

IEEE Wireless Communications and Networking Conference (WCNC)

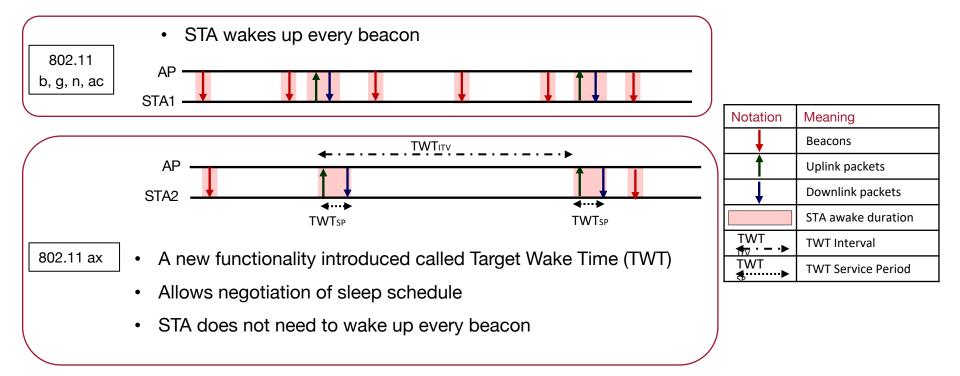
Traffic Characterization for Efficient TWT Scheduling in 802.11ax IoT Networks

Jaykumar Sheth, Vikram K. Ramanna, and Behnam Dezfouli

Glasgow, Scotland, UK March 2023

Introduction

- The adoption of WiFi technology, especially for IoT connectivity
 - WiFi technology provides higher communication rates compared to technologies such as Bluetooth and ZigBee
 - WiFi communication utilizes unlicensed spectrums
 - Deployments are considerably less expensive than cellular technologies
 - An omnipresent infrastructure for connectivity
 - Distributed and customer-oriented deployment of WiFi networks in residential and enterprise settings
 - Low deployment costs


Introduction

 Many IoT devices rely on limited energy resources such as batteries or energy harvesting

- The 802.11 standard offers various power-saving modes:
 - Power Save Mode (PSM)
 - Adaptive PSM (APSM)
 - Adaptive Power Save Delivery (APSD)

Introduction

- TWT allows STA to switch to low-power sleep state for a prolonged period
- How to accurately characterize traffic for allocating TWT_{SP} schedule?

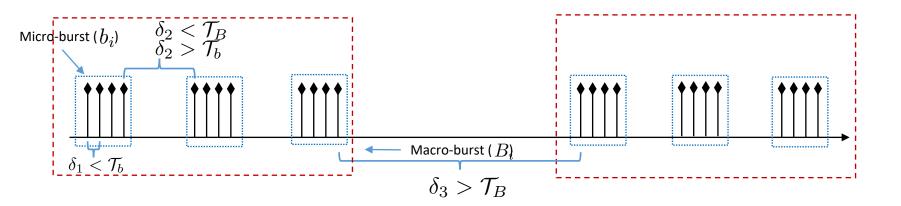
We study the following IoT applications (interference-free environment)

Sensing

- An RTOS development kit (CYW54907) collecting accelerometer readings
- Periodically collects 3920 samples (equivalent to 5880 bytes), prepares packets, and then sends them via a TCP connection

Camera

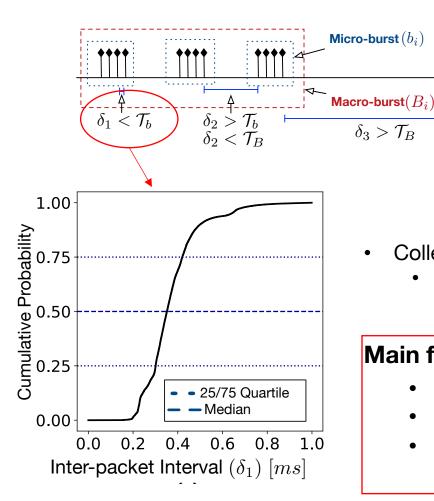
- A security camera using RPi camera module (version 2) attached to a RPi 3B+
- Captures and sends images via a TCP connection
 - Each image is processed by the H.264 codec



