
Object Oriented Paradigm

Ming-Hwa Wang, Ph.D.
Department of Computer Engineering

Santa Clara University

Object Oriented Paradigm/Programming (OOP)

similar to Lego, which kids build new toys from assembling the existing
construction blocks of different shapes

OOP - doing programs by reusing (composing/inheriting) objects
(instantiated from classes) as much as possible, and only writing code
when no exiting objects can be applied

Two Fundamental Principles for OOP

generalization or reusability: the classes designed should target to
reusability, i.e., it should very generic and can be applied to lots of
situations/applications without much efforts; reusability comes from
inheritance and/or composition

encapsulation or information hiding: we can hide detailed or
implementation specific information away from the users/programmers,
so changing implementation using the same interfaces will not need
modifying the application code

OOP Language vs. Environment

a language provides syntax/semantics (by its compiler), e.g., Modular,
C++, etc., programmers have to write code for everything to make
programs work

an environment provide a language and its library, e.g., Smalltalk, Java,
etc., programmers do not have to write a lot of code to do programming,
instead, they just try to reuse the existing code as much as they can

Classes vs. Objects

a class is a kind or a type, e.g., cat and dog are classes; a class is a data
structure, it contains

data/attributes/variables to store the states of the class

methods/messages/operators/functions/procedures/behaviors to
manipulate its data (an implementation), and to provide
interfaces/API to the users

manager functions manage class objects and handling activities
(initialization, assignment, memory management, type conversion),
usually invoked implicitly by the compiler, e.g., constructor

implementor functions: provide the capabilities associated with the
class abstraction

helping functions: provide support for the other class member
functions, generally declared as private

access functions: support user access to otherwise private data

level of accessibility: private, protected, public

an object is an instantiation from a class, e.g., you have a pet cat, who's
name is Garfield, then Garfield is a object (of the class cat)

to invoke an method, simply do obj.method() or obj->method(), the
former is object reference syntax, and the latter is pointer syntax

Relationships

a-kind-of relationship: a subclass inherits and adds more attributes
and/or methods from its super class to become somewhat "specialized"

is-a relationship: an object of a subclass is an object of its super class

part-of relationship:

has-a relationship:

Reusability

inheritance

a sub/child/derived/extended class can inherit all properties from its
super/parent/base/original class, with or without
modification/override or addition

single inheritance and multiple inheritance (watch out naming
conflicts)

composition

Abstract or Virtual Classes

only used as a super class for other classes, only specified but not fully
defined, and can't be instantiated

its derived classes must redefine all the virtual properties

Generic Types: Template

if a class is parameterized with another type, once an object of that class
is created, the parameterized type is replaced by an actual data type

Static and Dynamic Bindings

static (before compile time) binding

dynamic (after compile time, i.e., at runtime) binding

Polymorphism

the ability to request that the same operations be performed by different
objects, or many objects to perform the same action

the concept of dynamic binding allows a variable to take different types
dependent on the content at a particular time

Function Overloading

depending on function name and its parameters (number of parameters
and their types, but not return type though)

constructors and destructors

default constructor or user defined constructors

copy constructor

assignment constructor

The Design of OOP
the way you analyze a problem (break it down) will give you a particular set
of objects, and there are 3 helpful ways to identify objects when you are
designing a system:

a checklist of kinds of objects (Pressman): external entities, things,
occurrences or events, roles, organizational units, places, structures

in the grammatical parse you select the nouns and noun phrases as the
potential objects and verbs as possible operations performed on or by
the objects

6 characteristics to filter a list of potential objects. (Coad Yourdon)

retained information - the object needs to remember information

needed service - the object has operations which change its
attributes

common attributes - all occurrences of an object have the attributes

common operations - all occurrences of an object have the
operations

essential requirements - external entities which produce consume
information

multiple attributes - single attributes might be thought of as being
an attribute of a larger object, not an object in their own right

Class Diagrams

UML (Unified Modeling Language) notation example

Person

class name

firstName: String
lastName: String

attributes
age: Integer

setFirstName()
getFirstName()
setLastName()

operation
getLastName()
setAge()
getAge()

graphical notation

Design pattern

the pattern concept: encapsulate change. The basic concept of a pattern
can also be seen as the basic concept of program design in general:
adding layers of abstraction. Whenever you abstract something, you're
isolating particular details, and one of the most compelling motivations
for this is to separate things that change from things that stay the same.

two fundamental design patterns are implemented in object-oriented
language compilers: inheritance and composition. Other minor ones are
constructors/destructors (as guaranteed initialization and cleanup design
pattern), and aggregation (which is erroneously classified as a pattern.)

