
SP must be 8-byte aligned on entry to AAPCS-conforming functions

ARM IHI 0046B Copyright © 2006, 2007, 2009 ARM Limited. All rights reserved. Page 1 of 7

ABI for the ARM® Architecture
Advisory Note – SP must be 8-

byte aligned on entry to AAPCS-
conforming functions

Document number: ARM IHI 0046B, current through ABI release 2.10
Date of Issue: 20th March 2006, reissued 24th November 2015

Abstract
This advisory note discusses a hitherto little noticed consequence of the ABI requirement for natural alignment
for primitive data of size 1, 2, 4, and 8 bytes, and its implications for:

 Low level exception-handling code running on:

- A and R profiles of version 7 of the ARM architecture.

- Versions of the ARM architecture earlier than version 7.

 Code that might be entered directly through an ARMV7M exception vector.

 Tool chains that generate such code.

Keywords
ABI for the ARM architecture, advisory note

Proprietary notice
ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited. The ARM logo
is a trademark of ARM Limited. ARM9, ARM926EJ-S, ARM946E-S, ARM1136J-S, ARM1156T2F-S, ARM1176JZ-
S, Cortex, and Neon are trademarks of ARM Limited. All other products or services mentioned herein may be
trademarks of their respective owners.

SP must be 8-byte aligned on entry to AAPCS-conforming functions

ARM IHI 0046B Copyright © 2006, 2007, 2009 ARM Limited. All rights reserved. Page 2 of 7

Contents

1 ABOUT THIS DOCUMENT 3

1.1 Change control 3
1.1.1 Current status and anticipated changes 3
1.1.2 Change history 3

1.2 References 3

1.3 Terms and abbreviations 4

2 THE PROBLEM AND HOW TO AVOID IT 5

2.1 The need to align SP to a multiple of 8 at conforming call sites 5

2.2 Possible consequences of SP misalignment 5
2.2.1 Alignment fault or UNPREDICTABLE behavior 5
2.2.2 Application failure 5

2.3 Corrective steps 6
2.3.1 Operating systems and run-time environments 6
2.3.2 Software development tools 6

2.3.2.1 Option to align SP on entry to designated functions 6
2.3.2.2 Safe option not to align SP 6
2.3.2.3 Repair of va_start and va_arg 7

2.3.3 Special considerations for Cortex M-based applications 7

SP must be 8-byte aligned on entry to AAPCS-conforming functions

ARM IHI 0046B Copyright © 2006, 2007, 2009 ARM Limited. All rights reserved. Page 3 of 7

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status and anticipated changes
This document has been released publicly.

1.1.2 Change history
Issue Date By Change

0.01 28th February 2006 LS DRAFT for internal comment.

0.1 3rd March 2006 LS CONFIDENTIAL version for limited release.

1.0 20th March 2006 LS Open access version.

A 25th October 2007 LS Document renumbered (formerly GENC-007024 v1.0).

B 23rd October 2009 LS Updated the reference to the ARM ARM; reviewed use of terminology.

1.2 References
This document refers to the following documents.

Ref Document number / External URL Title

AAPCS Available from the ARM Information Center
(http://infocenter.arm.com/) (navigate to the ARM
Software development tools section, ABI for the
ARM Architecture subsection) or search
www.arm.com for AAPCS.

Procedure Call Standard for the ARM Architecture

ARM ARM (From http://infocenter.arm.com/help/index.jsp, via
links ARM architecture, Reference manuals)

(Registration required)

ARM DDI 0406: ARM Architecture Reference
Manual ARM v7-A and ARM v7-R edition

ARM DDI 0403C: ARMv7-M Architecture Reference
Manual

ARMv5
ARM

ARM DDI 0100E, ISBN 0 201 737191
(Also from http://infocenter.arm.com/help/index.jsp
as the ARMv5 Architecture Reference Manual)

The ARM Architecture Reference Manual, 2nd edition,
edited by David Seal, published by Addison-Wesley.

http://infocenter.arm.com/
http://www.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp

SP must be 8-byte aligned on entry to AAPCS-conforming functions

ARM IHI 0046B Copyright © 2006, 2007, 2009 ARM Limited. All rights reserved. Page 4 of 7

1.3 Terms and abbreviations
This advisory note uses the following terms and abbreviations.

Term Meaning

AAPCS Procedure Call Standard for the ARM Architecture

ABI Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the ARM Architecture.

2. A particular aspect of the specifications to which independently produced relocatable
files must conform in order to be statically linkable and executable. For example, the
C++ ABI for the ARM Architecture, the Run-time ABI for the ARM Architecture, the C
Library ABI for the ARM Architecture.

Q-o-I Quality of Implementation – a quality, behavior, functionality, or mechanism not required by
this standard, but which might be provided by systems conforming to it. Q-o-I is often used
to describe the tool-chain-specific means by which a standard requirement is met.

