

Programming Lab 7H Contolling LEDs

Topics: Bit manipulation, shift instructions, bitfields, bit-banding.

Prerequisite Reading: Chapters 1-7 Revised: May 2, 2022

*Background*¹: There are two user-programmable LEDs on our board –red and green. They are connected to two of the 16 pins of an I/O device that is controlled by a set of 32-bit I/O ports memory-mapped to fixed locations in the address space:

GPIOC_MODER (Address 40021800₁₆; read/write): Used to configure each pin to one of four modes.

31 30 29 28 27 26 2	25 24 23 22 21 20	19 18 17 16 15	14 13 12 11 10	9876	5 4 3 2	1 0
MODER1 5 MODER1 4 MODER1 3	MODER1 2 MODER1 1 MODER1 0	MODER9 MODER8 MODER7	MODER6 MODER5	MODER4 MODER3	MODER2 MODER1	MØDERØ

GPIOC_ODR (Address 40021814₁₆; read/write): Used to turn an LED on or off by writing 1 or 0 to the corresponding bit.

31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved		ODR15	ODR14	ODR13	ODR12	ODR11	0DR10	6800	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0

GPIOC_BSRR (Address 40021818₁₆; write-only): Writing 1 to a bit in BS0-BS15 turns the corresponding pin on; writing a 1 to a bit in BR0-BR15 turns it off. BS0-BS15 take precedence if 1's are simultaneously written to both.

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	стуя	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BRØ	BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BSØ

Assignment: The main program will compile and run without writing any assembly. However, your task is to create equivalent replacements in assembly language for the following four functions found in the C main program. The original C versions have been defined as "weak" so that the linker will automatically replace them in the executable image by those you create in assembly; you do not need to remove the C versions. This allows you to create and test your assembly language functions one at a time.

void	<pre>InitLEDs(void)</pre>	;			
void	CtrlLEDs1(BOOL	red,	BOOL	grn)	;
void	CtrlLEDs2(BOOL	red,	BOOL	grn)	;
void	CtrlLEDs3(BOOL	red,	BOOL	grn)	;

InitLEDs configures the LED pins as outputs by setting MODER13 and MODER14 each to 01₂. The other three functions are used to turn the LEDs on and off. CtrlLEDs1 does this by accessing GPIOC_ODR directly at address 40021814₁₆; CtrlLEDs2 does this by accessing GPIOC_ODR using a hand-calculated bit-banding address. CtrlLEDs3 turns the LEDs on and off using GPIOC_BSRR.

Test your code using the C main program. It turns the LEDs on and off at a very fast rate, controlling the apparent brightness by varying the duty cycle (the percentage of time the LED is on). Use the blue push button to cycle through the three functions that control the LEDs. Holding the push button down will modulate the brightness using a sine function.

¹ <u>https://en.wikipedia.org/wiki/Memory-mapped_I/O</u>