Video Streaming

 A YouTube video is streaming on an Amazon Echo Show device

 To build a generalized traffic analysis framework, we consider three interpacket intervals

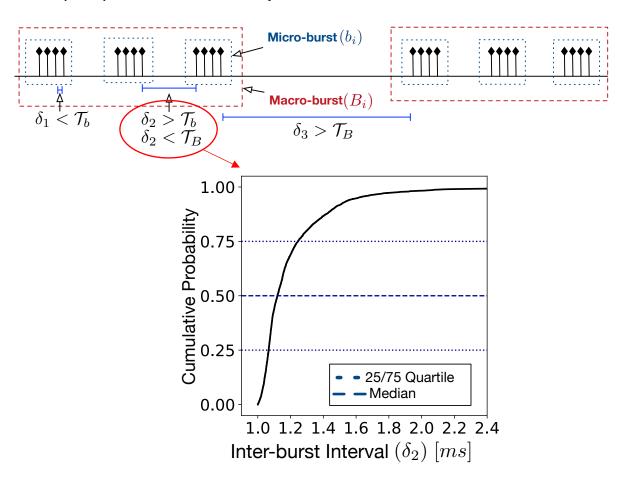


Traffic components:

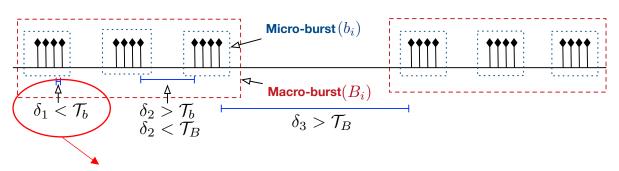
- Macro-burst —— Power save mechanism employed
- Micro-burst Contention or traffic generation pattern
- Packets within a Micro-burst—— Packet preparation delay or Transmission parameters of 802.11

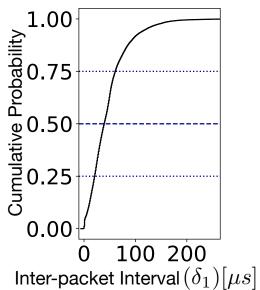
Sensing

• Within a micro-burst, the mean interval between packets (δ_1) is about 400 µs

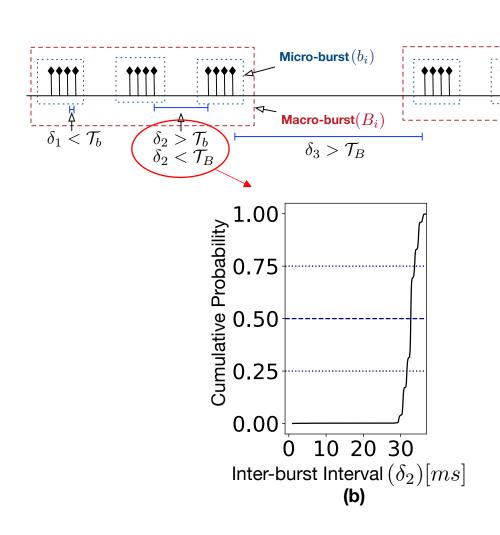

- Collecting 3920 samples from accelerometer
 - Equivalent to (3920 * 12 bits)/8 = 5880 bytes

