

Programming Lab 6A

Spinning Cube
Topics: Two-dimensional subscripting, nested loops,
calling C functions from assembly

Prerequisite Reading: Chapters 1-6
Revised: June 22, 2021

Click to download

Lab6A-Main.c

Background1: In 3D computer graphics, object surfaces are modeled as a col-

lection of triangles. (E.g., each face of a cube may be modeled using two trian-

gles.) Each vertex of a triangle is represented as a vector 𝑉 = [𝑉𝑥 , 𝑉𝑦, 𝑉𝑧], where

𝑉𝑥, 𝑉𝑦 and 𝑉𝑧 are the usual Cartesian coordinates in 3-space. Linear algebra and

matrix multiplication are used to modify the position of vertices and thus the

position and orientation of objects. For example, multiplying matrix 𝑀𝑥 (given

below) times vector 𝑉 creates a new vector 𝑉′ that corresponds to rotating the

position of the vertex represented by vector 𝑉 around the 𝑥-axis by 𝜃 radians:

𝑉′ = [

𝑉𝑥
′

𝑉𝑦
′

𝑉𝑧
′

] = 𝑀𝑥 × 𝑉 = [
1.0 0.0 0.0
0.0 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃
0.0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] × [

𝑉𝑥

𝑉𝑦

𝑉𝑧

]

The product of two 3x3 matrices is another 3x3 matrix. Given two matrices 𝑀𝑥

and 𝑀𝑦 that rotate vertices around the x and 𝑦-axis respectively, the product

𝑀𝑥𝑦 = 𝑀𝑥𝑀𝑦 is a single matrix that combines both rotations, where the value

in row r, column c of 𝑀𝑥𝑦 is given by:

𝑀𝑟,𝑐
𝑥𝑦

= ∑ 𝑀𝑟,𝑘
𝑥 × 𝑀𝑘,𝑐

𝑦

𝑘=2

𝑘=0

Assignment: The main program will compile and run without writing any assembly. However, your task is to create an

equivalent replacement in assembly language for function MatrixMultiply found in the C main program. The original C

version has been defined as “weak” so that the linker will automatically replace it in the executable image by the one you

create in assembly; you do not need to remove the C version.

void MatrixMultiply(int32_t A[3][3], int32_t B[3][3], int32_t C[3][3]) ;

Function MatrixMultiply implements matrix multiplication based on the following pseudo-code:

for 𝑟𝑜𝑤 ← 0 to 2 do:
for 𝑐𝑜𝑙 ← 0 to 2 do:

set 𝐴𝑟𝑜𝑤,𝑐𝑜𝑙 ← 0
for k ← 0 to 2 do:

𝐴𝑟𝑜𝑤,𝑐𝑜𝑙 ← MultAndAdd(𝐴𝑟𝑜𝑤,𝑐𝑜𝑙 , 𝐵𝑟𝑜𝑤,𝑘 , 𝐶𝑘,𝑐𝑜𝑙)

For example: 𝐴0,1 is the sum of products of corresponding

elements from row 0 of matrix B and column 1 of matrix C:

[

𝐴0,0 𝑨𝟎,𝟏 𝐴0,2

𝐴1,0 𝐴1,1 𝐴1,2

𝐴2,0 𝐴2,1 𝐴2,2

] = [

𝑩𝟎,𝟎 𝑩𝟎,𝟏 𝑩𝟎,𝟐

𝐵1,0 𝐵1,1 𝐵1,2

𝐵2,0 𝐵2,1 𝐵2,2

] × [

𝐶0,0 𝑪𝟎,𝟏 𝐶0,2

𝐶1,0 𝑪𝟏,𝟏 𝐶1,2

𝐶2,0 𝑪𝟐,𝟏 𝐶2,2

]

Test your implementation of the MatrixMultiply function using the C main program. Note that function MatrixMul-
tiply should call function MultAndAdd that is implemented in the C source code file2. If your code is correct, the display

should display a rapidly spinning cube like the image above. Use the blue pushbutton to pause or the slider to change the

speed. Any errors detected in your function will be displayed as white text on a red background.

1 https://en.wikipedia.org/wiki/Transformation_matrix
2 IMPORTANT: Don’t replace function MultAndAdd with integer multiply and add instructions; we’ve hidden the fact that it actually
uses floating-point to do arithmetic. Just code your solution assuming that the arrays hold 32-bit integers.

http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c
https://en.wikipedia.org/wiki/Transformation_matrix
http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c

