

Programming Lab 7F

Huffman Compression
Topics: Bitwise and shift instructions, bit-banding, loops.

Prerequisite Reading: Chapters 1-7
Revised: June 22, 2021

Click to download

Lab7F-Main.c

Background1: In this lab, you are to decode and display a message that has been compressed using Huffman

coding. Each character in the message is represented by a unique substring of bits. The code is optimized so

that more common characters are represented using fewer bits than less common characters. The substrings are

concatenated to form one long string. For example, the word “Mississippi” could be represented as

100110011001110110111, where substrings translate into letters according to the table on the right.

In facilitate decoding, the table is converted into a binary tree stored as an array of bytes. The byte representing

a leaf node contains an ASCII character, while the bytes of all interior nodes contain the integer 0. The root

node’s byte is stored at array index 0. In general, if the byte index of a node is 𝑘, the byte index of its left child

is 2𝑘 + 1 and that of its right child is 2𝑘 + 2.

The coded message is decoded and printed using the following algorithm:

𝑠𝑡𝑎𝑟𝑡: 𝑘 ← 0 ; // Start at the root of the tree

𝑡𝑜𝑝: 𝑏𝑖𝑡 ← 𝐺𝑒𝑡𝐵𝑖𝑡 ; // Get the next bit of the coded message

𝑘 ← 2 × 𝑘 + 1 + 𝑏𝑖𝑡 ; // If bit = 0 descend left, else descend right

𝑏𝑦𝑡𝑒 ← 𝑎𝑟𝑟𝑎𝑦[𝑘] ; // Get the content of the node

𝑖𝑓 𝑏𝑦𝑡𝑒 = 0 𝑔𝑜𝑡𝑜 𝑡𝑜𝑝 ; // If it’s zero, it’s an interior node

𝑖𝑓 𝑏𝑦𝑡𝑒 = ′$′ 𝑟𝑒𝑡𝑢𝑟𝑛 ; // If it’s a dollar sign, you’re done

Display1Char(𝑏𝑦𝑡𝑒); // Otherwise it’s a leaf node: print the character

𝑔𝑜𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 ; // Go back to top of tree and decode next character

Assignment: The main program will compile and run without writing any assembly. However, your task is to create equivalent replace-

ments in assembly language for the following two functions found in the C main program. The original C versions have been defined

as “weak” so that the linker will automatically replace them in the executable image by those you create in assembly; you do not need

to remove the C versions. This allows you to create and test your assembly language functions one at a time. The parameter msg is a

pointer to the bits of the coded message packed 8 per byte and array holds the binary

decoding tree. The first bit of the message is the least-significant bit of the first byte of

memory pointed to by parameter msg.

void DecodeMessage(void *msg, char array[]) ;

Note that function DecodeMessage must call C function Display1Char that is pro-

vided in the main program; do not recreate this function in assembly. Your assembly

language code will likely need to push and pop registers; be sure that the total number

of registers you push and pop is even so that the address held in the stack pointer remains

a multiple of eight to satisfy the data alignment requirements of compiled C code.

You will also need to implement a second function in assembly. Function GetBit re-

turns either 0 or 1, corresponding to a bit of the coded message located at position bit-

num (starting at position 0).

int GetBit(void *msg, uint32_t bitnum) ;

Implement GetBit two ways: (1) use bitwise and shift operations, and (2) use Bit-

Banding. Test your solution using the C main program.

1 https://en.wikipedia.org/wiki/Huffman_coding

Sub-
string

Let-
ter

0 s

100 M

101 p

11 i

root

http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c
https://www.engr.scu.edu/~dlewis/book3/docs/StackAlignment.pdf
https://en.wikipedia.org/wiki/Huffman_coding
http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab7F-Main.c

