposed to en-
hance the energy efficiency of these applications. Meanwhile,
802.11 is particularly important due to several reasons: First,
802.11 networks are widely deployed in home, enterprise, and
commercial environments. Therefore, for example, 802.11-
based smart home systems do not require the installation
of additional wireless infrastructure. Second, the power con-
sumption of 802.11 transceivers has been significantly reduced
during the recent years. This has been achieved by both
new chip manufacturing technologies as well as the various
power saving methods proposed for this standard [12]–[18].
Third, compared with cellular networks, 802.11 operates in
unlicensed bands, thereby its usage is free of charge. Finally,
compared to 802.15 technologies, 802.11 offers considerably

higher data rates, which justifies the adoption of this standard
in applications such as medical monitoring and industrial
control [3], [19]. The higher data rate also reduces the duration
of transmissions and increases sleep intervals.

The traffic prioritization and power saving mechanisms of
802.11 fall short in IoT applications. From the timeliness point
of view, 802.11 differentiates between real-time (e.g., voice
and video) and elastic (e.g., email, file transfer) flows by
defining voice, video, best-effort, and background access cat-
egories. However, these access categories only accommodate
the four traffic categories of regular (non-IoT) user devices
and cannot differentiate the existence of IoT traffic. Therefore,
IoT stations suffer from longer delays and also waste their
energy because of idle listening before their downlink packets
are delivered. From the energy efficiency point of view,
802.11 introduces power save mechanisms, which require
each station to wake up periodically and fetch the buffered
packets from the access point (AP). In addition, since the
traditional power save mode (PSM) significantly increases
end-to-end delay [20], the Adaptive PSM (A-PSM) has been
proposed to enable the clients to stay in awake mode and
exchange multiple packets with the AP. By utilizing a short
tail time after each packet exchange, this mechanism prevents
the station from having to frequently switch between awake
and sleep mode to receive downlink packets when inter-arrival
delays are less than the beacon interval. IoT applications can
also benefit from this mechanism to reduce the duration of
their transactions. For example, assume a medical IoT device
detects an anomaly, reports the data to a server, and performs
some actions based on the commands received. In this case,
the tail time can be exploited to reduce the delay of this
transaction. Consequently, we observe that the state-of-the-
art low-power 802.11 transceivers support this mode [15],
[21], [22]. However, the tail time duration might also result
in a higher energy consumption if the AP’s downlink traffic
is high and packet transmissions are not properly scheduled
based on energy efficiency concerns. In other words, when
the number of regular or IoT stations increases, the amount
of time spent in tail time increases as well without positively
affecting timeliness or energy efficiency.

In this paper, we propose Wiotap (WiFi IoT AP) to address
the problem of joint channel access and power saving in
802.11-based networks. We assume that the network includes
regular user stations (such as smartphones and laptops) as well
as IoT stations (such as battery powered medical monitoring
devices). When a large number of IoT stations exist in the
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network, Wiotap significantly enhances energy efficiency by
applying per-packet scheduling. Also, Wiotap reduces the
negative impact of regular traffic on the energy efficiency of
IoT stations. Specifically, the contributions of this paper are
as follows:
– We propose a queue allocation algorithm, which allocates

the number, priority, and service rate of a set of queues
dedicated to IoT traffic. The proposed algorithm allocates
deadline guarantees to each queue based on the distribution
of tolerable delay values collected during a time window. To
enforce the delivery delay guarantee of queues, we employ
a time-division-based traffic shaping approach to control the
service rate of the queues.

– We propose a least-laxity first (LLF) packet scheduling
mechanism based on the tolerable delay of each packet
before the expiry of the destination station’s tail time.
Once a packet arrives on the AP’s wired interface, if the
destination station is awake, the AP assigns a priority to
the packet and pushes it into the selected IoT queue. The
assigned priority depends on the deadline of this packet
relative to the deadline of all the awake IoT stations. This
mechanism reduces the waiting time of IoT stations and
increases the number of packets exchanged during a wake-
up period. If the AP determines that a packet cannot be
delivered to its destination station before shifting into sleep
mode, a priority that is higher than that of regular stations’
packets is assigned to the IoT packet. This mechanism
expedites the delivery of packets to IoT stations after beacon
reception during the next wake-up period.

– Since Wiotap’s per-packet scheduling is especially applica-
ble to large-scale deployments, we implement a simulation
tool using the OMNet++ simulation framework. Compared
to a regular AP, our solution provides an average perfor-
mance improvement of 37%. Additionally, increasing the
number of queues dedicated to IoT traffic from 2 to 4 can
further reduce the duty cycle of IoT stations by 28%.

– We implement Wiotap by adding kernel space and user-
space components to a Linux AP. One of the salient features
of Wiotap is its independence from the MAC layer. This
feature simplifies the adoption of Wiotap irrespective of
the 802.11 NIC used. In addition to the simple loading
of user-space modules, at the network layer we utilize a
modified version of the default PRIO qdisc kernel module.
This module can also be loaded dynamically during runtime.

– To confirm the implementation correctness and performance
benefits of Wiotap even when the number of IoT stations
is not high, we implement a testbed using four IoT stations
and different types of regular traffic generators.
IoT stations use the Message Queuing Telemetry Transport
(MQTT) protocol to report events to the broker and receive
a response back. To show the impact of server location on
energy efficiency, we change the location of MQTT server
to represent edge and cloud scenarios. The empirical results
confirm that Wiotap reduces delay and energy consumption
by up to 52% and 44% in the edge scenario and 41% and
38% in the cloud scenario.

The remainder of this paper is organized as follows: Section II
introduces power-save modes, traffic prioritization in 802.11

networks, and the employed system model. Section III presents
Wiotap. The implementation details are explained in Section
IV. Sections V and VI present simulation and empirical
performance evaluations. In Section VII, we review the related
work. Finally, Section VIII concludes the paper and presents
future directions.

II. BACKGROUND AND SYSTEM OVERVIEW

In this section, we first present an overview of 802.11 in
terms of energy saving and traffic scheduling. We then present
our system overview.

A. 802.11 Power Saving Mechanisms

802.11’s PSM is one of the most integral aspects of energy
efficiency. PSM and its variants [20], [23]–[27] reduce idle
listening during inactivity times by switching into a low-power
mode. The two main PSM techniques are: Legacy PSM (a.k.a.,
Static PSM), and Adaptive PSM (A-PSM) (a.k.a., Dynamic
PSM). In the former, each station periodically wakes up to
receive the beacons sent by the AP. By inspecting the traffic
indication map (TIM) embedded in beacon packets, the station
checks if the AP has buffered packets. In case the TIM for the
station was set, the station sends a PS-Poll frame to the AP to
fetch the buffered packets. The station enters the sleep mode
when it receives a data frame with a cleared more data flag,
which indicates no more packets are buffered in the AP.

When using A-PSM, the station does not immediately
switch to the sleep mode after receiving the last buffered
packet. Instead, it waits for a tail time duration (denoted by
Γ), expecting that another packet will soon follow [28], [29].
At the end of the tail time and before transitioning into sleep
mode, the station sends a QoS NULL frame to the AP with
the power management bit set. In addition to enhancing the
timeliness of interactions with IoT stations, this mechanism
also reduces the overhead of radio switching. For example,
assume an industrial monitoring and control device detects an
anomaly, reports the event, and waits for the reception of a
command to perform a proper action. In this case, using the
tail time enables the devices to connect, report, and receive the
commands promptly. Due to these benefits, the state-of-the-art
802.11 transceivers, such as CYW43907 [16] and BCM4343W
[15], support A-PSM.

