

Programming Lab 4B

Address Alignment
Topics: Address alignment, execution time, and the .REPT and .ENDR directives.

Prerequisite Reading: Chapters 1-4
Revised: November 6, 2021

Click to download

Lab4B-Main.c

Background1: Logically, we think of memory as a collection of bytes, each

having its own address, with larger operands stored as a contiguous group of

bytes. However, the memory of a 32-bit processor is physically implemented

as words of four bytes each to optimize performance, which allows a native

32-bit operand to be read or written in a single memory cycle. Retrieving an

8-bit operand simply requires the processor to read a full 32-bit physical word

from memory and then select the appropriate byte to use. When writing to

memory, the processor selectively enables or disables each of the four data

bus bytes depending on the size of the operand.

Address alignment can have an adverse effect on execution time. To read or

write a 32-bit operand in a single memory cycle requires that its location start

at an address that is a multiple of four, such as the word shown in green in the

figure. (A similar restriction applies to 16-bit operands.) Otherwise, the op-

erand will be split across two physical words (e.g., the example shown in red), which forces the processor to perform additional memory

cycles to transfer all 32-bits. Thus, to optimize performance, compilers always place 16, 32 and 64-bit operands at locations whose

addresses are multiples of two, four and four respectively.

Assignment: The main program may be compiled and executed without writing any

assembly. However, your task is to create faster assembly language replacements for

the four C functions shown below using their C versions to guide your implementation.

Each function copies 1000 bytes of data between source and destination regions of

memory. The original C functions are defined as “weak”, so that the linker will auto-

matically replace them in the executable image by those you create in assembly; you do

not need to remove the C version.

The objective is that functions OffBy1, OffBy2 and OffBy3 are to be optimized for

source and destination regions that are not word-aligned as implied by their names. The

main program compares their execution time to that of calling OffBy0 with the same

unaligned source and destination addresses. The latter should always be slower.

You may assume that the source and destination do not overlap. To minimize execution

time, your assembly versions should copy as much data as possible using a sequence of

LDR/STR instructions with word-aligned addresses and any other bytes as necessary

using LDRB/STRB instructions. To avoid loops, use the .REPT and .ENDR directives

similar to what is shown in Listing 4-1 of the textbook to create repeated sequences of

LDR/STR pairs (and LDRB/STRB pairs as needed) with post-indexed addressing as de-

scribed in Table 4-6.

void OffBy0(void *dst, const void *src) ; // These functions each copy 1000 bytes of data. Each should

void OffBy1(void *dst, const void *src) ; // be optimized for source and destination regions that begin

void OffBy2(void *dst, const void *src) ; // at addresses that are 0, 1, 2 or 3 bytes beyond a word-aligned

void OffBy3(void *dst, const void *src) ; // location as indicated by the digit in their function name.

If your code works correctly, the display should look similar to the image shown at right with each function's execution time shown in

clock cycles at the top of each bar graph. (Your numbers may differ, and the bar graph of an incorrect copy will be displayed in solid

red.)

1 https://en.wikipedia.org/wiki/Data_structure_alignment

http://www.engr.scu.edu/~dlewis/book3/labs/Lab4B-Main.c
https://en.wikipedia.org/wiki/Data_structure_alignment

