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Sorting 

 ¼ of all mainframe cycles are spent sorting data 

 internal sorting - in main memory 

 external sorting - on disk or tape 

 comparison-based sorting - use only >, <, and assign 

 an inversion in an array of numbers is any ordered pair (i, j) having the 

property that i < j but A[i] > A[j] 

 the average number of inversions in an array of N distinct numbers is 

N(N-1)/4 

 any algorithm that sorts by exchanging adjacent elements requires (N2) 

time on average 

 to get sub-quadratic running time, exchanges between elements that are 

far apart and must eliminate more than one inversion per exchange 

 use sentinel A[0], avoid explicit swap 

 stable/unstable sorting 

 memory issue: sort in place 

 indirect sorting: for sorting large record, swapping pointer to the record 

instead of swapping record 

 A general-purpose sorting algorithm cannot make assumptions about the 

type of input it can expect to see, but must make decisions based on 

ordering information only. Any general-purpose sorting algorithm 

requires (N lgN) comparisons. 

 

Applications of Sorting 

searching, closest pair, element uniqueness, frequency distribution, 

selection, convex hulls (sorted by x-coordinate, inset points from left to right, 

the rightmost points is always on the boundary and adding this new point 

might cause others to be deleted) 

 

Decision Tree 

 the model for sorting 

 each node is annotated by ai:aj for some 1  i, j  n 

 each leaf is annotated by a permutation of input data 

 the execution of sorting corresponds to tracing a path from the root to a 

leaf 

 general lower bound for sorting: use decision trees 

number of comparisons = height of decision tree 

 

Bubble Sort 

 O(N2) 

 

Selection Sort 

 O(N2) 

 

Incremental Insertion Sort 

 for pass P = 2 through N, move the Pth element left until it correct place 

is found among the first P elements 

 O(N2), but O(N) for presorted input. average (N2) 

 good for small size (N  20) and near sorted input 

 

Shellsort or Diminishing Increment Sort 

 comparing elements that are distant, the distance between comparisons 

decreases as the algorithm runs until the last phase, in which adjacent 

elements are compared 

 increment sequence, h1, h2, .., ht with h1 = 1 

 Shell: ht = N/2  and hk = hk+1/2 , (N2) 

 pairs of increments are not relatively prime, and thus the small 

increment can have little effect 

 Hibbard: 1, 3, 7, .., 2k - 1, (N3/2) 

 best: {1, 5, 19, 41, 109, ..}, 9*4i-9*2i+1 or 4i-3.2i+1 

 hk-sorted: using hk, for every i, A[i]  A[i + hk] 

 an hk-sorted file is then hk-1-sorted remains hk-sorted 

 

Heapsort 

 building a binary heap of N elements takes O(N), and then perform N 

DeleteMin operations takes O(N lgN), need an extra array to copy back 

the result 

 to avoid the extra copy, use a maxheap 

 

Mergesort 

 merging two sorted lists and put the output in a third list 

 divide-and-conquer, using recursion 

 to avoid temporary arrays declared locally for each recursion, use only 

one temporary array 

 cornerstone of most external sorting, O(N lgN) 

 

Quicksort 

 fastest in practice, worst-case O(N2), average O(N lgN) 

 algorithm to sort an array S consists of 4 steps: 



 If the number of elements in S is 0 or 1, then return. 

 Pick any element v in S. This is called the pivot. 

 Partition S-{v} (the remaining elements in S) into two disjoint 

groups:  

S1 = {x  S-{v} | x  v} and S2 = {x  S-{v} | x  v} 

 Return {quicksort(S1) followed by v followed by quicksort(S2)}. 

 picking the pivot: 

 use the first element, O(N2) if presorted 

 choose the pivot randomly, random number generation is expensive 

but not reduce the average running time 

 median, too expensive to compute 

 median-of-three partitioning, even good for presorted input 

 partitioning strategy: 

 To handle keys that are equal to the pivot, i and j ought to do the 

same thing. 

 for small file, use insertion sort instead 

 Quickselect makes only 1 recursive call instead of 2, worst-case 

O(N2), average O(N) 

 if use median-of-median-of-five as the pivot, O(N) 

 

Counting/Bucket Sort 

 not a general-purpose sorting algorithm 

 The input A1, A2, .., AN must consist of only positive numbers smaller 

than M. Keep an array Count of size M, which is initialized to all 0's. 