B. Traffic Prioritization

Since 802.11 networks are used for the exchange of both
elastic and real-time data, the 802.11e standard provides
various access categories (AC) for voice (AC VO), video
(AC VD), best effort (AC BE), and background (AC BK)
traffic flows [30]–[32]. The AC of MAC frames is determined
based on the differentiated services code point (DSCP) field1

of IP header. This field comprises of different flagged bits,
which when set, conveys to the lower layers the flow type
and enforces IP precedence for per-hop QoS and priority.
This layer-3 field is then mapped to the class of service
(CoS) field in the MAC header [33]. By using CoS mapping,

1This field is also known as the type of service (ToS).
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TABLE I
SUMMARY OF KEY NOTATIONS

Notation Meaning
sioti An IoT station
sregi A regular station
Qiot
net Set of IoT queues (in the qdisc layer)

Qreg
net Set of regular queues (in the qdisc layer)

Qi An IoT queue
η Number of IoT queues
Γ Tail time duration
t̃ Last activity time of a station
∆(pi) Deadline of packet pi
∆ A circular queue holding D(pi) values
M(Qi) Maximum tolerable deadline of queue Qi
D(Qi) Duration of transmitting packets currently in Qi
S(Qi) Packets serviced by queue Qi during service period
S̄(Qi) Service size of queue Qi
Tx A circular queue holding packet transmission delays
µTx Average packet transmission duration

the kernel sets the priority socket buffer and enqueues the
packet to the corresponding transmit queue. In the 802.11e
protocol, each enhanced distributed channel access (EDCA)
queue behaves as a virtual station and contends for the channel
independently according to the contention parameters. It is not
a regular practice to implement new ACs or modify the EDCA
contention parameters because the 802.11e standard specifies
them. To this end, to accommodate the QoS of various scenar-
ios, almost all Linux systems implement queuing disciplines,
which are known as qdisc. qdisc provides several types of
traffic scheduling (what packet to send) and traffic shaping
(how many packets to be sent per time unit) mechanisms,
which are applied before forwarding packets to layer-2.

C. System Model

The system is composed of an AP and stations. There are
two types of stations: (i) regular stations, denoted by sregi ,
such as smartphones and laptops, and (ii) IoT stations, denoted
by sioti , such as medical IoT devices or industrial robot arms,
which perform machine-to-machine communication. Although
regular stations might exchange voice and video traffic with
the AP, we assume that IoT stations are resource-constrained
and therefore, preserving their energy resources has a higher
priority compared to regular stations. Besides, even if the
network only includes IoT stations, we are interested in
reducing the energy consumption of all the stations. Once a
station exchanges a packet with the AP, it stays awake for a
tail time duration Γ. Table I summarizes the notations used in
this paper.

III. SCHEDULING MECHANISM

Figure 1 shows the queue allocation scheme. On top of the
MAC layer, we introduce IoT queues in addition to the regular
queues, in the qdisc layer. Once a packet for a regular (non-IoT
station) arrives on the wired interface of AP, it is pushed into
one of the regular queues, i.e., Qreg

net = {Qvo, Qvi, Qbe, Qbk},
depending on the packet’s ToS field. Packets destined to
IoT stations are pushed into one of the IoT queues, i.e.,

…
Q0Q1 QbkQbeQviQvo

Regular QueuesIoT Queues

Deadline and service rate assigned

MAC Layer Queues

qdisc

Qiot
net Qreg

net

Qmac

Q0
viQ0

vo Q0
be Q0

bk

Highest Priority Lowest Priority

Q⌘�1 Q⌘�2

Fig. 1. The proposed scheduling algorithm introduces IoT queues in addition
to the regular queues in qdisc layer. The IoT queues are configured based on
the delay distribution of IoT packets.

Qiot
net = {Q0, Q1, ..., Qη−1}, to accelerate the transmission of

these packets. We refer to Q0 as the base queue and Q1 to
Qη−1 as the prioritized queues. The queue selection process
is based on a scheduling algorithm that we will present later
on. The qdisc packets are assigned to MAC layer queues,
i.e., Qmac = {Q′vo, Q′vi, Q′be, Q′bk}, based on their priority,
as indicated by the arrows in Figure 1.

The basic idea of transmission scheduling is to prioritize the
packets of IoT stations in order to reduce idle listening time
and number of sleep/wake transitions of these stations. When a
packet belonging to an IoT station arrives, if the destination is
awake, we evaluate the time left before the station enters sleep
mode. The packet is accelerated for delivery if the remaining
duration is longer than a threshold. The acceleration algorithm
tries to maximize the chance of packet delivery to all IoT
stations by taking into account the relative priority of all
the packets’ deadlines. The rest of this section explains these
operations in detail.

A. Acceleration Eligibility

A packet is eligible for acceleration if its destination IoT
station is still awake and acceleration results in a packet
delivery before the end of tail time. To this end, it is essential
to keep track of the operational status of all IoT stations
and determine the remaining tail time of awake stations. To
determine the remaining duration, however, it is not possible
to rely on the sleep/wake schedule of stations because the tail
time is renewed every time a packet is exchanged with the
AP. Therefore, it is necessary to record the time stamp of the
last packet exchanged with the AP. Section IV will present the
implementation details.

Assume a packet pj belonging to an IoT station sioti arrives
at time t. This packet is eligible for acceleration if:

∆(pj) = Γ(sioti )− (t− t̃(sioti )) > Th(sioti ) (1)

where ∆(pj) reflects the delivery laxity of packet pj upon its
arrival, Γ(sioti ) is the tail time of the station, t is the current
time, and t̃(sioti ) is the last time the station has exchanged
a packet with the AP. In addition to decision making about
the acceleration of incoming packets, the computed ∆ values
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are also used for queue configuration. We will present Queue
Configuration algorithm in Section III-B. If Inequality 1 holds
for an incoming packet, then the Enqueue algorithm tries to
accelerate the transmission of this packet by determining a
suitable prioritized queue within the set {Q1, Q2, ..., Qη−1}.
We will present this algorithm in Section III-C. If Inequality
1 does not hold, then the packet is pushed into base queue
Q0 to increase its priority compared to regular traffic. The
base queue expedites the delivery of this packet compared to
regular traffic during the next wake up time.

The threshold value Th(sioti ) depends on channel access
contention, physical layer rate, link reliability between the AP
and the station, and the rate of regular traffic. For example, if
multiple transmissions are required to reach the station, then
the threshold value should be long enough to account for the
retransmissions. Since all the qdisc IoT queues are mapped to
MAC layer’s queue Q′vo, to measure these delays, we record
the time interval between the instance an IoT packet arrives
in Q′vo until its successful delivery to the destination node.
These values are stored in a circular array denoted as Tx.

B. Queue Configuration

In this section we present the operation of Queue Config-
uration algorithm, which assigns priorities to the IoT queues
to enable fine-grained prioritization of IoT packets.

Qiot
net = {Q0, Q1, ..., Qη−1} is the set of queues devoted

to IoT packets. Queue Q0 is used to prioritize IoT packets
that are not acceleration eligible, and the rest of the queues
are configured by Queue Configuration algorithm to offer
deadline-aware packet acceleration. Associated with each pri-
oritized queue Qi ∈ {Q1, ..., Qη−1} is a maximum tolerable
delay (MTD) value, denoted as M(Qi). The MTD of a
queue reflects the maximum potential delay experienced by
the packets of that queue until transmission. MTD assignment
to queues ensures that the deadline of the packets buffered in
each queue satisfy their delivery deadline requirement.

The purpose of queue configuration is to assign an MTD
to each IoT queue based on the distribution of packet laxities
computed by Equation 1. Whenever a new ∆ value is com-
puted for an incoming IoT packet, the value is inserted into
a circular queue denoted as ∆. The main idea is to divide
the range of deadlines into two equal intervals and configure
the MTD of queues based on the number of deadline entries
that fall in each interval. Each interval is then broken into two
more intervals, and the same process is repeated until each
queue is assigned an MTD value.

The Queue Configuration algorithm is presented in Algo-
rithm 1. The high level function queue_conf() computes
the minimum and maximum of the laxity values stored in the
circular queue ∆. These values, in addition to the minimum
and maximum index of the IoT queues, are passed to function
qc(), which is recursively called to assign MTDs to queues.
The number of queues assigned to the left and right side of the
queue corresponds to the distribution of laxity values around
the mid value. If the number of queues assigned to the left
side is equal to one, then the MTD of that queue is equal to
the ∆mid of that iteration. If the number of assigned queues

is more than one, then the function is recursively called to
configure left side queues. Queue allocation to the right side
is performed similarly. If the number of queues assigned to
the right side is one, then the MTD of that queue is equal
to the ∆max of that iteration. The time complexity of Queue
Configuration algorithm is O(n) because the division process
continues until all the queues are configured individually.

