
Sorting

Ming-Hwa Wang, Ph.D.
COEN 279/AMTH 377 Design and Analysis of Algorithms

Department of Computer Engineering
Santa Clara University

Sorting

 ¼ of all mainframe cycles are spent sorting data

 internal sorting - in main memory

 external sorting - on disk or tape

 comparison-based sorting - use only >, <, and assign

 an inversion in an array of numbers is any ordered pair (i, j) having the

property that i < j but A[i] > A[j]

 the average number of inversions in an array of N distinct numbers is

N(N-1)/4

 any algorithm that sorts by exchanging adjacent elements requires (N2)

time on average

 to get sub-quadratic running time, exchanges between elements that are

far apart and must eliminate more than one inversion per exchange

 use sentinel A[0], avoid explicit swap

 stable/unstable sorting

 memory issue: sort in place

 indirect sorting: for sorting large record, swapping pointer to the record

instead of swapping record

 A general-purpose sorting algorithm cannot make assumptions about the

type of input it can expect to see, but must make decisions based on

ordering information only. Any general-purpose sorting algorithm

requires (N lgN) comparisons.

Applications of Sorting

searching, closest pair, element uniqueness, frequency distribution,

selection, convex hulls (sorted by x-coordinate, inset points from left to right,

the rightmost points is always on the boundary and adding this new point

might cause others to be deleted)

Decision Tree

 the model for sorting

 each node is annotated by ai:aj for some 1 i, j n

 each leaf is annotated by a permutation of input data

 the execution of sorting corresponds to tracing a path from the root to a

leaf

 general lower bound for sorting: use decision trees

number of comparisons = height of decision tree

Bubble Sort

 O(N2)

Selection Sort

 O(N2)

Incremental Insertion Sort

 for pass P = 2 through N, move the Pth element left until it correct place

is found among the first P elements

 O(N2), but O(N) for presorted input. average (N2)

 good for small size (N 20) and near sorted input

Shellsort or Diminishing Increment Sort

 comparing elements that are distant, the distance between comparisons

decreases as the algorithm runs until the last phase, in which adjacent

elements are compared

 increment sequence, h1, h2, .., ht with h1 = 1

 Shell: ht = N/2 and hk = hk+1/2 , (N2)

 pairs of increments are not relatively prime, and thus the small

increment can have little effect

 Hibbard: 1, 3, 7, .., 2k - 1, (N3/2)

 best: {1, 5, 19, 41, 109, ..}, 9*4i-9*2i+1 or 4i-3.2i+1

 hk-sorted: using hk, for every i, A[i] A[i + hk]

 an hk-sorted file is then hk-1-sorted remains hk-sorted

Heapsort

 building a binary heap of N elements takes O(N), and then perform N

DeleteMin operations takes O(N lgN), need an extra array to copy back

the result

 to avoid the extra copy, use a maxheap

Mergesort

 merging two sorted lists and put the output in a third list

 divide-and-conquer, using recursion

 to avoid temporary arrays declared locally for each recursion, use only

one temporary array

 cornerstone of most external sorting, O(N lgN)

Quicksort

 fastest in practice, worst-case O(N2), average O(N lgN)

 algorithm to sort an array S consists of 4 steps:

 If the number of elements in S is 0 or 1, then return.

 Pick any element v in S. This is called the pivot.

 Partition S-{v} (the remaining elements in S) into two disjoint

groups:

S1 = {x S-{v} | x v} and S2 = {x S-{v} | x v}

 Return {quicksort(S1) followed by v followed by quicksort(S2)}.

 picking the pivot:

 use the first element, O(N2) if presorted

 choose the pivot randomly, random number generation is expensive

but not reduce the average running time

 median, too expensive to compute

 median-of-three partitioning, even good for presorted input

 partitioning strategy:

 To handle keys that are equal to the pivot, i and j ought to do the

same thing.

 for small file, use insertion sort instead

 Quickselect makes only 1 recursive call instead of 2, worst-case

O(N2), average O(N)

 if use median-of-median-of-five as the pivot, O(N)

Counting/Bucket Sort

 not a general-purpose sorting algorithm

 The input A1, A2, .., AN must consist of only positive numbers smaller

than M. Keep an array Count of size M, which is initialized to all 0's.

