
 

Programming Lab 2B 

Interpreting Binary 
Topics: Conversion from binary to octal, hex, decimal, 2’s complement and signed magnitude. 

Prerequisite Reading: Chapters 1-2 & Appendix B 
Revised: January 3, 2022 

 

 

 
Click to download 

Lab2B-Main.c 

Background: This lab exercises your understanding of binary number systems. Since you have not been introduced to 

assembly language yet, this assignment is to be coded entirely in C. Successful completion of this assignment will also 

reinforce your familiarity with the workspace environment. 

Assignment: The main program will compile and run without writing any code. However, your task is to create equivalent 

replacements in C for the functions shown below that are found in the main program without using any library functions. 

The original versions have been defined as “weak” so that the linker will automatically replace them in the executable image 

by those you create; you do not need to remove the versions. This allows you to create and test your functions one at a time. 

1. Use “make cleanall” to remove any existing files in the src and obj subdirectories of your workspace folder.  

2. Click on the link above to download the C main program and store it in the src subdirectory of your workspace folder. 

3. Use your favorite text editor (not a word processor) to create a second C source code file in the src subdirectory that 

implements the five functions shown below; you do not need to create a function for 1’s complement. Do not use 

filenames containing spaces or filename extensions with uppercase letters. Compile the program using “make”. 

void Bits2OctalString(uint8_t bits, char string[]) ; // radix 8  
void Bits2UnsignedString(uint8_t bits, char string[]) ; // radix 10 
void Bits2HexString(uint8_t bits, char string[]) ;  // radix 16 

void Bits2TwosCompString(uint8_t bits, char string[]) ; 
void Bits2SignMagString(uint8_t bits, char string[]) ; 

The program uses these functions to display various numeric interpretations of the displayed binary pattern, which may be 

adjusted using the slider and decrement (-) and increment (+) buttons. If there is an error in one of your functions, the 

corresponding value will be displayed in red.  

Hint: For all unsigned conversions, use division and remainders to extract one 

integer for each radix digit in the unsigned number bits and convert each such 

integer to a corresponding character using a table lookup as in: 

static const char hex[] = "0123456789ABCDEF" ; 

unsigned digit = ... ; // a number from 0 to 15 

char ch = hex[digit] ; // one character of string 

Store the characters into the array string, terminated with a NUL character 

('\0'). Inside Bits2SignMagString and Bits2TwosCompString, com-

pute the sign and magnitude separately and call Bits2UnsignedString to 

create the digits. 

Alternative: Create one general-purpose function to convert an unsigned mag-

nitude into a string of digits in a specified radix, and then use this function to 

handle the magnitude part of each of the assigned functions.  

Remember: There are two representations of zero (+0 and -0) in signed magni-

tude and 1’s complement. 

http://www.engr.scu.edu/~dlewis/book3/labs/Lab2B-Main.c