C. Enqueue Algorithm

A packet pj satisfying Inequality 1 could be assigned to a
prioritized IoT queue if the following condition is met,

∃i ∈ [1, η − 1] | ∆(pj) ≤M(Qi). (2)

If none of the IoT queues can satisfy the above condition, then
the packet is inserted into the base queue Q0. If Condition 2 is
satisfied, then a least-laxity first (LLF) scheduling strategy is
employed to assign packets to the prioritized queues. To this
end, the packet is added to the queue with the highest MTD
value that can satisfy the delivery deadline. In other words, the
index of the eligible queue, denoted as i, is found as follows:

argmin
i∈[1,η−1]

(
∆(pj) ≤M(Qi)

)
. (3)

However, it should be noted that the deadline of a queue
does not only reflect the transmission duration of the packets
in that queue. Instead, for each Qi, its deadline is the deadline
of its next higher priority queue (i.e., Qi+1) plus the duration
required to transmit the packets in Qi. Therefore, to guarantee
a maximum transmission delay for the packets of each queue,
the following inequality must be true,

M(Qi+1) +D(Qi) <M(Qi), 1 < i < η − 2 (4)

where D(Qj) is the delay of transmitting the packets in queue
Qj . However, to ensure the validity of the above inequality,
it is essential to limit the number of packets serviced by each
queue per time unit. We employ a time-division-based mecha-
nism to satisfy this requirement. For each queue i ∈ [1, η− 1]
we define its service capacity as

S̄(Qi) = b(M(Qi)−M(Qi+1))/µTxc (5)

where µTx is the average of the values stored in the circular
array Tx. In other words, service capacity represents the
number of serviceable packets per service period. Since for
the highest priority queue

S̄(Qη−1) = bM(Qη−1)/µTxc , (6)

the service period is defined as the MTD of the lowest priority
queue, i.e., M(Q1). To enforce service capacities, in addition
to the S̄(Qi) values assigned to each queue, the number of
packets that have been added to each queue during the current
service period is maintained by the Enqueue algorithm. For
each queue Qi this value is denoted by S(Qi). No more
packets are inserted into a queue Qi during a service period if
S(Qi) ≥ S̄(Qi). The S(Qi) counters are reset at the beginning
of each M(Q1) interval.

Enforcing service capacity imposes another limitation on
finding an appropriate queue for an acceleration-eligible
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Algorithm 1: Queue Configuration Algorithm
Inputs:

∆: circular queue holding D(pi) values;
Qiot
net: set of IoT queues;

Output: allocates a maximum tolerable deadline to each IoT queue
(i.e., assigns M(Qi) ∈ Qiot

net)

function queue_conf()
η: number of IoT queues ∆ = {∆i}Ni=1 ;
∆min = mini ∆i;
∆max = maxi ∆i;
Imax = η − 1;
Imin = 0;

qc(∆min, ∆max, Imin, Imax);

function qc(∆min, ∆max , Imin, Imax)

∆mid = ∆min + (∆max −∆min)/2;
q = Imax − Imin + 1;
Wleft = 0;
Wright = 0;

for every entry ∆i in ∆ do
if ∆i ≥ ∆min and ∆i ≤ ∆mid then

Wleft + +;
if ∆i > ∆mid and ∆i ≤ ∆max then

Wright + +;

Wtotal = Wleft +Wright;
Wleft = Wleft/Wtotal;
Wright = Wright/Wtotal;

W ′left = Wleft × q;
W ′right = Wright × q;

W ′left =
⌊
W ′left + 0.5

⌋
;

W ′right =
⌊
W ′right + 0.5

⌋
;

if W ′left +W ′right == q + 1 then
randomly reduce the number of left or right queues by one;

/*allocate queue to the values less than or
equal to ∆mid/*
if W ′left == 1 then
M(Qη−1) = ∆mid;

else if W ′left > 1 then
left end = η − 1;
left start = η −W ′left + 1;
qc(∆min, ∆mid, left start, left end);

/*allocate queue to the values greater than
∆mid/*
if W ′right == 1 then
M(QImin

) = ∆max;
else if W ′right > 1 then

left start = η −W ′left;
right end = left start− 1;
right start = left start− right queues;
qc(∆mid, ∆max, right start, right end);

packet. It is possible that the MTD of a packet satisfies
the incoming packet’s delivery deadline, but the queue has
exceeded the maximum number of allowable insertions in the
current service period. Formally speaking, the index i returned
by formula 3 does not satisfy Equation 5. In this case, the
search for an appropriate queue continues towards the higher
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Fig. 2. Implementation architecture of Wiotap on a Linux AP.

priority queues. Therefore, to ensure a sustained guarantee of
delivery deadlines, Condition 3 must be revised as follows,

argmin
i∈[1,η−1]

(
∆(pj) ≤M(Qi) and S(Qi) < S̄(Qi)

)
. (7)

Algorithm 2 presents the packet enqueue process. For each
incoming packet (over the wired interface), this algorithm tries
to find a prioritized queue if the packet deadline is higher than
the threshold we discussed in Inequality 1 (cf. Line 2). The
algorithm pushes the packet into the base queue if the packet
deadline is longer than the MTD of the lowest priority queue
(cf. Line 2). Please note that the service capacity of this queue
is not taken into account since there is no deadline guarantee
offered by this queue. If the packet has not been inserted into
the base queue, the algorithm verifies if the deadline is lower
than that of the highest priority queue. In this case, the packet
is pushed into the queue if the queue is capable of serving
more packets during the current service period (cf. Line 2).
Otherwise, the packet is inserted into the base queue (cf. Line
2) since it is evident that the other queues cannot satisfy the
deadline requirement of this packet. If none of the above two
boundary cases hold, the algorithm tries to find a queue that
satisfies the deadline requirement and is capable of serving
more packets during the current service period (cf. Line 2).
Please note that, since the packet service rate of each queue is
limited, after the completion of this loop, the algorithm does
not necessarily push the packet into the lowest priority queue
that can satisfy the packet deadline. In the end, if no prioritized
queue was found, the packet is inserted into the base queue.

The time complexity of this algorithm is O(n) because,
if the boundary values do not hold, the algorithm needs to
evaluate the eligibility of all the queues.

IV. IMPLEMENTATION

Figure 2 presents the implementation architecture of Wiotap
in Linux-based APs. This architecture is composed of four
main modules: (i) Scheduler module, which includes a kernel-
space sub-module (S-KN), and a user-space sub-module (S-
US), (ii) WiFi Logger (WiLog) module, and (iii) qdisc module.

The S-US module runs the Queue Configuration and En-
queue algorithms. To ensure proper mapping to MAC layer
queues, the S-KN module modifies the ToS field in the IP
header of IoT packets according to the queue number specified
by S-US. The WiLog module keeps track of the operational
status of IoT stations. Finally, the ToS field set by the S-KN
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Algorithm 2: Enqueue Algorithm
Inputs:
pj : an incoming packet;
Qiot
net: set of IoT queues;

Output: the input packet has been inserted into a queue;

function enqueue(pi)

sioti = destination of packet pj ;

∆(pj) = Γ(sioti )− (t− t̃(sioti ));

if ∆(pj) > Th(sioti ) then

if ∆(pj) >M(Q1) then
insert pj into Q0;
return;

else if ∆(pj) ≤M(Qη−1) then

if S(Qη−1) < S̄(Qη−1) then
S(Qη−1) + +;
insert pj into Qη−1;
return;

else
insert pj into Q0;
return;

else
for k = 1 to η − 1 do

if ∆(pj) <M(Qk) then
if S(Qk) < S̄(Qk) then
S(Qk) + +;
insert pj into Qk;
return;

insert pj into Q0;
return;

module is used by the qdisc kernel module to push the packet
into the appropriate IoT queue.

The Wiotap system also includes the hostapd daemon
[34], which is a user-space software to perform regular AP
functionalities such as authentication, association, and bea-
coning. This daemon communicates with cfg80211 through
nl80211.

A. WiFi Logger Module (WiLog)

The proposed scheduling mechanism requires knowledge
about the current status of IoT stations regarding their
sleep/wake status and the remaining tail duration of awake
stations. The WiLog module is responsible for providing the
S-US module with this information. To this end, Wiotap is
equipped with one additional wireless NIC to overhear all the
packets (data and NULL) and collect the required information.
Also, this module includes the circular array Tx explained
in Section III-A. The capacity of this array is 100 in our
implementation.