Main factors affecting inter-packet interval

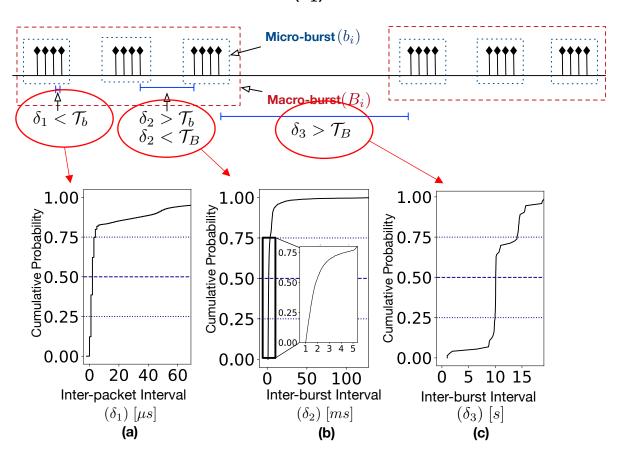

- Prepare multiple packets
- Transfer packets from driver to NIC
- Send multiple packets backoff and channel access contention


Sensing

- The interval between micro-bursts is due to collecting 3920 samples
 - Communication between the processor and ADC over the Serial Peripheral Interface (SPI) to collect samples


Camera

- The camera captures a frame
- Prepares multiple packets to send the frame


Camera

- The interval between microbursts (δ_2) is about 33 ms
- Corresponds to 30 frames per second

Video Streaming

- The mean interval between packets of a micro-burst (δ_3) is 9 us
- The mean interval between micro-bursts (δ_2) is 2 ms
- The mean interval between macro-bursts (δ_1) is 10 seconds

- In sum, these experiments show that traffic characterization can be used for:
 - Allocating TWT service periods based on each STA's demands
 - Utilizing inter-packet intervals by other STA to enhance throughput
 - Enhancing packet aggregation performance

- Channel Utilization (CU) estimation
- Buffer Status Report (BSR)
- Packet sniffing

Do not provide high accuracy

Gradual TWT adjustment

- High communication overhead
- Cannot quickly address traffic variations

Assumptions about STAs

- Unrealistic
- Impossible

Traffic classification (e.g., using machine learning)

- High processing overhead
- Difficult implementation

Channel Utilization (CU)

• Channel Utilization (CU) is defined as $t_{activity}/t_{total}$

One Measurement Period

- CU values can be collected from the driver via various methods such as the 'proc' file system (procfs) in Linux
- The information provided by CU is cumulative
 - It cannot be used to characterize per-STA traffic patterns

Packet Sniffing

- Using one or more additional NICs to sniff packets
- Shortcomings:
 - The timestamps of sniffed packets do not represent the actual packet generation instances by STAs
 - Additional hardware (NIC) and processing resources
 - Mismatch between sniffed packets and those exchanged by the AP's main NIC

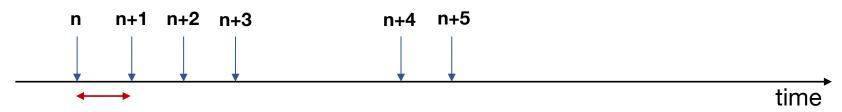
Buffer Status Report (BSR)

- Introduced in 802.11ax (a.k.a., WiFi 6)
- Queue Size All (QSA) field of BSR conveys the cumulative amount of data in all queues
- BSR also conveys information such as the Queue size of the highestpriority Access Category (AC)

Buffer Status Report (BSR)

Shortcomings of using BSR for traffic characterization:

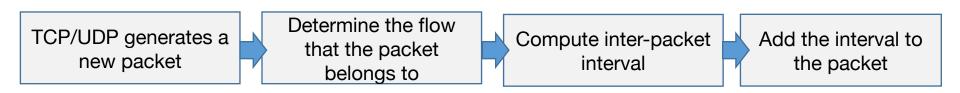
- We selected several COTS 802.11ax NICs and empirically analyzed them
 - Intel AX200 and Realtek RTL8852A transmit BSR intermittently
 - Based on the amount of traffic queued
 - In contrast, Compex WLT639 includes a BSR in every packet
- None of the evaluated AP and STAs support requesting or generating BSR manually
- Also, we observed that for those 802.11ax devices that include BSR in each packet, all the MPDUs included in an A-MPDU report the same value
 - Even though the payloads they are carrying have been generated at different time instances.
 - The reported value is the state of queues before the transmission of A-MPDU