Gang of Four (Gamma, Helm, Johnson & Vlissides) discusses 23
patterns, classified under 4 purposes:

creational: How an object can be created. This often involves
isolating the details of object creation so your code isn't dependent
on what types of objects there are and thus doesn't have to be
changed when you add a new type of object.

structural: These affect the way objects are connected with other
objects to ensure that changes in the system don't require changes
to those connections. Structural patterns are often dictated by
project constraints.

behavioral: Objects that handle particular types of actions within a
program. These encapsulate processes that you want to perform,
such as interpreting a language, fulfilling a request, moving through
a sequence (as in an iterator), or implementing an algorithm.

concurrency:

basic ways to keep code simple and straightforward

messenger: packages information into an object which is passed
around, instead of passing all the pieces around separately

collecting parameter: captures information from the function to
which it is passed (using container to dynamically add objects)

Name Description

Creational patterns

Abstract factory
Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

Factory method
Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

Builder
Separate the construction of a complex object from its
representation so that the same construction process
can create different representations.

Lazy initialization
Tactic of delaying the creation of an object, the
calculation of a value, or some other expensive process
until the first time it is needed.

Object pool
Avoid expensive acquisition and release of resources by
recycling objects that are no longer in use

Prototype
Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype.

Singleton
Ensure a class only has one instance, and provide a
global point of access to it (using static member and
making all constructors/destructors private).

Utility
A class with a private constructor that contains only
static methods.

Structural patterns

Adapter
Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn't otherwise because of incompatible interfaces.

Bridge
Decouple an abstraction from its implementation so
that the two can vary independently.

Composite

Compose objects into tree structures to represent part-
whole hierarchies.

Composite lets clients treat

individual objects and compositions of objects
uniformly.

Decorator
Attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to
subclassing for extending functionality.

Facade
Provide a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that
makes the subsystem easier to use.

Flyweight
Use sharing to support large numbers of fine-grained
objects efficiently.

Proxy
Provide a surrogate or placeholder for another object to
control access to it.

Behavioral patterns

Chain of
responsibility

Avoid coupling the sender of a request to its receiver
by giving more than one object a chance to handle the
request. Chain the receiving objects and pass the
request along the chain until an object handles it.

Command

Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or
log requests, and support undoable operations. An
object-oriented replacement for callbacks (also
decoupling event handling).

Interpreter
Given a language, define a representation for its
grammar along with an interpreter that uses the
representation to interpret sentences in the language.

Iterator
Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying
representation.

Mediator

Define an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and it
lets you vary their interaction independently.

Memento
Without violating encapsulation, capture and
externalize an object's internal state so that the object
can be restored to this state later.

Observer Define a one-to-many dependency between objects so
that when one object changes state, all its dependents
are notified and updated automatically.

State
Allow an object to alter its behavior when its internal
state changes. The object will appear to change its
class.

Strategy
Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it.

Specification Recombinable business logic in a boolean fashion

Template method

Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template Method
lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

Visitor

Represent an operation to be performed on the
elements of an object structure. Visitor lets you define
a new operation without changing the classes of the
elements on which it operates.

Single-serving
visitor

Optimize the implementation

of a visitor that is
allocated, used only once, and then deleted

Hierarchical
visitor

Provide a way to visit every node in a hierarchical data
structure such as a tree.

Concurrency patterns

Active Object

The Active Object design pattern decouples method
execution from method invocation that reside in their
own thread of control. The goal is to introduce
concurrency, by using asynchronous method invocation
and a scheduler for handling requests.

Balking
The Balking pattern is a software design pattern that
only executes an action on an object when the object is
in a particular state.

Double checked
locking

Double-checked locking is a software design pattern
also known as "double-checked locking optimization".
The pattern is designed to reduce the overhead of
acquiring a lock by first testing the locking criterion
(the 'lock hint') in an unsafe manner; only if that
succeeds does the actual lock proceed.
The pattern, when implemented in some
language/hardware combinations, can be unsafe. It can
therefore sometimes be considered to be an anti-
pattern.

Guarded
In concurrent programming, guarded suspension is a
software design pattern for managing operations that

require both a lock to be acquired and a precondition to
be satisfied before the operation can be executed.

Leaders/followers

Monitor object

A monitor is an approach to synchronize two or more
computer tasks that use a shared resource, usually a
hardware device or a set of variables.

Read write lock

A read/write lock pattern or simply RWL is a software
design pattern that allows concurrent read access to an
object but requires exclusive access for write
operations.

Scheduler

The scheduler pattern is a software design pattern. It is
a concurrency pattern used to explicitly control when
threads may execute single-threaded code.

Thread pool

In the thread pool pattern in programming, a number
of threads are created to perform a number of tasks,
which are usually organized in a queue. Typically, there
are many more tasks than threads.

Thread-specific
storage

Thread-local storage (TLS) is a computer programming
method that uses static or global memory local to a
thread.

Reactor

The reactor design pattern is a concurrent
programming pattern for handling service requests
delivered concurrently to a service handler by one or
more inputs. The service handler then demultiplexes
the incoming requests and dispatches them
synchronously to the associated request handlers.

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