B. Scheduler Module

The scheduler is implemented in two parts: user space
and kernel space, which are referred to as S-US and S-KN
modules, respectively. To avoid floating-point calculations in
the kernel space [35], the S-US module, which includes the

Queue Configuration and Enqueue algorithms, is implemented
in the user space. The S-KN module uses the netfilter [36]
components located in the Linux kernel to grab the packets
arriving on the Ethernet interface. Specifically, we use the
PREROUTING mode, where all the packets are intercepted
before the routing decision is made. If the destination of an
arriving packet is an IoT station, the S-KN module requests
the S-US module to determine the most appropriate queue for
this packet. S-US collects t̃(sioti ) and µTx from the WiLog
module. After determining a queue, S-US instructs S-KN to
modify the IP header of the packet to reflect the new ToS
value determined. Then, S-KN recalculates the checksum and
passes the packet to the qdisc module to place it in the proper
queue. The circular queue ∆ used to hold the packet laxity
values is implemented in the S-US module. The size of this
queue is 100 in our implementation.

C. qdisc Module

By default, every network interface is assigned a
pfifo_fast as its transmit queuing mechanism [37]–[39].
pfifo_fast implements a simple three-band prioritization
scheme based on the 8-bit ToS field in the IP header [40].
FIFO rules apply to the packets in each band. Also, as
long as packets are waiting in band 0, band 1 cannot be
processed. Similarly, band 1 has a higher priority compared
to band 2. Hence, pfifo_fast always processes band-
0’s traffic regardless of the number and rates of contending
flows [37]. PRIO qdisc is a classfull-configurable alternative
of pfifo_fast and enables users to configure the number
of queues/bands. In this work, we use a modified version of
PRIO qdisc. To establish a mapping between the ToS field and
queues, we have used priomap to associate the ToS values
to the bands. The implemented PRIO queuing discipline can
provide up to n+4 queues in the qdisc layer, where n queues
are used for IoT stations and four queues for the regular
stations. Also, the per-queue statistics (number of packets in
each queue) is maintained by the PRIO qdisc kernel module
and communicated to S-KN module through netlink sockets.

V. SIMULATION RESULTS

Since the performance enhancement achieved by Wiotap is
particularly revealed in scenarios including a large number of
IoT stations, we present simulation results first and postpone
empirical evaluations to Section VI. To this end, we have
developed a simulation tool using the OMNet++ simulation
framework [41]. The AP is placed in the center of a 50m×50m
area and regular and IoT stations are randomly placed in this
area. The IoT stations are normally in sleep mode. Each IoT
station wakes up every 4 seconds and reports an event to a
server. The response of the server is a reply to the station. We
refer to this process as a transaction. The tail time duration is
10ms, and beacon interval is 100ms. Regular traffic intensity
refers to the percentage of AP bandwidth utilized by regular
stations. When this percentage is between 95% to 99%, we
refer to it as near-saturation (NSat).

We compare the performance of Wiotap versus two base-
lines: (i) R-AP: a regular AP that does not perform any
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Fig. 3. Impact of the number of IoT stations on (a) average duty cycle
and (b) average energy consumption of IoT stations. This experiment does
not include any regular station.
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Fig. 7. Impact of packet scheduling on delivery rate. IoT stations generate
uplink traffic every 4 seconds using a uniform distribution within the following
intervals: (a) [0, 4s], (b) [0, 1s], (c) [0, 100ms], in a uniform manner.

prioritization mechanism that pushes IoT packets in the base
queue Q0. Please note that the latter baseline employs a simple
FIFO scheduling of IoT traffic and does not offer deadline-
based intra-IoT traffic prioritization. Each point shows the
median of 50 experiments where each experiment includes 30
transactions. Error bars demonstrate upper and lower quartiles.

Figure 3 shows the duty cycle and energy consumption rate
per IoT station versus network density. Even when the number
of stations is 50, the duty cycle achieved with Wiotap is 37%
less than that of R-AP and SQ-AP. Please note that in this
figure, the results achieved with R-AP and SQ-AP are similar
because there is no difference between assigning IoT packets
to Q0 or a regular queue (i.e., Qregnet) when no regular traffic is
present. Therefore, these results reveal the main advantage of
Wiotap regarding deadline-aware packet scheduling in large-
scale IoT networks by using multiple IoT queues and assigning
per-packet priority levels among the IoT stations.

In the next experiment, we keep the regular traffic level
at 75% and increase the number of IoT stations. Figure 4
presents the results. Compared to R-AP and SQ-AP, Wiotap
shows 39% and 37% reduction in duty cycle when the number
of IoT stations is 50, respectively. Also, when the number of
IoT stations is increased from 50 to 100, R-AP and Wiotap
show around 35% and 15% increase in duty cycle, respectively.
Although SQ-AP shows lower duty cycle compared to R-AP
by prioritizing IoT packets over regular traffic, its performance
is significantly lower than that of Wiotap since it does not
perform deadline-based scheduling.

Figure 5 depicts the performance improvement achieved
by Wiotap versus the intensity of regular traffic when 75
IoT stations exist in the network. The average performance
improvement in the presence of 25% regular traffic compared
to R-AP and SQ-AP are 39% and 38%, respectively. By “aver-
age” we refer to the performance improvement of the proposed
approach when using 4, 16, and 64 IoT queues compared to
the baselines. Also, in the presence of NSat regular traffic, the
average performance improvement compared to R-AP and SQ-
AP are 61% and 38%, respectively. These results, in particular,
show the impact of increasing regular traffic on the energy
efficiency of IoT stations when R-AP or SQ-AP are used.
For example, when using R-AP, increasing regular traffic from
25% to NSat increases the duty cycle of IoT stations by 65%.
Even in high-capacity networks with a few regular stations, an
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attacker might generate a DoS attack to saturate the network
and compromise the energy efficiency of IoT stations.

Figure 6(a) demonstrates how the number of queues af-
fects the average duty cycle of IoT stations. We observe a
decaying trend in duty cycle for all the test conditions because
increasing the number of IoT queues enhances the granularity
of IoT traffic prioritization. This figure shows that increasing
the number of IoT queues from 2 to 4 results in 28% lower
duty cycle on average for all the cases. After that, the duty
cycle is reduced by around 5% when the number of queues is
increased to 64. This behavior is because not all the queues
available would be fully utilized as the queue filling rate
depends on the amount of concurrent traffic. In general, certain
conditions raise the importance of higher-granularity packet
scheduling: increasing the number and traffic rate of IoT
stations, increasing the standard deviation of RTT, various tail
time values of IoT stations. As Figure 6(b) shows, increasing
the mean and standard deviation of RTT enhances the benefits
of using more number of queues.

Figure 7 shows the impact of packet scheduling on delivery
rate. The delivery rate of a station is defined as the ratio of
the packets delivered to a station by the AP over the number
of packets received by the AP on its wired interface. When
using R-AP, both regular and IoT traffic are assigned a similar
priority and share the same set of regular qdisc queues. In
this case, the impact of buffering on IoT traffic is similar to
that of regular queues if the IoT transactions are uniformly
distributed over time. In scenarios where multiple devices
detect and report an event during a short duration, uplink
and downlink communication are accumulated, and therefore,
a higher packet loss rate occurs due to buffer overflow. In
contrast, Wiotap schedules IoT packets to be delivered before
regular packets. More importantly, since Wiotap tries to deliver
IoT packets before these stations switch into sleep mode, the
number of packets buffered before the next beacon instance
reduces, and this enables the AP to serve a higher number of
IoT stations without affecting the delivery rate. For example,
as Figure 7 (c) shows, when 200 IoT stations perform their
transactions during a 100ms interval every 4 seconds, using
Wiotap increases delivery rate by 40% compared to R-AP.
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Fig. 8. Effect of the number
of IoT queues on the execution
duration of Queue Configura-
tion algorithm. The execution
time increases linearly versus
the number of IoT queues.