SP must be 8-byte aligned on entry to AAPCS-conforming functions

ARM IHI 0046B Copyright © 2006, 2007, 2009 ARM Limited. All rights reserved. Page 5 of 7

2 THE PROBLEM AND HOW TO AVOID IT

2.1 The need to align SP to a multiple of 8 at conforming call sites
The Procedure Call Standard for the ARM Architecture [AAPCS] requires primitive data types to be naturally
aligned according to their sizes (for size = 1, 2, 4, 8 bytes). Doing otherwise creates more problems than it solves.

In return for preserving the natural alignment of data, conforming code is permitted to rely on that alignment. To
support aligning data allocated on the stack, the stack pointer (SP) is required to be 8-byte aligned on entry to a
conforming function. In practice this requirement is met if:

 At each call site, the current size of the calling function’s stack frame is a multiple of 8 bytes.

This places an obligation on compilers and assembly language programmers.

 SP is a multiple of 8 when control first enters a program.

This places an obligation on authors of low level OS, RTOS, and runtime library code to align SP at all points
at which control first enters a body of (AAPCS-conforming) code.

In turn, this requires the value of SP to be aligned to 0 modulo 8:

 By exception handlers, before calling AAPCS-conforming code.
 By OS/RTOS/run-time system code, before giving control to an application.

2.2 Possible consequences of SP misalignment
The possible consequences of not aligning SP properly depend on the architecture version and the characteristics
of the code (and, hence on the behavior of the code generator). Possible consequences include:

 Alignment fault or UNPREDICTABLE behavior.

 Application failure.

2.2.1 Alignment fault or UNPREDICTABLE behavior
For architecture ARMV5TE (in particular, for Intel XScale processors) and architecture ARMV6 with CP15 register
1 A and U bits [ARM ARM, §G3.1, Unaligned access support] configured to emulate ARMV5TE:

 An LDRD or STRD using a stack address presumed by a code generator to be 0 modulo 8, but actually 4
modulo 8, could cause an Alignment Fault or show UNPREDICTABLE behavior.

This failure cannot occur in code generated for architectures earlier than ARMV5TE (no LDRD or STRD) or on
processors conforming to architecture ARMV7 or later (which cannot cause an alignment fault when the effective
address of an LDRD or STRD is 4 modulo 8).

2.2.2 Application failure
An application failure might occur if SP is not 0 modulo 8 on entry to each AAPCS-conforming function and the
program contains an interface such that:

 Code on one side of the interface evaluates the presumed alignment of an 8-byte aligned, stack allocated
datum at compile time.

 Code on the other side of the interface evaluates the actual alignment of the datum at run time.

SP must be 8-byte aligned on entry to AAPCS-conforming functions

ARM IHI 0046B Copyright © 2006, 2007, 2009 ARM Limited. All rights reserved. Page 6 of 7

The interface defined by the C library’s stdarg.h macros va_start and va_arg gives us a concrete example of how
an application might fail.

 The compiler evaluates the presumed alignment of a parameter value passed to a variadic function at compile
time. This determines whether to insert an additional padding word before an 8-byte aligned parameter value.
Parameter values beyond the fourth word are passed to the callee via the stack and a variadic callee often
pushes earlier parameter values onto the stack (to support uniform treatment of va_list types).

 Code generated by the va_arg macro evaluates the corresponding actual alignment at run time. This
determines whether or not to skip a padding word preceding an 8-byte aligned parameter value.

A more cautious than usual implementation of va_start and va_arg can avoid this problem and operate correctly
whether SP is 0 or 4 modulo 8 (§2.3.2.3).

In general, a compiler cannot detect whether similar code exists in an application. An application
containing such code can fail if SP is not properly aligned.

2.3 Corrective steps

2.3.1 Operating systems and run-time environments
As stated in §2.1, operating systems and other run-time environments must ensure that SP is a multiple of
8 before calling AAPCS-conforming code. Alternatively the system must ensure that:

 The code it calls makes no use of 8-byte aligned, stack allocated data (see §2.3.2.2).

For example, an operating system might require that no 8-byte types be manipulated by exception handling
code, and software development tools for that OS might support this proscription (§2.3.2.2).

 If the architecture is V5TE or V6 configured to give V5TE alignment behavior, the compiler used to build the
code must not have generated LDRD/STRD in place of a pair of LDR/STR to consecutive locations.

This requirement extends to operating systems and run-time code for all architecture versions prior to
ARMV7 and to the A, R and M architecture profiles thereafter. Special considerations associated with
ARMV7M are discussed in §2.3.3.

