

Programming Lab 11C

Implementing Division
for Q16 Fixed-Point Reals
Topics: Representation of real numbers using Q16 fixed-point.

Prerequisite Reading: Chapters 1-11
Revised: June 7, 2021

Click to download

Lab11C-Main.c

Background: Q16 division requires that the 32-bit

Q16 dividend be positioned in the middle of a 64-bit

integer and sign-extended so that the imaginary bi-

nary point will be in the middle of the resulting quo-

tient. Unfortunately, the ARM integer divide in-

structions only support a 32-bit dividend.

Writing a function for 64÷32 division normally requires a loop of 32 iter-

ations – once for every bit in the divisor. However, a loop of 16 iterations

is sufficient to convert the quotient of a UDIV instruction to an unsigned

Q16 quotient as shown in the adjacent pseudocode. This may be used as

the basis of a routine to produce a signed Q16 quotient from the absolute

values of its operands by handling the sign of the quotient separately.

Assignment: The main program includes a C function Q16Divide that

uses this approach to implement Q16 division. You can compile and run

the program as is without writing any assembly. However, your task is to

create a faster version of Q16Divide in assembly using the C version to

guide your implementation. The original C version has been defined as

“weak”, so that the linker will automatically replace it in the executable

image by the one you create in assembly; there is no need to remove the

C version.

Since the objective of implementing the function in assembly is speed,

you are to avoid branch instructions. Use the .rept and .endr direc-

tives to “unroll” the loop, use bitwise operations to change the sign of a

value, and implement simple decisions using IT instructions instead of a

CMP and conditional branch wherever possible.

The main program repeatedly calls your Q16Divide function with ran-

domly selected dividends and divisors and compares the quotient and ex-

ecution time to that of a reference version written entirely in C1. Updates

to the display will pause on any error or while the blue push-button is

pressed. Errors are displayed as white text on a red background.

1 The C version sign-extends the dividend to 64 bits, shifts it left by 16 bits, and then divides by the 32-bit divisor. C promotes the

divisor to a 64-bit integer to match the data type of the dividend, which results in a library function call to perform 64÷64 division.

 repeat 16 times:

 {

 quotient ← 2 × quotient
 remainder ← 2 × remainder

 if (remainder ≥ divisor)

 {

 remainder ← remainder − divisor

 quotient ← quotient + 1

 }

 }

63 48 47 16 15 0
sign extension Q16 dividend zeroes

 ÷ Q16 divisor

 Q16 quotient

32 bits

16 bits

http://www.engr.scu.edu/~dlewis/book3/labs/Lab11C-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab11C-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab11C-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab11C-Main.c