As discussed in Section III-B,
the complexity of Queue Config-
uration algorithm is O(n). Fig-
ure 8 shows the processing time
of this algorithm (implemented in
C++) on a single core of a Core
i3 processor versus exponential
increase in the number of IoT
queues. As the results confirm,
execution time grows linearly ver-
sus the number of queues. Assum-
ing 100 transactions per second, a
100-entry queue ∆ fills up every
1 second to trigger Queue Con-
figuration algorithm. In this case,
even if 64 queues are used, the
processor’s core is utilized less

than 0.05% per second by this algorithm.
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Fig. 9. Testbed architecture. Four IoT stations communicate with the AP in
the presence of regular traffic. The IoT stations use MQTT to communicate
with the broker.

VI. EMPIRICAL EVALUATION

This section presents the testbed setup methodology and
the empirical performance evaluation of the proposed sys-
tem. Although Wiotap has been primarily designed to ensure
deadline-aware scheduling of large-scale IoT networks, the
results of this section show that the proposed solution enhances
performance even in networks with a small number of IoT
stations.

A. Testbed

Figure 9 shows the testbed architecture. The testbed has
been set up as follows.

1) Hardware: We used Cypress CYW43907 [16], [42] as
MQTT clients. CYW43907 offers a low-power design, is
equipped with two ARM Cortex-R4 processors (for application
and 802.11 sub-systems), and supports 802.11g/n. The AP
has been implemented using an Intel NUC machine, which
includes an Intel Wireless-AC 7265 card acting as the AP
interface. We also added a Linksys AE1200 N300 to the AP
for the WiLog module. The AP operates in 802.11e mode with
54Mbps capacity.

2) Publish/subscribe model: Due to its widespread use in
IoT applications, we have adopted MQTT [43], which is based
on the publisher/subscriber model. Each publisher publishes to
a topic, and the broker forwards the published messages to all
the subscribers interested in the topic. In this paper, we refer to
the process of publishing a message and receiving a response
as a transaction.

3) Background traffic: Many media-centric applications
(such as video calling and gaming) use UDP as the transport
layer protocol [44] [45]. Also, the application layer protocols
over UDP (such as Google’s Quick UDP Internet Connections
(QUIC) protocol) represent over 7% of all the traffic in the
Internet [46], [47]. Hence, UDP traffic can saturate a hetero-
geneous WiFi network by consuming most of the bandwidth
[48], [49]. To mimic this behavior, we generate UDP traffic
using a C program that runs on a client and sends data flows
to the UDP traffic server. The program is capable of both
setting the ToS field to associate an AC with each packet
and controlling inter-packet transmission delays to adjust the
amount of channel utilization. A similar program runs on
the UPD server to continuously send back the received UDP
packets to the traffic generator.
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4) Energy measurement platform: EMPIOT [50] is used for
energy measurement. This platform enables us to accurately
measure the energy consumption of a code snippet running
on the IoT devices. By annotating the code running on the
IoT boards, the start and stop of energy measurement can be
accurately controlled. The EMPIOT platform’s basic sampling
rate is 500Ksps, which are then averaged and streamed to
the control software as 1Ksps. The maximum accuracy error
of this platform is 4% compared to the existing high-end
commercial products.

The IoT client boards (CYW43907) include components
that increase the minimum achievable energy consumption
compared to the SoCs only. Therefore, in order to merely
take into account the energy consumption of 802.11 com-
munication, we need to collect the base energy consumption
of the board when the transceiver is in sleep mode. Our
measurements show that the base current consumption is
approximately 160mA, and wireless communication increases
this value to about 250mA. By subtracting the base power
consumption from the results collected during experiments,
we report the average energy consumption of the board per
MQTT transaction.

B. Methodology

The testbed has been used to run a series of experiments
in the presence of various categories and background traffic
rate. To represent a request-response scenario, IoT stations
subscribe to their published topic to ensure that the client will
receive the published messages from the broker. When refer-
ring to energy in the results, we show the energy consumed
by publishing a message and receiving the reply. This process
is called a transaction. We perform the experiments using
MQTT’s QoS 1 and QoS 2 modes. The former ensures that
the message is delivered at least once, and the latter ensures
the message is delivered exactly once. Although QoS 2 has
a higher overhead in terms of latency and number of packets
exchanged, it is the preferred QoS mechanism for mission-
critical applications. We run 50 transactions for each AC and
background traffic rate and depict the median and error bars
to show the lower and higher quartiles. All the experiments
were conducted after 12 AM to minimize the impact of nearby
APs.

Based on the location of the MQTT broker, we have
implemented edge and cloud computing scenarios. In the edge
scenario, the broker is directly connected to the AP through
an Ethernet cable. The mean and standard deviation of RTT
are around 3ms and 2ms in this scenario, respectively. In
the cloud scenario, we have placed the MQTT broker in a
server located in Oregon, US, and the AP and IoT devices are
located in Santa Clara, US. We observed that the mean and
standard deviation of RTT is 30ms and 10ms, respectively.
These scenarios, in particular, enable us to see the impact
of round-trip-time (RTT) on energy consumption because the
RTT of edge and cloud scenarios are less than and more than
the tail time, respectively.

C. Results and discussions
Figures 10 and 11 demonstrate the result for the edge and

cloud scenarios, respectively. The maximum and average
performance improvement of Wiotap in the edge scenario are
52% and 36% in terms of delay and 44% and 18% in terms
of energy. For the cloud scenario, the maximum and average
performance improvement are 41% and 18% in terms of delay
and 38% and 13% in terms of energy. When the broker is
at the network edge, the response packets usually reach the
AP during the tail-time. Depending on the deadline of this
packet compared to other IoT stations, Wiotap prioritizes the
packet to ensure its delivery before its deadline. In the cloud
computing scenario, the network latency is usually larger than
the tail-time, and stations will have to wake up during the next
beacon instance to retrieve downlink packets from the AP. At
the wake-up time, since our solution prioritizes the packets
over background traffic, the station spends less time in idle
listening mode. Therefore, compared to the edge scenario,
more energy is spent in the cloud scenario on average per
station per transaction.

As the results show, the energy consumption of IoT station
is higher in the presence of AC VO compared to AC BK
and AC BE. Besides, the rate of background traffic has a
higher impact on the energy consumption of IoT station for
higher-priority background flows. We justify this behavior
as follows. The regular traffic fills up the EDCA queues of
corresponding ACs. Whenever a burst of IoT traffic occurs,
the priority of IoT packets is promoted by the qdisc module.
However, since we do not modify the 802.11e’s EDCA at the
MAC layer, although the IoT traffic has the highest priority, it
would only have a higher chance of being transmitted while
contending with the existing traffic in the EDCA queues. In
a statistical sense, the transmission probability of IoT traffic
is higher compared to lower priority ACs due to the lower
values of CWmin, CWmax, and AIFS for high-priority ACs
(IoT traffic). However, the random backoff time chosen by
lower-priority ACs adds a level of uncertainty, which results
in scenarios where lower-priority flows gain channel access
before higher-priority flows [51]. More specifically, to avoid
the starvation of low-priority flows, the 802.11e MAC layer
prioritization mechanism only offers a higher probability of
transmission for higher priority ACs, and this mechanism does
not guarantee that the higher priority packets will always be
sent before the lower priority ones [31], [52].

VII. RELATED WORK

Tauber and Bhatti [10] studied the impact of beacon and
DTIM interval on energy efficiency versus inter-packet arrival
time. They also highlighted the importance of per-client DTIM
allocation, which has been addressed by [53]. Tozlu et al. [13]
presented an extensive energy evaluation of 802.11 stations
versus rate, security protocol, control packet overhead, and
interference. He et al. [54] showed a higher impact of 802.11
power saving mechanism when the beacon and DTIM intervals
are small. They also demonstrated the reduction in energy
efficiency as the background traffic increases.

