ARM Assembly for Embedded Applications

5th edition

And their effect on the NZCV Flags in the CPSR register: \qquad

Revised: April 21, 2020
Floating-Point Compares

Prerequisite Reading: Chapter 9

ARM Instructions Worksheet \#9

Objectives: To use the web-based simulator ("CPULator") to better understand ...

1. The use of VCMP and VMRS to perform floating-point comparisons.
2. The use of VSUB and VMOV to simplify some floating-point comparisons.
3. The use of floating-point equality comparisons.

To do offline: Answer the questions that follow the listing below. (Numbers at far left are memory addresses.)

00000000		. syntax .global	unified _start	
	// *** EXECUTION STARTS HERE ***			
	_start:	MOVS	R0,0	// N flag $=0$
00000004		VLDR	S0, posPt4	// S0 = +0.4
00000008		VLDR	S1, posPt5	// S1 = +0.5
0000000C		VCMP.F32	S0, S1	// $0.4<0.5$?
00000010		VMRS	APSR_nzcv,	
00000014		LDR	R0, =1	// Assume MI
00000018		BMI	L1	
0000001C		LDR	R0, $=0$	// Wasn't MI
00000020	L1:	VSUB.F32	S2, S0, S1	// S2 = 0.4-0.5
00000024		VMOV	R1, S2	
00000028		LSR	R1, R1, 31	// Same as R0?
0000002C		VLDR	S3, negPt1	// S3 = -0.1
00000030		VCMP.F32	S2, S3	// S2 == S3 ?
00000034		VMRS	APSR_nczv,	
00000038		LDR	R2, $=1$	// Assume EQ
0000003C		BEQ	done	
00000040		LDR	$R 2,=0$	// Wasn't EQ
00000044	done:	B	done	// Infinite loop
00000048	point5:	.float	+0.5	
0000004C	point4:	.float	+0.4	
00000050	point1:	.float	-0.1	
		. end		

What is in the N flag (CPSR bit 31) after executing the VCMP at address $0000000 \mathrm{C}_{16}$? What is in the N flag (CPSR bit 31) after executing the VMRS at address 00000010_{16} ?

What is in register R0 before executing the VSUB instruction at address 00000020_{16} ?

What is in register S2 after executing the VSUB instruction at address 00000020_{16} ?

S2 (as decimal signed)

R1 (as decimal signed)
 R2 (as decimal signed)

Getting ready: Now use the simulator to collect the following information and compare to your earlier answers.

1. Click here to open a browser for the ARM instruction simulator with pre-loaded code.

Note: You can change the number format in the "Settings" window between hex, unsigned decimal and signed decimal as needed

Step 1: Press F2 once per ARM instruction as needed to see what the simulator says for the following:

What is in the N flag (CPSR bit 31) after executing the VCMP at address $0000000 \mathrm{C}_{16}$?

What is in the N flag (CPSR bit 31) after executing the VMRS at address 00000010_{16} ?

What is in register R0 before executing the VSUB instruction at address 00000020_{16} ?

What is in register S2 after executing the VSUB instruction at address 00000020_{16} ?

What is in register R1 after executing the VMOV instruction at address 00000024_{16} ?

What is in register R1 after executing the LSR instruction at address 00000028_{16} ?

What is in register S3 after executing the VLDR instruction at address $0000002 \mathrm{C}_{16}$?

What is in the Z flag (CPSR bit 29) after executing the VMRS at address 00000034_{16} ?

What is in register R2 before executing the B instruction at address 00000044 ${ }_{16}$?

