

Programming Lab 9D

Extending Precision
Topics: Floating-pt. arithmetic, series approximations, Kahan summation, double floats

Prerequisite Reading: Chapters 1-9
Revised: February 15, 2021

Background: The 24-bit significand of single-precision floats supports 6 to 9 significant decimal digits of precision. What

this means is (1) if a decimal string with at most 6 significant digits is stored in a float, and then converted back to a decimal

string with the same number of digits, the result should match the original string, and (2) if a float is converted to a decimal

string with at least 9 significant digits, and then stored back in a float, the result must match the original number1.

Unfortunately, the result of a sequence of arithmetic operations may have even fewer significant digits. That’s because the

representation error due to limited precision can accumulate. For example, simply summing n numbers in sequence has a

worst-case error that grows proportional to n. To prevent this, Kahan2 developed a novel summation technique that keeps a

separate running compensation variable, effectively eliminating the cumulative effect.

Our processor only provides floating-point instructions for single-precision arithmetic; double-precision may be used when

even more precision is required, but arithmetic operations are then emulated in software, thus increasing execution time by

one to two orders of magnitude. When hardware support for single-precision floating-point is available, a much faster al-

ternative known as “double float”3 represents values using a pair of single-precision floats and achieves near double preci-

sion. The main program of this lab computes Nilakantha’s infinite series approximation4 to pi, comparing the accuracy and

speed of using Kahan’s technique with floats and doubles to that of a normal series approximation using double floats:

𝜋 = 3 +
4

2 × 3 × 4
−

4

4 × 5 × 6
+

4

6 × 7 × 8
−

4

8 × 9 × 10
+⋯

Assignment: The main program may be compiled and executed without writing

any assembly. However, your task is to create faster assembly language replace-

ments for the three functions listed below using their C versions to guide your

implementation. These are low-level support functions that are used to imple-

ment the basic arithmetic operations on double floats. The original C versions

are defined as “weak”, so that the linker will automatically replace them in the

executable image by those you create in assembly; you do not need to remove

the C versions.

FLOAT2 QuickTwoSum(float a32, float b32) ;
FLOAT2 TwoSum(float a32, float b32) ;
FLOAT2 Split(float a32) ;

At the end of each function there is a return statement similar to:

return (FLOAT2) {x, y} ;

This statement returns a struct consisting of a pair of single-precision floats, with

x in register S0 and y in register S1. If your code is correct, the display should

look similar to the image at right showing each function's accuracy and execu-

tion time as clock cycles per iteration. The displayed value of the sum is the

function’s series approximation to pi, with incorrect digits highlighted in red.

1 https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
2 https://en.wikipedia.org/wiki/Kahan_summation_algorithm
3 http://andrewthall.org/papers/df64_qf128.pdf
4 https://en.wikipedia.org/wiki/Pi

Click to download

Lab9D-Main.c

https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
http://andrewthall.org/papers/df64_qf128.pdf
https://en.wikipedia.org/wiki/Pi
http://www.engr.scu.edu/~dlewis/book3/labs/Lab9D-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab9D-Main.c