Packet scheduling mechanisms such as [55] and [56] pro-
pose solutions to group stations such that only a few stations
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Fig. 10. Average delay and energy per MQTT transaction versus the different levels of background traffic in the edge computing scenario. (a) and (b) show
transaction duration, and (c) and (d) show transaction energy consumption.

wake up to receive the packets after each beacon interval.
Similarly, [57], [58], and [59] grouped the stations to control
channel access contention. Kwon and Cho [60] assume that
the AP is aware of the priorities of the registered stations.
They prioritize packet reception according to the priorities
of the stations based on their profile information such as
the remaining power level of each station. Towards reducing
the waiting time (and energy consumption) of PSM stations,
Rozner et al. [61] proposed NAPman to transmit the packets
of these stations before those stations that do not utilize PSM.
The downlink packet scheduler proposed in [62] prioritizes
downlink burst packet delivery after every beacon interval
based on historical data and attention fairness. Clients with
smaller attention requests are serviced before the others, thus
allowing them to spend less energy to get one unit of attention.
Also, the clients with larger attention requests sleep longer
compared to other popular scheduling methods such as priority
round robin and priority first come first serve. To enhance the
sleep duration of clients, Liu et al. [63] postpone packet trans-
mission from AP to clients. Considering a VoIP application,
stations measure the tolerable delay of incoming packets and
request for a sleep schedule from the AP accordingly. None of
these approaches address the energy efficiency and timeliness
concerns of using IoT devices in 802.11 networks. Besides, the
aforementioned solutions did not present their effectiveness
in large-scale deployments with tens of connected stations.
To the best of our knowledge, our work is the first that
addresses deadline-aware scheduling of IoT packets for large-
scale deployments.

In contrast to the aforementioned approaches, which employ
packet scheduling on top of the regular channel access mech-
anism of 802.11 (i.e., CSMA), some works completely utilize
TDMA to enhance timeliness and offer bandwidth guarantee.
For example, [64] has modified the 802.11 driver and utilized
a simple TDMA scheduling to enhance the sampling rate of
wireless control systems. Towards higher scalability, some of
these works employ similar or enhanced variations of the
scheduling algorithms that have been originally proposed for
task scheduling [65], [66]. As an example, the LLF scheduling
strategy has been used in [67] to develop a heuristic scheduling
algorithm for WirelessHART networks. LLF has also been
employed by [1] to enhance the number of admitted nodes in
a real-time mobile wireless networks. Although the timeliness
and reliability of these solutions are essential for application-
specific, mission-critical scenarios such as factory automa-
tion, utilizing a TDMA approach in regular IoT applications
requires an exact identification of each station’s bandwidth
requirements. However, this would not be possible in scenarios
such as smart home where regular and IoT stations coexist
and the traffic of these stations is highly unpredictable. In
this regard, the novelties of this paper are (i) providing a new
formulation of LLF for the delivery deadline of packets when
Adaptive PSM is used, (ii) utilizing network layer to MAC
layer priority mapping, and (iii) placing the proposed solution
in the network layer to simplify its adoption and make it
scalable and independent of the MAC layer implementation.

To enhance the performance of scheduling and channel
access, various solutions were proposed to benefit from the
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Fig. 11. Average delay and energy per MQTT transaction versus the different levels of background traffic in the cloud computing scenario. (a) and (b) show
transaction duration, and (c) and (d) show transaction energy consumption.

information collected from the transport and application layer
protocols. Birlik et al. [68] enhance the delivery of high-
quality video streams to end-users by prioritizing critical
video packets in a mesh network. By utilizing the H.264
encoding standard to classify the packets according to their
importance, this approach modifies the ToS field in the IP
header to promote the priority of important packets. Martin
and Feamster [69] determine flow priorities based on user
activity type. Each client uses a tool to find the currently active
application window on the device and sends UDP control
packets containing information such as the port numbers of
the active and inactive processes. On receiving the control
packets, the router prioritizes the flows which are associated
with active processes by allocating a larger share of tickets
under lottery based queue scheduling mechanism [70]. Pyles
et al. [20] utilize an application classifier to increase the
priority of interactive Android applications. When a high
priority application is detected, the WiFi driver uses the A-
PSM mechanism if the rate of packet exchange is beyond a
certain threshold.

Wamser et al. [71] addressed resource allocation to multi-
media traffic on home gateways. If the video or audio local
playback buffer falls below 25s, its flow is moved to a higher
priority queue, and once the buffer reaches 40s, the flow is
downgraded to a lower priority queue. Flaithearta et al. [72]
proposed an intelligent AP for VoIP traffic to address intra-
AC prioritization among VoIP flows. This method finds the
VoIP quality using the ITU-T E-Model [73] and the AP sets
the DSCP value of packets based on network characteristics

collected from the RTP Control Protocol (RTCP). By using the
additional higher priority AC VO transmission queue provided
by the 802.11aa standard, they divert a few VoIP calls to
prioritize them over others. Qazi et al. [74] propose fine-
grained mobile application detection using a machine learning
trainer based on a decision tree in the control plane. They use
netstat logs from employee devices along with the flow
features (first N packet sizes, port numbers, IP address range).
In [75], the router dynamically adjusts bandwidth allocation
of flows using Linux’s tc utility. The aggregated bandwidths
are computed for video, web browsing, file transfer, and voice
classes using a linear utility function [76] on account of
the contextual-priority reports sent by clients. The authors
in [77] have demonstrated application-aware networking for
video streaming. They identify characteristics of the flows
through deep packet inspection and forward them via least
congested links by dynamically changing the routing paths.
They have compared the performance of bandwidth-based
and DPI-based path selection mechanisms regarding buffered
playtime in a software-defined network (SDN). Afzal et al.
[78] proposed a context-aware resource allocation scheme
in wireless multimedia sensor-based WLANS. This method
formulates an optimization problem on the basis of the service
requirements of each flow, and allocates appropriate bandwidth
and TXOP to the stations.

Although Wiotap does not rely on information provided by
transport and application layer, it can be enhanced further
by incorporating this information. For example, the AP can
automatically detect and classify IoT devices once MQTT
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or CoAP is used at the application layer. This presents the
need to identify these devices manually on the AP. However,
this may impose higher overhead to the AP to perform deep
packet inspection. Also, if an SDN architecture is employed
to perform the inspections remotely, the delay and overhead
of AP-controller must be carefully taken into account. In
particular, since IoT traffic is usually event-based and the
number of packets exchanged with the AP is significantly
lower than that of regular user traffic, it is essential to ensure
the AP performs scheduling promptly for all the IoT packets.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed Wiotap, which is an 802.11
AP serving IoT and regular stations. Wiotap enhances the
energy efficiency and timeliness of IoT stations in large-
scale networks by applying per-packet scheduling of downlink
traffic based on the power state of stations. In addition, Wiotap
ensures the high efficiency of IoT stations in the presence of
regular traffic and protects these stations against DoS attacks.

The performance and applicability of the proposed approach
can be enhanced by integrating context awareness. For exam-
ple, application layer protocol detection eliminates the burden
of manually identifying IoT stations. Also, analyzing per-
device traffic pattern enables the AP to control the power
status of stations by sending management packets. To extend
the proposed mechanism to scenarios with multiple APs and
mobile stations, a SDN architecture can be employed to collect
the required data (e.g., laxity of packets) from multiple APs
and run the proposed algorithms centrally.
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power wireless for the Internet of Things: Standards and applications,”
IEEE Access, vol. 6, pp. 67 893–67 926, 2018.

[6] A. Di Serio, J. Buckley, J. Barton, R. Newberry, M. Rodencal, G. Dun-
lop, and B. O’Flynn, “Potential of sub-ghz wireless for future iot
wearables and design of compact 915 mhz antenna,” Sensors, vol. 18,
no. 1, p. 22, 2018.

[7] B. Gerislioglu, A. Ahmadivand, M. Karabiyik, R. Sinha, and N. Pala,
“VO2-based reconfigurable antenna platform with addressable micro-
heater matrix,” Advanced Electronic Materials, vol. 3, no. 9, 2017.

[8] N. Khalid, T. Yilmaz, and O. B. Akan, “Energy-efficient modulation and
physical layer design for low terahertz band communication channel in
5g femtocell Internet of Things,” Ad Hoc Networks, vol. 79, pp. 63–71,
2018.

[9] Y.-C. Chang and J.-P. Sheu, “An energy conservation MAC protocol in
wireless sensor networks,” Wireless Personal Communications, vol. 48,
no. 2, pp. 261–276, 2009.

[10] M. Tauber and S. N. Bhatti, “The effect of the 802.11 power save
mechanism (PSM) on energy efficiency and performance during system
activity,” in IEEE International Conference on Green Computing and
Communications (GreenCom), 2012, pp. 573–580.