When Ai is read, increment Count[i]. After all input is read, scan the

Count array, printing out the sorted list. O(N+M).

 the input must in [0, 1). Put A[i] in B[NA[i]], insert sort B[i] and then

concatenate them. O(N)

Radix/Distribution Sort

 the least significant digit sort first

 performance depends on the distribution

External Sorting

 disk has access delay to spin the disk and move the disk head, and tape

can only be accessed sequentially

 assume the internal memory can hold and sort M records at a time, and

each set of sorted record is called a run

 multiway Merge: k-way merge using heap requires logk(N/M) passes

and 2k tapes, e.g., in 2-way merge, input data was in tape 1, read in M

records at a time, sort them to become a run and write the runs

alternatively to 2 tapes. Then do merge until the run length become N.

 polyphase Merge: using Fibonacci number only need k+1 tapes

 Kth order Fibonacci number:

 Fk(N) = 0 for 0 N k-2, Fk(k-1) = 1

Fk(N) = Fk(N-1) + Fk(N-2) + .. + Fk(N-k)

 replacement Selection: when using DeleteMin, write the smallest number

out to a tape, then read another record from the input tape. If the data

read is greater than the one just write out, it can include in this run. If

the input is randomly distributed, replacement selection can produce

runs of average length 2M

Comparison Network

 parallel model of computation: many comparisons can be performed

simultaneously

 a comparison network is comprised solely of wires and comparators

 a comparator is a device with two inputs, x and y, and two output x' and

y', where x' = min(x, y) and y' = max(x, y)

 a wire transmits a value from place to place

 a comparison network contains n input wires and n output wires, draw

wires horizontally and comparators vertically, input on left and output

right

 The run time of a comparison network is the depth of the network, where

the depth of an input wire is 0, and a comparator's input wires have

depth dx and dy, then its output wires have depth max(dx, dy) + 1. The

depth of a comparison network is the maximum depth of an output wire,

or the maximum depth of a comparator.

 using comparison network to implement all kinds of sorting algorithm,

e.g., insertion sort, merge sort (using Sorter[n]), etc.

Sorting Network

 a sorting network is a comparison network for which the output sequence

is monotonically increasing for every input sequence

 the n-input, n-output sorting network in the family Sorter is named

Sorter[n]

 the zero-one principle: if a sorting network works correctly when each

input is drawn from the set {0, 1}, then it works correctly on arbitrary

input numbers

 A bitonic sequence is a sequence that either monotonically increases and

then monotonically decreases, or else monotonically decreases and then

monotonically increases. A sequence that is either monotonically

increasing or monotonically decreasing is also bitonic. The reversal of a

bitonic sequence is bitonic, The zero-one bitonic sequences have the

form 0i1j0k or 1i0j1k, for some i, j, k 0.

 A half-cleaner is a comparison network of depth 1 in which input line i is

compared with line i + n/2, assume n is even. When a bitonic 0/1

sequence is applied as input to a half-cleaner, the half-cleaner produces

an output sequence in which smaller values are in the top half, larger

vales are in the bottom half, and both halves are bitonic. In fact, at least

one of the halves is clean, i.e., consisting of either all 0's or all 1's.

 A bitonic sorter is comprised of several stages of half-cleaners to sort

bitonic sequences. The first stage of Bitonic-Sorter[n] consists of Half-

Cleaner[n] to produce two bitonic sequences of half the size such that

every element in the top half is at least as small as every element in the

bottom half, and using two copies of Bitonic-Sorter[n/2] to sort the two

halves recursively. The depth D(n) of Bitonic-Sorter[n] is lgn since D(n)

= 0 if n = 1, otherwise D(n) = D(n/2)+1.

 A merging network merges two sorted input sequences into one sorted

output sequence. Given two sorted sequences X and Y, if we reverse the

order of the second sequence to YR and then concatenate the two

sequences, the resulting sequence is bitonic. To merge X and Y, we

simply perform bitonic sort on XYR. We can construct Merger[n] by

modifying the first half-cleaner of Bitonic-Sorter[n] by comparing input i

with input n-i+1 (performing the reversal of the second input implicitly).

 The Sorter[n] uses the merging network to implement a parallel version

of merge sort. For k = 1, 2, ..., lgn, stage k consists of n/2k copies of

merger[2k]. The depth D(n) = 0 if n = 1, otherwise D(n) = D(n/2) + lgn.

Therefore, D(n) = (lg2n).

