ARM Assembly
‘it Q16 Fixed-Pt Reciprocal

5th edition

Lab11D-Main.c

Programming Lab 11D [Click to download }

Topics: Q16 fixed-point arithmetic, reciprocal division, Newton’s method to compute 1/d.
Prerequisite Reading: Chapters 1-11
o — Revised: March 5, 2021

\ ¢

Background: * Even though Q16 fixed-point reals are actually 32-bit integers, implementing a fast Q16 fixed-point division
on the Cortex-M4 processor is somewhat of a challenge. It cannot be accomplished by simply using the integer divide
instruction because the 32-bit Q16 dividend must be sign-extended to 64-bits and shifted left 16 bits so that the quotient’s
imaginary binary point will be in the middle of its 32-bit representation. Unfortunately, the SDIV instruction only supports
a 32-bit dividend. Emulation functions based on the common restoring, non-restoring or SRT algorithms tend to be slow,
requiring loops with as many as 32 iterations — one for every bit in the divisor. However, division may also be implemented
by multiplying the dividend by the reciprocal of the divisor. When the divisor d is a constant, the reciprocal 1/d may be
precomputed by hand and inserted into the source code. But when d is a variable, the reciprocal can only be computed
during execution. Fortunately, this may be done rather efficiently using Newton’s method as described in the footnote
reference’.

Assignment: The main program uses Newton’s method to compute and plot the reciprocal for divisors in the range —1 <
d < +1. The function Reciprocal listed below assumes the divisor is positive; for negative divisors, the program simply
plots the value of —(1/|d|). Rather than being implemented for maximum speed, the code has been partitioned into several
small functions to simplify your task, which is to replace each of the following C functions with assembly.

typedef uint32_t Q16 ;

Q16 Normalize(Q16 divisor, int zeros) ; // normalizes the divisor to ©0.5-1.0
Q16 Denormalize(Ql6 estimate, int zeros) ; // denormalizes Normalized(estimate)
Q16 NormalizedEstimate(Ql6 divisor) ; // initial estimate of 1/Normalized(d)
Q16 InitialEstimate(Q16 divisor) ; // initial estimate of 1/d

Q16 Reciprocal(Ql6 divisor) ; // computes reciprocal for divisor >= ©

Note: These functions use a macro called “FIXED” defined in the main program.
This is not a function; do not implement it as a function in assembly. Each place
where the macro is used, determine the constant it produces using a calculator
and insert that constant into your code.

APM Assembly

for Emhedded Applications

The main program includes C versions of these functions. You can compile and +10
run the program as is without writing any assembly. However, your task is to
create faster versions of these functions in assembly using the C versions to
guide your implementation. The original C versions have been defined as +3
“weak”, so that the linker will automatically replace them in the executable im-
age by those you create in assembly; there is no need to remove the C versions. |-1.0 -0.5

These five functions make use of two other functions that are not needed in +0.5 +1.0
assembly: (1) the call to LeadingZeros may be replaced by a single CLZ in-
struction, and (2) every call to Q16Product may be replaced by a simple -5
SMULL, LSR, ORR instruction sequence. These are also weak functions, which
causes the linker to eliminate them from the executable if not called.

Suggestion: Code and test your replacement functions one at a time in the or- -10

der shown above. If your code is correct, the display should look like the fig-
ure shown on the right.

Lakh 11D: 0lg Eeciprocal

! https://en.wikipedia.org/wiki/Division algorithm

http://www.engr.scu.edu/~dlewis/book3/labs/Lab11D-Main.c
https://en.wikipedia.org/wiki/Division_algorithm
http://www.engr.scu.edu/~dlewis/book3/labs/Lab11D-Main.c