[11] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application
protocol for billions of tiny internet nodes,” IEEE Internet Computing,
no. 2, pp. 62–67, 2012.

[12] A. Bartoli, M. Dohler, J. Hernández-Serrano, A. Kountouris, and
D. Barthel, “Low-power low-rate goes long-range: The case for secure
and cooperative machine-to-machine communications,” in International
Conference on Research in Networking. Springer, 2011, pp. 219–230.

[13] S. Tozlu, M. Senel, W. Mao, and A. Keshavarzian, “Wi-Fi enabled
sensors for Internet of Things: A practical approach,” IEEE Commu-
nications Magazine, vol. 50, no. 6, 2012.

[14] D. Thomas, R. McPherson, G. Paul, and J. Irvine, “Optimizing power
consumption of Wi-Fi inbuilt IoT device: an MSP430 processor and
an ESP-03 chip provide a power-efficient solution,” IEEE Consumer
Electronics Magazine, vol. 5, no. 4, pp. 92–100, 2016.

[15] AVNET Inc. BCM4343W: 802.11b/g/n WLAN, Blue-
tooth and BLE SoC Module. [Online]. Avail-
able: https://products.avnet.com/opasdata/d120001/medias/docus/138/
AES-BCM4343W-M1-G data sheet v2 3.pdf

[16] Cypress Semiconductor. CYW43907: IEEE 802.11a/b/g/n SoC with
an Embedded Applications Processor. [Online]. Available: http:
//www.cypress.com/file/298236/download

[17] Silicon Labs. Zentri AMW036/AMW136 Data Sheet. [On-
line]. Available: https://www.silabs.com/documents/login/data-sheets/
ADS-MWx36-ZentriOS-101R.pdf

[18] Texas Instruments Incorporated. CCC3200MOD Data Sheet. [Online].
Available: http://www.ti.com/lit/ds/symlink/cc3200mod.pdf

[19] B. Dezfouli, V. Esmaeelzadeh, J. Sheth, and M. Radi, “A review of
software-defined WLANs: Architectures and central control mecha-
nisms,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp.
431–463.

[20] A. J. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu, “SAPSM:
Smart adaptive 802.11 PSM for smartphones,” in ACM conference on
ubiquitous computing, 2012, pp. 11–20.

[21] MediaTek Inc. MT7687: a low power 1T1R 802.11n single-band Wi-Fi
subsystem and a power management unit (PMU). [Online]. Available:
https://labs.mediatek.com/en/chipset/MT7687

[22] Qualcomm Technologies Inc. MT7687: Low-Energy Wi-Fi Single-Band
802.11a/b/g/n SoC. [Online]. Available: https://www.qualcomm.com/
products/qca4002

[23] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and R. Gupta,
“Wireless wakeups revisited: energy management for VoIP over Wi-Fi
smartphones,” in International Conference on Mobile Systems, Applica-
tions and Services (MobiSys). ACM, 2007, pp. 179–191.

[24] G. Anastasi, M. Conti, E. Gregori, and A. Passarella, “802.11 power-
saving mode for mobile computing in Wi-Fi hotspots: limitations,
enhancements and open issues,” Wireless Networks, vol. 14, no. 6, pp.
745–768, 2008.

[25] R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and P. Bahl,
“A case for adapting channel width in wireless networks,” in Computer
Communication Review Volume 28. ACM, 2008, pp. 135–146.

[26] J. Liu and L. Zhong, “Micro power management of active 802.11
interfaces,” in International Conference on Mobile Systems, Applications
and Services (MobiSys). ACM, 2008, pp. 146–159.

[27] F. R. Dogar, P. Steenkiste, and K. Papagiannaki, “Catnap: exploiting
high bandwidth wireless interfaces to save energy for mobile devices,” in
International Conference on Mobile Systems, Applications and Services
(MobiSys). ACM, 2010, pp. 107–122.

[28] N. Ding, A. Pathak, D. Koutsonikolas, C. Shepard, Y. C. Hu, and
L. Zhong, “Realizing the full potential of PSM using proxying,” in
Proceedings of INFOCOM. IEEE, 2012, pp. 2821–2825.

[29] S. K. Saha, P. Malik, S. Dharmeswaran, and D. Koutsonikolas, “Re-
visiting 802.11 power consumption modeling in smartphones,” in Inter-
national Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM). IEEE, 2016, pp. 1–10.

[30] B. Vijay and B. Malarkodi, “Improved QoS in WLAN using IEEE
802.11e,” Procedia Computer Science, vol. 89, pp. 17–26, 2016.

[31] IEEE 802.11 Working Group, “IEEE Standard for Information
Technology-Telecommunications and Information Exchange Between
Systems Local and Metropolitan Area Networks Specific Requirements
Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications 2007.”

[32] G. Cena, L. Seno, A. Valenzano, and C. Zunino, “On the performance
of IEEE 802.11e wireless infrastructures for soft-real-time industrial

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://products.avnet.com/opasdata/d120001/medias/ docus/138/AES-BCM4343W-M1-G_data_sheet_v2_3.pdf
https://products.avnet.com/opasdata/d120001/medias/ docus/138/AES-BCM4343W-M1-G_data_sheet_v2_3.pdf
http://www.cypress.com/file/298236/download
http://www.cypress.com/file/298236/download
https://www.silabs.com/documents/login/data-sheets/ADS-MWx36-ZentriOS-101R.pdf
https://www.silabs.com/documents/login/data-sheets/ADS-MWx36-ZentriOS-101R.pdf
http://www.ti.com/lit/ds/symlink/cc3200mod.pdf
https://labs.mediatek.com/en/chipset/MT7687
https://www.qualcomm.com/products/qca4002
https://www.qualcomm.com/products/qca4002


IEEE IOT JOURNAL [ACCEPTED: JULY 2019] 13

applications,” IEEE Transactions on Industrial Informatics, vol. 6, no. 3,
pp. 425–437, 2010.

[33] M. Frikha, T. Najet, and F. Tabbana, “Mapping DiffServ to MAC
differentiation for IEEE 802.11e,” in Advanced Int’l Conference on
Telecommunications and Int’l Conference on Internet and Web Applica-
tions and Services (AICT-ICIW). IEEE, 2006, pp. 79–79.

[34] Malinen, Jouni. hostapd: IEEE 802.11. [Online]. Available: http:
//hostap.epitest.fi/hostapd

[35] R. Love, Linux kernel development. Pearson Education, 2010.
[36] R. Russell and H. Welte. Linux netfilter hacking howto.

[Online]. Available: http://www.netfilter.org/documentation/HOWTO/
netfilter-hacking-HOWTO

[37] B. Hubert, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy. Linux advanced routing
& traffic control howto. [Online]. Available: https://www.tldp.org/
HOWTO/Adv-Routing-HOWTO/

[38] Openwrt. Network Traffic Control (QoS). [Online]. Available: https:
//wiki.openwrt.org/doc/howto/packet.scheduler/packet.scheduler

[39] R. Rosen, Linux kernel networking: Implementation and theory. Apress,
2014.

[40] M. A. Brown, “Traffic control HOWTO,” Guide to IP Layer Network,
p. 49, 2006.

[41] A. Varga, “The OMNeT++ discrete event simulation system,” in Pro-
ceedings of the European Simulation Multiconference, June, 2001, pp.
319–324.

[42] Cypress Semiconductor. CYW943907AEVAL1F Evaluation
Kit. [Online]. Available: http://www.cypress.com/documentation/
development-kitsboards/cyw943907aeval1f-evaluation-kit

[43] M. Version, “3.1. 1,” Edited by Andrew Banks and Rahul Gupta, vol. 10,
2014.

[44] A. Bujari, G. Quadrio, C. Palazzi, D. Ronzani, D. Maggiorini, and
L. Ripamonti, “Network traffic analysis of the steam game system,” in
Consumer Communications & Networking Conference (CCNC). IEEE,
2017, pp. 716–719.

[45] C. Yu, Y. Xu, B. Liu, and Y. Liu, “Can you SEE me now? A
measurement study of mobile video calls,” in Proceedings of INFOCOM.
IEEE, 2014, pp. 1456–1464.

[46] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The QUIC transport
protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
2017, pp. 183–196.