Overview

- Basic idea:
 - Keep track of packet generation time instances in each STA
 - Convey to AP
 - The AP can construct the traffic pattern of the STA
- This method is unaffected by packet preparation delay, channel access contention, interference, and packet loss
- Each STA modifies packets in their protocol stack's data-path
 - Adds timing information
 - Similar to in-band network telemetry (INT)

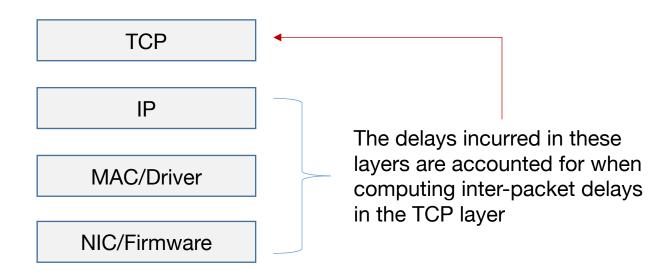
Overview

- Instead of including an absolute timestamp in each packet, we include only a 2-byte value
- This value encodes the the difference between the generation time of the current packet and the previous packet of the same flow



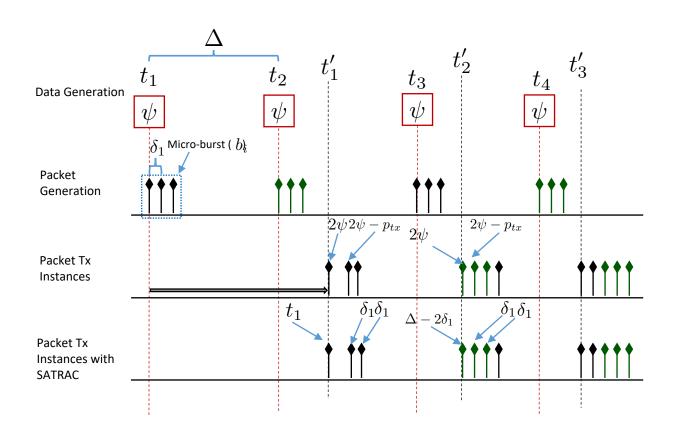
- The interval between each two consecutive packets generation instances is encoded as a 2-byte value and added to the second packet
- Here, the interval between n+1 and n is included in packet n+1

Overview


 Each STA computes a unique 5-tuple hash value for each flow and keeps track of the timestamp of the last generated packet

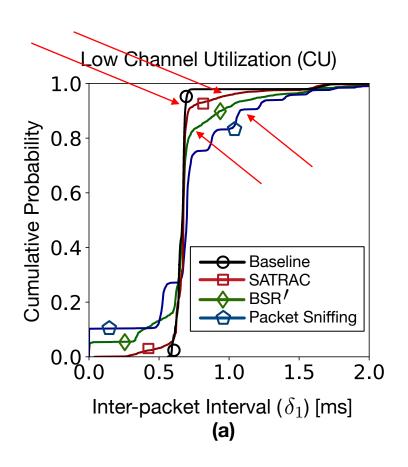
- Where is this information added to?
 - TCP Options field, or
 - IPv4 Options field, or
 - IPv6 Next Header

