Programming Lab 7F Click to download]

Lab7F-Main.c

ARM Assembly
for Embedded

Applications Huffman Compression

sth edition Topics: Bitwise and shift instructions, bit-banding, loops.

DANIEL W LEWIS

Prerequisite Reading: Chapters 1-7

b Revised: June 22, 2021

Background?!: In this lab, you are to decode and display a message that has been compressed using Huffman I8 Let-
coding. Each character in the message is represented by a unique substring of bits. The code is optimized so [ETgIale ter
that more common characters are represented using fewer bits than less common characters. The substrings are 0 s
concatenated to form one long string. For example, the word “Mississippi” could be represented as
100110011001110110111, where substrings translate into letters according to the table on the right. 100 M
In facilitate decoding, the table is converted into a binary tree stored as an array of bytes. The byte representing | 101 p
a leaf node contains an ASCII character, while the bytes of all interior nodes contain the integer 0. The root :
node’s byte is stored at array index 0. In general, if the byte index of a node is k, the byte index of its left child | 11 !

is 2k + 1 and that of its right child is 2k + 2.

The coded message is decoded and printed using the following algorithm:

root

start: k < 0; /I Start at the root of the tree '
top: bit « GetBit ; /I Get the next bit of the coded message

k< 2xk+1+bit; /' 1f bit = 0 descend left, else descend right

byte « arraylk]; /I Get the content of the node

if byte =0 goto top; /I If it’s zero, it’s an interior node

if byte ="$" return; // If it’s a dollar sign, you’re done

DisplaylChar(byte); // Otherwise it’s a leaf node: print the character

goto start ; I/ Go back to top of tree and decode next character

Assignment: The main program will compile and run without writing any assembly. However, your task is to create equivalent replace-
ments in assembly language for the following two functions found in the C main program. The original C versions have been defined
as “weak” so that the linker will automatically replace them in the executable image by those you create in assembly; you do not need
to remove the C versions. This allows you to create and test your assembly language functions one at a time. The parameter msg is a
pointer to the bits of the coded message packed 8 per byte and array holds the binary
decoding tree. The first bit of the message is the least-significant bit of the first byte of ARM Assembly
memory pointed to by parameter msg.

for Embedded Applications

void DecodeMessage(void *msg, char array[]) ; *rranTT MESSAGE DECODED! ##tssxs

Note that function DecodeMessage must call C function DisplaylChar thatis pro- | coging in assembly teaches you

vided in the main program; do not recreate this function in assembly. Your assembly cndingltechni;iues thaTl: Y':-udwi;l
H H H . never 23arm 1 Fou only code 1n

Iangugge code will likely neeq to push and pop registers; be_ sure that the fcotal numk_)er a High Lewel Langquage (HLL).

of registers you push and pop is even so that the address held in the stack pointer remains

a multiple of eight to satisfy the data alignment requirements of compiled C code. Aszsewbly will expand your nind,
enabling ¥ou Lo create hetter

You will also need to implement a second function in assembly. Function GetBit re- | ¢@de. Faster code. Leaner code.
turns either 0 or 1, corresponding to a bit of the coded message located at position bit- | HLLz are for creating high-lewel

num (starting at position 0). algorithms. Every language iz a
tool that enhances your ahi._li;y
int GetBit(void *msg, uint32_t bitnum) ; a3 a programmer and your ability

to solwve problems. Some problems

. . P i i it- | Just can't be coded efficiently
Implement GetBit two ways: (1) use bitwise and shift operations, and (2) use Bit in & HLL. That's when you need

Banding. Test your solution using the C main program. to know how to code in assembly.

Labh 7F: Huffman Compression

! https://en.wikipedia.org/wiki/Huffman_coding

http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c
https://www.engr.scu.edu/~dlewis/book3/docs/StackAlignment.pdf
https://en.wikipedia.org/wiki/Huffman_coding
http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c

