

Errata (Revised: December 25, 2023)
ARM Assembly for Embedded Applications, 5th edition
ISBN 978-1092542234

Page 1 of 3

CHAPTER 3: WRITING FUNCTIONS IN ASSEMBLY

Section 3.4 (Function Return Value), page 45, Figure 3-9, right-hand column:

Replace next to last instruction LDR R2,=save8 with LDR R2,=save64

Added new section (subsequent sections renumbered):

(Corresponding changes made to Figures 3-12 and 3-13 as mentioned in the new section.)

3.6 STACK ALIGNMENT

Some library functions and functions compiled from a high-level language are written in

such a manner that requires the address held in the stack pointer to be a multiple of eight

when the function is called. The compiler ensures that the stack pointer is always a multiple

of eight whenever your assembly language function is called from a high-level language

program. However, the value of the stack pointer will no longer be a multiple of eight if your

function then calls another function after pushing an odd number of registers. Thus, when

writing a function in assembly that calls a library function or a function that was compiled

from a high-level language, always push and pop an even number of registers. As shown in

Figure 3-12 and Figure 3-13, this is accomplished by selecting register R3 to add to the PUSH

and POP list since there is no other reason to do so.

CHAPTER 4: COPYING DATA

Section 4.6 (Examples of Copying Data), page 67, Figure 4-12:

The data type names in the figure are incorrect. E.g., “int_8” should be “int8_t”, etc.

Section 4.11 (Copying a Block of Data Quickly), page 79, Table 4-7, “Operation” column:

The italicized (1st) line of the 2nd row should be: Rn -= 4 × #regs; registers ← memory

The italicized (1st) line of the 3rd row should be: registers → memory; Rn += 4 × #regs

CHAPTER 6: MAKING DECISIONS AND WRITING LOOP

Section 6.4 (Comparing 64-bit Integers), page 110:

Replace the last paragraph and subsequent code by the following:

Since a compare is simply a subtraction that discards the difference but records the

characteristics of that result in the flags, one might assume that all that is needed is to simply

perform a 64-bit subtraction and check the resulting flags. However, although the N, V and C

flags will be correct, the Z flag may not since it will only indicate if the most-significant half

of the difference is zero.

When the condition to be tested does not depend on the Z flag

(GE,LT,HS,LO,MI,PL,VS,VC,AL), then no correction is necessary and the condition test

may immediately follow the 64-bit subtraction:

Errata (Revised: December 25, 2023)
ARM Assembly for Embedded Applications, 5th edition
ISBN 978-1092542234

Page 2 of 3

... // Load operands as before

SUBS R0,R0,R2 // subtract LS halves, capture borrow

SBCS R1,R1,R3 // subtract MS halves w/brw; set flags

... // OK to test GE,LT,HS,LO,MI,PL,VS,VC,AL

However, all other conditions (EQ,NE,GT,LE,HI,LS) require a different approach. The

solution for EQ and NE is quite simple:

... // Load operands as before

SUBS R0,R0,R2 // compute LS half of difference

SBC R1,R1,R3 // compute MS half of difference

ORRS R1,R0,R1 // Z=1 iff both halves are zero

... // Now OK to test for EQ or NE

For LE, GT, LS and HI we can avoid testing the Z flag by reversing the operands. Since

x <= y is equivalent to y >= x, this allows us to replace LE by GE or LS by HS, which don’t

require testing the value of Z:

... // Load operands as before

SUBS R2,R2,R0 // subtract LS halves (operands reversed)

SBCS R3,R3,R1 // subtract MS halves (operands reversed)

... // Replace LE/GT by GE/LT, or

... // Replace LS/HI by HS/LO.

Finally, note that in all cases except EQ and NE, we can avoid modifying one register by

replacing the SUBS instruction by a CMP instruction.

CHAPTER 8: MULTIPLICATION AND DIVISION REVISTED

Section 8.3 (Division by an Arbitrary Constant), page 171:

Replace the code at the top of the page by:

// Divide by +7 (-7: replace LSRS.N, ADD by ASRS.N, SUB)

LDR R0,=dividend

LDR R0,[R0]

LDR R1,=2454267027 // 2 clock cycles

SMULL R2,R1,R1,R0 // 1 clock cycle

ADDS.N R1,R1,R0 // 1 clock cycle

LSRS.N R0,R0,31 // 1 clock cycle

ADD R0,R0,R1,ASR 2 // 1 clock cycle

LDR R1,=quotient

STR R0,[R1]

Section 8.3 (Division by an Arbitrary Constant), page 171, paragraph that starts at the bottom

of the page:

Use SMMLA

(see below)

Use SMMLA

(see below)

Errata (Revised: December 25, 2023)
ARM Assembly for Embedded Applications, 5th edition
ISBN 978-1092542234

Page 3 of 3

Replace the entire paragraph by the following:

The SMMUL instruction computes the most-significant half of a 64-bit signed product and

eliminates the need to use register R2 in the previous code. The SMMLA instruction does the

same, but also adds the value of another 32-bit operand to the result. This instruction can thus

replace the SMULL/ADDS.N sequence in the earlier code that divides by +7. The SMMLS

instruction computes the difference of a 32-bit operand less the most-significant half of a 64-

bit operand. Unfortunately, this doesn’t help simplify the code that divides by -7. There are

no unsigned versions of these instructions.

Section 8.3 (Division by an Arbitrary Constant), page 172, Table 8-6:

In the third column of the table, second row, replace “𝑅𝑑 ← (𝑅𝑛 × 𝑅𝑚) <63..32> + 𝑅𝑎” by

“𝑅𝑑 ← 𝑅𝑎 + (𝑅𝑛 × 𝑅𝑚) <63..32>”.

In the third column of the table, third row, replace “𝑅𝑑 ← (𝑅𝑛 × 𝑅𝑚) <63..32> − 𝑅𝑎” by “𝑅𝑑

← 𝑅𝑎 − (𝑅𝑛 × 𝑅𝑚) <63..32>”.

CHAPTER 11: FIXED-POINT REALS

Section 11.5.6 (Multiplying a Q32 Value by a Fractional Value), page 250, Figure 11-7:

The wrong partial products are indicated as being equal to zero (“= 0”). Those that are zero are

only those that are cross-hatched and have a large “X” on top of them.

