

## ARM Instructions Worksheet #5 Multiplication

Single/Double-Length, Signed/Unsigned

Prerequisite Reading: Chapter 5 Revised: March 26, 2020

Objectives: To use the web-based simulator ("CPULator") to better understand ...

- 1. The MUL, SMULL, and UMULL instructions
- 2. Single versus double-length products.
- 3. Signed versus unsigned multiplication.

## To do offline: Answer the questions that follow the listing below. (Numbers at far left are memory addresses.)

|                        |        | .syntax<br>.global | unified<br>_start                                 |
|------------------------|--------|--------------------|---------------------------------------------------|
| 00000000 _<br>00000004 | start: | LDR<br>LDR         | R2,=+3 // *** EXECUTION STARTS HERE ***<br>R3,=-5 |
| 0000008                |        | MUL                | R0,R2,R3                                          |
| 000000C                |        | SMULL              | R0,R1,R2,R3                                       |
| 00000010               |        | LDR                | R2,=3                                             |
| 00000014               |        | LDR                | R3,=0x8000000                                     |
| 00000018               |        | MUL                | R0,R2,R3                                          |
| 0000001C               |        | UMULL              | R0,R1,R2,R3                                       |
| 00000020 d             | one:   | В                  | done                                              |
|                        |        | .end               |                                                   |
|                        |        |                    |                                                   |

Note: Use this hex to decimal converter to convert 64-bit products to decimal.

|                                                                                                                                         | R2 (8 hex digits)                       | R2 (as signed decimal)                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|
| What is left in R2 by the LDR pseudo-instruction at $0000000_{16}$ ?                                                                    |                                         |                                                      |
|                                                                                                                                         | R3 (8 hex digits)                       | R3 (as signed decimal)                               |
| What is left in R3 by the LDR pseudo-instruction at $0000004_{16}$ ?                                                                    |                                         |                                                      |
|                                                                                                                                         | R0 (8 hex digits)                       | R0 (as signed decimal)                               |
| What product is left in R0 by the MUL instruction at $0000008_{16}$ ?                                                                   |                                         |                                                      |
|                                                                                                                                         |                                         |                                                      |
| What is left in R1.R0 by the SMULL R1 (8 hex digits)                                                                                    | R0 (8 hex digits)                       | R1.R0 (as signed decimal)                            |
| instruction at $000000C_{16}$ ?                                                                                                         |                                         |                                                      |
|                                                                                                                                         |                                         |                                                      |
| Did the single-length signed product produced by the previous MUL                                                                       | Loverflow?                              | Yes: No:                                             |
|                                                                                                                                         | verflow?<br>R2 (8 hex digits)           | Yes: No: R2 (as unsigned decimal)                    |
|                                                                                                                                         |                                         |                                                      |
| Did the single-length signed product produced by the previous MUL                                                                       | R2 (8 hex digits)                       | R2 (as unsigned decimal)                             |
| Did the single-length signed product produced by the previous MUL                                                                       |                                         |                                                      |
| Did the single-length signed product produced by the previous MUL what is left in R2 by the LDR pseudo-instruction at $00000010_{16}$ ? | R2 (8 hex digits)<br>R3 (8 hex digits)) | R2 (as unsigned decimal)<br>R3 (as unsigned decimal) |
| Did the single-length signed product produced by the previous MUL what is left in R2 by the LDR pseudo-instruction at $00000010_{16}$ ? | R2 (8 hex digits)                       | R2 (as unsigned decimal)                             |

| What is left in R1.R0 by the UMULL instruction at $0000001C_{16}$ ? | R1 (8 hex digits)          | R0 (8 hex digits) | R1.R0 (as unsigned decimal) |
|---------------------------------------------------------------------|----------------------------|-------------------|-----------------------------|
| Did the single-length unsigned produc                               | t produced by the previous | MUL overflow?     | Yes: No:                    |

## Getting ready: Now use the simulator to collect the following information and compare to your earlier answers.

1. Click here to open a browser for the ARM instruction simulator with pre-loaded code.

**Note:** You can change the number format in the "Settings" window between hex, unsigned decimal and signed decimal as needed. For 64-bit products, use this hex to decimal <u>converter</u>.

| Step 1: Press F2 exactly 2 times to execute the two LDR pseudo-instructio | ons (MOV, MVN) to provide the o | perands                     |
|---------------------------------------------------------------------------|---------------------------------|-----------------------------|
| -                                                                         | R2 (8 hex digits)               | R2 (as signed decimal)      |
| What is left in R2 by the LDR pseudo-instruction at $0000000_{16}$ ?      |                                 |                             |
| What is left in R3 by the LDR pseudo-instruction at $0000004_{16}$ ?      | R3 (8 hex digits)               | R3 (as signed decimal)      |
| what is left in KS by the EDK pseudo-instruction at $0000004_{16}$ :      |                                 |                             |
| Step 2: Press F2 exactly once to execute the MUL R0, R2, R3 instruction.  |                                 |                             |
|                                                                           | R0 (8 hex digits)               | R0 (as signed decimal)      |
| What product is left in R0 by the MUL instruction at $0000008_{16}$ ?     |                                 |                             |
|                                                                           |                                 |                             |
| Step 3: Press F2 exactly once to execute the SMULL R0, R1, R2, R3 instru- | uction.                         |                             |
| What is left in R1.R0 by the SMULL R1 (8 hex digits)                      | R0 (8 hex digits)               | R1.R0 (as signed decimal)   |
| instruction at 0000000C <sub>16</sub> ?                                   |                                 |                             |
| Did the single-length signed product produced by the previous MUL o       | Yes: No:                        |                             |
|                                                                           |                                 |                             |
| Step 4: Press F2 exactly 2 times to execute the two LDR pseudo-instructio | ons (MOV, MOV) to provide the o | perands                     |
| · · · · · · · · · · · · · · · · ·                                         | R2 (8 hex digits)               | R2 (as unsigned decimal)    |
| What is left in R2 by the LDR pseudo-instruction at $00000010_{16}$ ?     |                                 |                             |
| What is left in R4 by the LDR pseudo-instruction at $00000014_{16}$ ?     | R3 (8 hex digits))              | R3 (as unsigned decimal)    |
|                                                                           |                                 |                             |
| Step 5: Press F2 exactly once to execute the MUL R0, R2, R3 instruction.  |                                 |                             |
|                                                                           | R0 (8 hex digits)               | R0 (as unsigned decimal)    |
| What product is left in R0 by the MUL instruction at $0000018_{16}$ ?     |                                 |                             |
|                                                                           |                                 |                             |
| Step 6: Press F2 exactly once to execute the UMULL R0, R1, R2, R3 instr   | uction.                         |                             |
| What is left in R1.R0 by the UMULL R1 (8 hex digits)                      | R0 (8 hex digits)               | R1.R0 (as unsigned decimal) |
| instruction at 0000001C <sub>16</sub> ?                                   |                                 |                             |
| Did the single-length unsigned product produced by the previous MUL       | overflow?                       | Yes: No:                    |