ARM Assembly
for Embedded

Applcations Spinning Cube

sth edition Topics: Two-dimensional subscripting, nested loops,
calling C functions from assembly

Programming l_ab 6A [Click to download]

Lab6A-Main.c

Prerequisite Reading: Chapters 1-6
Revised: June 22, 2021

Background': In 3D computer graphics, object surfaces are modeled as a col-
lection of triangles. (E.g., each face of a cube may be modeled using two trian-
gles.) Each vertex of a triangle is represented as a vector V = [V, V,, V], where
V.., V,, and 1, are the usual Cartesian coordinates in 3-space. Linear algebra and
matrix multiplication are used to modify the position of vertices and thus the
position and orientation of objects. For example, multiplying matrix M* (given
below) times vector V creates a new vector V' that corresponds to rotating the
position of the vertex represented by vector IV around the x-axis by 8 radians:

ABM Assembly
for Embedded Applications

|4 1.0 0.0 0.0 Vs
V= |V =M**xV =100 cos® -—sind|x|V
74 0.0 sinf cosb /4

The product of two 3x3 matrices is another 3x3 matrix. Given two matrices M*
and M7 that rotate vertices around the x and y-axis respectively, the product
M*Y = M* MY is a single matrix that combines both rotations, where the value
in row r, column c of M*Y is given by:

Zpeed = Z0 BPM

k=2
Xy _ x y m —— "
Mr,c = Z Mr,k X Mk,c Lah gd4: Spinning Cube
k=0

Assignment: The main program will compile and run without writing any assembly. However, your task is to create an
equivalent replacement in assembly language for function MatrixMultiply found in the C main program. The original C
version has been defined as “weak” so that the linker will automatically replace it in the executable image by the one you
create in assembly; you do not need to remove the C version.

void MatrixMultiply(int32_ t A[3][3], int32_t B[3][3], int32_t C[3][3]) ;

Function MatrixMultiply implements matrix multiplication based on the following pseudo-code:

for row <« @ to 2 do: For example: A4, is the sum of products of corresponding
for col <0 to 2 do: elements from row 0 of matrix B and column 1 of matrix C:
set Arow,col <0
for kR <0 to 2 do:
Arow,col « MULtAndAdd(Arow,colr Brow,k: Ck,col)

Ao A1 Aop
Ao Ain A
Azo Az1 Az

Boo Boix Bo:z
Bioy Bix B
BZ,O Bz,l BZ,Z

= x|Co €11 Cip

Coo €21 Cyp

CO,O C0,1 CO,Z\

Test your implementation of the MatrixMultiply function using the C main program. Note that function MatrixMul-
tiply should call function MultAndAdd that is implemented in the C source code file?. If your code is correct, the display

should display a rapidly spinning cube like the image above. Use the blue pushbutton to pause or the slider to change the
speed. Any errors detected in your function will be displayed as [l ERERe] RN =T No:Te (e {oV]qlo .

! https://en.wikipedia.org/wiki/Transformation _matrix
2 IMPORTANT: Don’t replace function MultAndAdd with integer multiply and add instructions; we’ve hidden the fact that it actually
uses floating-point to do arithmetic. Just code your solution assuming that the arrays hold 32-bit integers.

http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c
https://en.wikipedia.org/wiki/Transformation_matrix
http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab6A-Main.c