2.3.2 Software development tools

2.3.2.1 Option to align SP on entry to designated functions
To support legacy execution environments in which SP is not properly aligned, compilers should offer an option to
generate code to align SP to a multiple of 8 on entry to designated functions.

The means by which a function might be designated for special treatment is a quality of implementation (Q-o-I).
Plausible means include the use of pseudo storage class specifiers like __irq or __declspec(irq), or attributes like
__attribute__((irq)), in a function’s declaration.

2.3.2.2 Safe option not to align SP
To support safely not using the SP alignment option, compilers should offer an option (Q-o-I) to:

 Not generate LDRD/STRD.

 Fault the use of 8-byte aligned, stack allocated data.

(8-byte aligned parameters to variadic functions need not be faulted if the tool chain implements the repair
described in §2.3.2.3).

 Or, if that is too difficult, fault all uses of 8-byte data types.

SP must be 8-byte aligned on entry to AAPCS-conforming functions

ARM IHI 0046B Copyright © 2006, 2007, 2009 ARM Limited. All rights reserved. Page 7 of 7

A program that makes no us of LDRD/STRD cannot suffer the failure described in §2.2.1.

A program that makes no use of 8-byte aligned, stack allocated data cannot suffer the failure described in §2.2.2.
And a program that makes no use 8-byte types certainly makes no use of 8-byte aligned, stack allocated data.

Assembly language programmers must, of course, certify the safety of their own code.

2.3.2.3 Repair of va_start and va_arg
To avoid injecting a fault into their users’ programs in execution environments that do not correctly align SP,
software development tools should offer an option (Q-o-I) to repair the C library’s stdarg.h macros va_start and
va_arg, as follows.

(We assume va_start expands to a call to the intrinsic function __va_start, and va_arg to a call to __va_arg. It is
already very difficult – or impossible – to implement va_start and va_arg in a way that evaluates each argument
only once – as required by the C standard – without the assistance of at least one intrinsic function).

__va_start should return a pointer value ap with bit[1] set if SP was 4 modulo 8 on entry to the containing function.

 The function containing the call to __va_start has the variadic parameter list allocated in the stack frame.

 Because arguments are guaranteed to be 4-byte aligned (by C’s argument promotion rules and the AAPCS
requirement that SP be 4-byte aligned at all instants), bits[1:0] of ap are otherwise 0.

 Coding the SP-misaligned case as 1 produces a __va_start compatible with an ordinary (not repaired)
__va_arg in conforming environments in which SP is 0 modulo 8 at function entry.

If T is a data type requiring 8-byte alignment, __va_arg(ap, T) must increment the pointer it calculates by 4 bytes
(to skip a padding word inserted at compile time) if:

 (bit[1] of ap is 0 and bit[2] of ap is 1) or (bit[1] of ap is 1 and bit[2] of ap is 0).

Whatever the sort of T, __va_arg(ap, T) must clear bit 1 of the pointer it calculates before dereferencing it.

 This implementation of __va_arg is compatible with an ordinary (not repaired) __va_start in conforming
environments in which SP is 0 modulo 8 at function entry and bit 1 of ap is always 0.

2.3.3 Special considerations for Cortex M-based applications
ARMV7M is unique in making it possible (absent the problem discussed in this advisory note) to attach an AAPCS-
conforming function directly to an exception vector.

(Under previous architecture versions and other architecture strands, some ‘glue’ code is required between an
exception vector and an AAPCS-conforming function. Usually, an OS, RTOS, or run-time system provides this
code. Considerations relating to such systems were discussed in §2.3.1).

Cortex M3 is the first implementation of ARMV7M.

 Revision 0 of Cortex M3 (CM3_r0) does not align SP to a multiple of 8 on entry to exceptions.

Users of CM3_r0 must take appropriate precautions if the correctness of their software might depend
on the alignment of stack-allocated data presumed by development tools to be 8-byte aligned.

 Revision 1 of Cortex M3 will offer a configurable option to align SP to a multiple of 8 on entry to exceptions.

 A future revision of the M profile architecture will require SP to be 8-byte aligned on entry to exceptions.

	1 About this document
	1.1 Change control
	1.1.1 Current status and anticipated changes
	1.1.2 Change history

	1.2 References
	1.3 Terms and abbreviations

	2 The Problem and How to Avoid It
	2.1 The need to align SP to a multiple of 8 at conforming call sites
	2.2 Possible consequences of SP misalignment
	2.2.1 Alignment fault or UNPREDICTABLE behavior
	2.2.2 Application failure

	2.3 Corrective steps
	2.3.1 Operating systems and run-time environments
	2.3.2 Software development tools
	2.3.2.1 Option to align SP on entry to designated functions
	2.3.2.2 Safe option not to align SP
	2.3.2.3 Repair of va_start and va_arg

	2.3.3 Special considerations for Cortex M-based applications

