ARM Assembly for Embedded Applications

5th edition
DANEL W Lewis

Single/Double-Length, Signed/Unsigned

Prerequisite Reading: Chapter 5

Revised: March 26, 2020

ARM Instructions Worksheet \#5
 Multiplication

Objectives: To use the web-based simulator ("CPULator") to better understand

1. The MUL, SMULL, and UMULL instructions
2. Single versus double-length products.
3. Signed versus unsigned multiplication.

To do offline: Answer the questions that follow the listing below. (Numbers at far left are memory addresses.)

Note: Use this hex to decimal converter to convert 64-bit products to decimal.

	R2 (8 hex digits)	R2 (as signed decimal)
What is left in R2 by the LDR pseudo-instruction at 00000000_{16} ?		
	R3 (8 hex digits)	R3 (as signed decimal)
What is left in R3 by the LDR pseudo-instruction at 00000004 ${ }_{16}$?		
	R0 (8 hex digits)	R0 (as signed decimal)
What product is left in R0 by the MUL instruction at 00000008_{16} ?		
What is left in R1. R0 by the SMULL \qquad instruction at $0000000 \mathrm{C}_{16}$?	R0 (8 hex digits)	R1.R0 (as signed decimal)
Did the single-length signed product produced by the previous MUL overflow?		Yes: \square No:
	R2 (8 hex digits)	R2 (as unsigned decimal)
What is left in R2 by the LDR pseudo-instruction at 00000010_{16} ?		
	R3 (8 hex digits))	R3 (as unsigned decimal)
What is left in R4 by the LDR pseudo-instruction at 00000014 ${ }_{16}$?		
	R0 (8 hex digits)	R0 (as unsigned decimal)
What product is left in R0 by the MUL instruction at 00000018_{16} ?		

What is left in R1. R0 by the UMULL instruction at $0000001 \mathrm{C}_{16}$?

\qquad

Did the single-length unsigned product produced by the previous MUL overflow?
Yes: \square No: \square

Getting ready: Now use the simulator to collect the following information and compare to your earlier answers.

1. Click here to open a browser for the ARM instruction simulator with pre-loaded code.

Note: You can change the number format in the "Settings" window between hex, unsigned decimal and signed decimal as needed. For 64-bit products, use this hex to decimal converter.

Step 1: Press F2 exactly 2 times to execute the two LDR pseudo-instructions (MOV, MVN) to provide the operands

What is left in R2 by the LDR pseudo-instruction at 00000000_{16} ?

R2 (8 hex digits)	R2 (as signed decimal)
R3 (8 hex digits) R3 (as signed decimal)	

Step 2: Press F2 exactly once to execute the MUL R0, R2, R3 instruction.

What product is left in $R 0$ by the MUL instruction at 00000008_{16} ?

R0 (8 hex digits)

Step 3: Press F2 exactly once to execute the SMULL $R 0, R 1, R 2, R 3$ instruction.

What is left in R1. R0 by the SMULL instruction at $0000000 \mathrm{C}_{16}$?

Did the single-length signed product produced by the previous MUL overflow?

Step 4: Press F2 exactly 2 times to execute the two LDR pseudo-instructions (MOV, MOV) to provide the operands

Step 5: Press F2 exactly once to execute the MUL R0, R2, R3 instruction.

What product is left in R0 by the MUL instruction at 00000018_{16} ?

\qquad

Step 6: Press F2 exactly once to execute the UMULL R0, R1, R2, R3 instruction.

What is left in R1. R0 by the UMULL instruction at $0000001 \mathrm{C}_{16}$?

Did the single-length unsigned product produced by the previous MUL overflow?
Yes:

No: \square