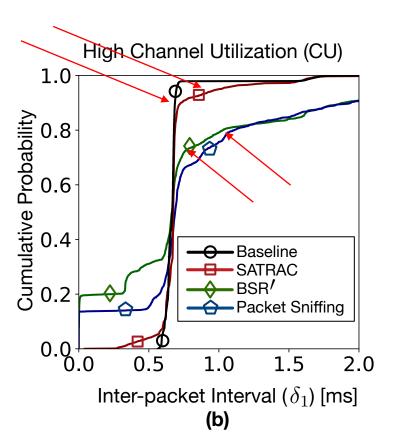
Packet Preparation Delays


- Add timing information in the TCP layer when the TCP protocol prepares the TCP header
- To account for packet preparation delay, we add the delays caused by the IP layer, MAC layer, and driver-to-NIC handoff to the timing information

eBPF

- We leverage eBPF and build an application-agnostic middleware for setting the TCP Options field
- Since APs run Linux, a similar eBPF program extracts and parses the values included in TCP Options field of packets received from STA to characterize uplink traffic

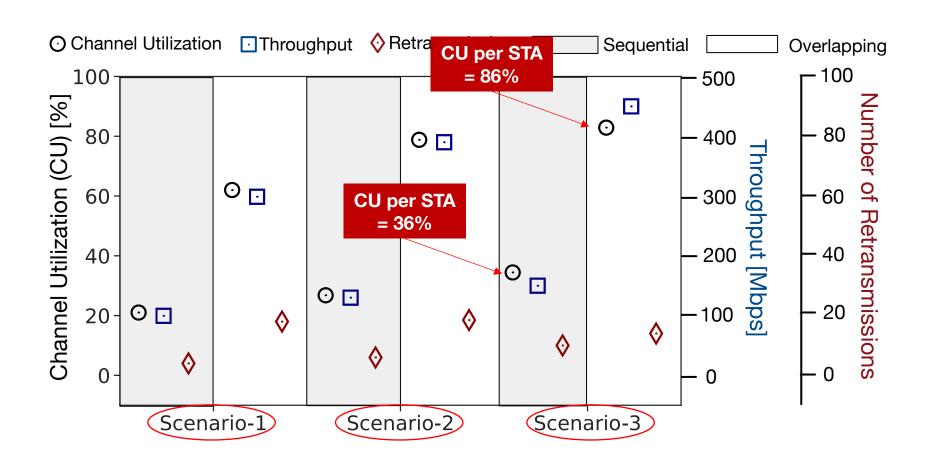

Comparison of Traffic Characterization Methods



Empirical Comparison

- An 802.11ax (WiFi 6) testbed: one AP and multiple STAs
- We consider two CU scenarios
 - Low: the measured CU is around 15%
 - **High**: the measured CU is around 70%
- A STA runs a program that generates and sends a 1400-byte message every 500 us
 - Voice Access Category no packet aggregation
- To establish a baseline for accuracy comparison, we denote the actual data generation instances by the application as <u>baseline</u>

Empirical Evaluation of Timing Accuracy



Empirical Comparison of TWT Allocation Efficiency

- An 802.11ax (Wi-Fi 6) testbed: one AP and multiple STAs
- Sequential Allocation of TWT Service Period
 - Similar to the existing works, we assign non-overlapping service periods to the STA
- Overlapping Allocation of TWT Service Periods using SATRAC
 - We enable the AP to characterize traffic using SATRACT
 - Determine the possibility of higher channel utilization, and assign overlapping service periods to the STA

Empirical Comparison of TWT Allocation Efficiency

Conclusion

- To meet applications' demands while enhancing energy efficiency and throughput
 - Traffic characterization is required for the allocation of TWT service periods to IoT STAs
 - 1. We empirically studied traffic burstiness and the causes of inter-packet delays in WiFi-based IoT networks
 - 2. Analyzed the shortcomings of existing traffic characterization methods
 - 3. Introduced a novel approach based on packet modification in STAs' protocol stack
 - 4. Empirically measure the accuracy of the proposed method and analyzed its effect on TWT allocation
- Not only for TWT allocation, but the proposed method can also be used for Resource Units (RU) allocation

Contact Details

Jaykumar Sheth jsheth@alumni.scu.edu

Vikram Ramanna vramannna@scu.edu

Behnam Dezfouli bdezfouli@scu.edu