When Ai is read, increment Count[i]. After all input is read, scan the 

Count array, printing out the sorted list. O(N+M). 

 the input must in [0, 1). Put A[i] in B[ NA[i] ], insert sort B[i] and then 

concatenate them. O(N) 

 

Radix/Distribution Sort 

 the least significant digit sort first 

 performance depends on the distribution 

 

External Sorting 

 disk has access delay to spin the disk and move the disk head, and tape 

can only be accessed sequentially 

 assume the internal memory can hold and sort M records at a time, and 

each set of sorted record is called a run 

 multiway Merge: k-way merge using heap requires logk(N/M)  passes 

and 2k tapes, e.g., in 2-way merge, input data was in tape 1, read in M 

records at a time, sort them to become a run and write the runs 

alternatively to 2 tapes. Then do merge until the run length become N. 

 polyphase Merge: using Fibonacci number only need k+1 tapes 

  Kth order Fibonacci number: 

   Fk(N) = 0 for 0  N  k-2, Fk(k-1) = 1 

Fk(N) = Fk(N-1) + Fk(N-2) + .. + Fk(N-k) 

 replacement Selection: when using DeleteMin, write the smallest number 

out to a tape, then read another record from the input tape. If the data 

read is greater than the one just write out, it can include in this run. If 

the input is randomly distributed, replacement selection can produce 

runs of average length 2M 

 

Comparison Network 

 parallel model of computation: many comparisons can be performed 

simultaneously 

 a comparison network is comprised solely of wires and comparators 

 a comparator is a device with two inputs, x and y, and two output x' and 

y', where x' = min(x, y) and y' = max(x, y) 

 a wire transmits a value from place to place 

 a comparison network contains n input wires and n output wires, draw 

wires horizontally and comparators vertically, input on left and output 

right 

 The run time of a comparison network is the depth of the network, where 

the depth of an input wire is 0, and a comparator's input wires have 

depth dx and dy, then its output wires have depth max(dx, dy) + 1. The 

depth of a comparison network is the maximum depth of an output wire, 

or the maximum depth of a comparator. 

 using comparison network to implement all kinds of sorting algorithm, 

e.g., insertion sort, merge sort (using Sorter[n]), etc. 

 

Sorting Network 

 a sorting network is a comparison network for which the output sequence 

is monotonically increasing for every input sequence 

 the n-input, n-output sorting network in the family Sorter is named 

Sorter[n] 

 the zero-one principle: if a sorting network works correctly when each 

input is drawn from the set {0, 1}, then it works correctly on arbitrary 

input numbers 

 A bitonic sequence is a sequence that either monotonically increases and 

then monotonically decreases, or else monotonically decreases and then 

monotonically increases. A sequence that is either monotonically 

increasing or monotonically decreasing is also bitonic. The reversal of a 

bitonic sequence is bitonic, The zero-one bitonic sequences have the 

form 0i1j0k or 1i0j1k, for some i, j, k  0. 

 A half-cleaner is a comparison network of depth 1 in which input line i is 

compared with line i + n/2, assume n is even. When a bitonic 0/1 



sequence is applied as input to a half-cleaner, the half-cleaner produces 

an output sequence in which smaller values are in the top half, larger 

vales are in the bottom half, and both halves are bitonic. In fact, at least 

one of the halves is clean, i.e., consisting of either all 0's or all 1's. 

 A bitonic sorter is comprised of several stages of half-cleaners to sort 

bitonic sequences. The first stage of Bitonic-Sorter[n] consists of Half-

Cleaner[n] to produce two bitonic sequences of half the size such that 

every element in the top half is at least as small as every element in the 

bottom half, and using two copies of Bitonic-Sorter[n/2] to sort the two 

halves recursively. The depth D(n) of Bitonic-Sorter[n] is lgn since D(n) 

= 0 if n = 1, otherwise D(n) = D(n/2)+1. 

 A merging network merges two sorted input sequences into one sorted 

output sequence. Given two sorted sequences X and Y, if we reverse the 

order of the second sequence to YR and then concatenate the two 

sequences, the resulting sequence is bitonic. To merge X and Y, we 

simply perform bitonic sort on XYR. We can construct Merger[n] by 

modifying the first half-cleaner of Bitonic-Sorter[n] by comparing input i 

with input n-i+1 (performing the reversal of the second input implicitly). 

 The Sorter[n] uses the merging network to implement a parallel version 

of merge sort. For k = 1, 2, ..., lgn, stage k consists of n/2k copies of 

merger[2k]. The depth D(n) = 0 if n = 1, otherwise D(n) = D(n/2) + lgn. 

Therefore, D(n) = (lg2n). 

 