[47] P. Kumar and B. Dezfouli, “Implementation and analysis of QUIC for
MQTT,” in Computer Networks, vol. 150. Elsevier, 2019, pp. 28–45.

[48] N. Soetens, J. Famaey, M. Verstappen, and S. Latre, “SDN-based man-
agement of heterogeneous home networks,” in International Conference
on Network and Service Management (CNSM). IEEE, 2015, pp. 402–
405.

[49] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, K. Papagiannaki, and
P. Steenkiste, “Identifying the root cause of video streaming issues
on mobile devices,” in ACM Conference on Emerging Networking
Experiments and Technologies, 2015, p. 24.

[50] B. Dezfouli, I. Amirtharaj, and C.-C. Li, “Empiot: An energy mea-
surement platform for wireless IoT devices,” Journal of Network and
Computer Applications, vol. 121, pp. 135–148, Elsevier, 2018.

[51] S. Mangold, S. Choi, G. R. Hiertz, O. Klein, and B. Walke, “Analysis
of IEEE 802.11e for QoS support in wireless LANs,” IEEE Wireless
Communications, vol. 10, no. 6, pp. 40–50, 2003.

[52] S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, and L. Stibor, “IEEE
802.11e Wireless LAN for Quality of Service,” in Proc. European
Wireless, vol. 2, 2002, pp. 32–39.

[53] J. Wang and T. Nagy, “Maintaining delivery traffic indication message
(DTIM) periods on a per-wireless client device basis,” Aug. 23 2011,
US Patent 8,005,032.

[54] Y. He, R. Yuan, X. Ma, and J. Li, “The IEEE 802.11 power saving
mechanism: An experimental study,” in Wireless Communications and
Networking Conference (WCNC). IEEE, 2008, pp. 1362–1367.

[55] H.-P. Lin, S.-C. Huang, and R.-H. Jan, “A power-saving scheduling
for infrastructure-mode 802.11 wireless LANs,” Computer Communi-
cations, vol. 29, no. 17, pp. 3483–3492, 2006.

[56] Y. Li, X. Zhang, and K. L. Yeung, “A novel delayed wakeup scheme
for efficient power management in infrastructure-based IEEE 802.11
WLANs,” in Wireless Communications and Networking Conference
(WCNC). IEEE, 2015, pp. 1338–1343.

[57] M. Maity, B. Raman, and M. Vutukuru, “TCP download performance
in dense wifi scenarios: analysis and solution,” IEEE Transactions on
Mobile Computing, vol. 16, no. 1, pp. 213–227, 2017.

[58] Z. Abichar and J. M. Chang, “Group-based medium access control for
ieee 802.11n wireless LANs,” IEEE Transactions on Mobile Computing,
vol. 12, no. 2, pp. 304–317, 2013.

[59] Y. Yuan, W. A. Arbaugh, and S. Lu, “Towards scalable MAC design for
high-speed wireless LANs,” EURASIP Journal on Wireless Communi-
cations and Networking, vol. 2007, no. 1, p. 012597, 2007.

[60] S.-W. Kwon and D.-H. Cho, “ Efficient power management scheme
considering inter-user QoS in wireless LAN,” in Vehicular Technology
Conference. IEEE, 2006, pp. 1–5.

[61] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu, “Napman: network-
assisted power management for wifi devices,” in International Confer-
ence on Mobile Systems, Applications and Services (MobiSys). ACM,
2010, pp. 91–106.

[62] Z. Zeng, Y. Gao, and P. Kumar, “SOFA: A sleep-optimal fair-attention
scheduler for the power-saving mode of WLANs,” in International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2011,
pp. 87–98.

[63] L. Liu, X. Cao, Y. Cheng, and Z. Niu, “Energy-Efficient Sleep Schedul-
ing for Delay-Constrained Applications Over WLANs,” IEEE Transac-
tions on Vehicular Technology, vol. 63, no. 5, pp. 2048–2058, 2014.

[64] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“RT-WiFi: Real-time high-speed communication protocol for wireless
cyber-physical control applications,” in Real-Time Systems Symposium
(RTSS). IEEE, 2013, pp. 140–149.

[65] W. Zhang, S. Teng, Z. Zhu, X. Fu, and H. Zhu, “An improved least-
laxity-first scheduling algorithm of variable time slice for periodic tasks,”
in International Conference on Cognitive Informatics. IEEE, 2007, pp.
548–553.

[66] T. Kothmayr, J. Hirscheider, A. Kemper, A. Scholz, and J. Heuer, “Com-
paring heuristics and linear programming formulations for scheduling of
in-tree tasksets,” Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014.

[67] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-time scheduling for
WirelessHART networks,” in Real-Time Systems Symposium (RTSS).
IEEE, 2010, pp. 150–159.

[68] F. Birlik, O. Ercetin, and O. Gurbuz, “Prioritized video streaming in
wireless mesh networks,” in International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2007,
pp. 1–3.

[69] J. Martin and N. Feamster, “User-driven dynamic traffic prioritization
for home networks,” in Proceedings of the SIGCOMM workshop on
Measurements up the stack, 2012, pp. 19–24.

[70] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” in Proceedings of the 1st
USENIX conference on Operating Systems Design and Implementation,
1994, p. 1.

[71] F. Wamser, L. Iffländer, T. Zinner, and P. Tran-Gia, “Implementing
application-aware resource allocation on a home gateway for the ex-
ample of YouTube,” in International Conference on Mobile Networks
and Management. Springer, 2014, pp. 301–312.

[72] P. O Flaithearta, H. Melvin, and M. Schukat, “A QoS enabled multime-
dia WiFi access point,” International Journal of Network Management,
vol. 25, no. 4, pp. 205–222, 2015, Wiley Online Library.

[73] G107. The E-model: a computational model for use in transmission
planning,. [Online]. Available: https://www.itu.int/rec/T-REC-G.107

[74] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in SDN,” in ACM SIGCOMM Computer Com-
munication Review, vol. 43, 2013, pp. 487–488.

[75] I. N. Bozkurt, Y. Zhou, T. Benson, B. Anwer, D. Levin, N. Feamster,
A. Akella, B. Chandrasekaran, C. Huang, B. Maggs et al., “Dynamic
prioritization of traffic in home networks,” in CoNEXT Student Work-
shop, Heidelberg, Germany, 2015.

[76] S. Shenker, “Fundamental design issues for the future Internet,” IEEE
Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1176–
1188, 1995.

[77] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-
based application-aware networking on the example of youtube video
streaming,” in Second European Workshop on Software Defined Net-
works (EWSDN). IEEE, 2013, pp. 87–92.

[78] B. Afzal, S. A. Alvi, G. A. Shah, and W. Mahmood, “Energy efficient
context aware traffic scheduling for IoT applications,” Ad Hoc Networks,
vol. 62, pp. 101–115, 2017.

http://hostap.epitest.fi/hostapd
http://hostap.epitest.fi/hostapd
http://www. netfilter. org/documentation/HOWTO/netfilter-hacking-HOWTO
http://www. netfilter. org/documentation/HOWTO/netfilter-hacking-HOWTO
https://www.tldp.org/HOWTO/Adv-Routing-HOWTO/
https://www.tldp.org/HOWTO/Adv-Routing-HOWTO/
https://wiki.openwrt.org/doc/howto/packet.scheduler/packet.scheduler
https://wiki.openwrt.org/doc/howto/packet.scheduler/packet.scheduler
http://www.cypress.com/documentation/development-kitsboards/cyw943907aeval1f-evaluation-kit
http://www.cypress.com/documentation/development-kitsboards/cyw943907aeval1f-evaluation-kit
https://www.itu.int/rec/T-REC-G.107

	Introduction
	Background and System Overview
	802.11 Power Saving Mechanisms
	Traffic Prioritization
	System Model

	Scheduling Mechanism
	Acceleration Eligibility
	Queue Configuration
	Enqueue Algorithm

	Implementation
	WiFi Logger Module (WiLog)
	Scheduler Module
	qdisc Module

	Simulation Results
	Empirical Evaluation
	Testbed
	Hardware
	Publish/subscribe model
	Background traffic
	Energy measurement platform

	Methodology
	Results and discussions

	Related Work
	Conclusion and Future Work
	References

