ARM Assembly for Embedded Applications *sth edition* DANIEL W LEWIS

ARM Instructions Worksheet #10 SIMD and Saturating Instructions

Prerequisite Reading: Chapter 11 Revised: April 20, 2020

Objectives: To use the web-based simulator ("CPULator") to better understand .

- 1. The operation of saturating instructions (USAT, SSAT)
- 2. The operation of non-saturating a SIMD add instruction (UADD16)
- 3. The operation of saturating a SIMD add instruction (UQADD16)

To do offline: Answer the questions that follow the listing below. (Numbers at far left are memory addresses.)

		.syntax .global	unified _start		
00000000 00000004 00000008	_start:	LDR USAT SSAT	R0,=10000 R2,10,R0 R3,10,R0	<pre>// *** EXECUTION BEGINS HERE ***</pre>	
0000000C 00000010 00000014 00000018		LDR LDR UADD16 UQADD16	R0,=0x10011001 R1,=0xF00F800F R2,R0,R1 R3,R0,R1		
0000001C 00000020 00000024 00000028		LDR LDR SMUAD SMUADX	R0,=0x00030005 R1,=0x00070009 R2,R0,R1 R3,R0,R1		
0000002C	done:	В	done	// Infinite loop	
		.end			

 R0 (hexadecimal)

 What is left in register R0 after executing the USAT instruction at 0000000416?

 R2 (unsigned decimal)

 What is left in register R2 after executing the USAT instruction at 0000000416?

 R3 (signed decimal)

 What is left in register R3 after executing the SSAT instruction at 0000000816?

 R0 (as hexadecimal)

 R0 (as hexadecimal)

 R1 (as hexadecimal)

 R1 (as hexadecimal)

What is left in register R2 after executing the UADD16 instruction at 00000014_{16} ? What is left in register R3 after executing the UQADD16 instruction at 00000018₁₆? What is left in register R0 after executing the LDR instruction at $000001C_{16}$? What is left in register R0 after executing the LDR instruction at 0000020_{16} ? What is left in register R0 after executing the SMUAD instruction at 00000024_{16} ?

What is left in register R0 after executing the SMUADX instruction at 0000028_{16} ?

Getting ready: Now use the simulator to collect the following information and compare to your earlier answers.

1. Click <u>here</u> to open a browser for the ARM instruction simulator with pre-loaded code.

Step 1: Press F2 exactly 3 times to execute the LDR, USAT, SSAT instruction sequence.

What is left in register R0 after executing the LDR instruction at 0000000_{16} ? R2 (unsigned decimal) What is left in register R2 after executing the USAT instruction at 0000004_{16} ? R3 (signed decimal) What is left in register R3 after executing the SSAT instruction at 00000008₁₆?

ce.

nal) What nal) What R2 (as hexadecimal) What is left in register R2 after executing the UADD16 instruction at 00000014_{16} ? R3 (as hexadecimal) What is left in register R3 after executing the UQADD16 instruction at 0000018_{16} ?

R0 (as hexadecimal) What is left in register R0 after executing the LDR instruction at $0000001C_{16}$? R1 (as hexadecimal) What is left in register R0 after executing the LDR instruction at 0000020_{16} ? R2 (unsigned decimal) What is left in register R0 after executing the SMUAD instruction at 00000024_{16} ? R3 (unsigned decimal) What is left in register RØ after executing the SMUADX instruction at 0000028_{16} ?

R2 (as hexadecimal)

R3 (unsigned decimal)

R0 (hexadecimal)

Step 2: Press F2 exactly	v 4 times to execute th	e LDR, LDR	. UADD16.	UOADD16 instruction seque

is left in register R0 after executing the LDR instruction at $000000C_{16}$?	R0 (as hexadecin
is left in register R1 after executing the LDR instruction at 00000010_{16} ?	R1 (as hexadecin

Step 3: Press F2 exactly 4 times to execute the LDR, LDR, SMUAD, SMUADX instruction sequence.