
Programming Requirements

Ming-Hwa Wang, Ph.D.
Department of Computer Engineering

Santa Clara University

General Requirements
• Programs should be coded in the language required by the class. Your

programs should run on the school’s Linux workstations in the Design Center
using your own account. Please code your programs on the Linux servers in
Design Center instead of your own laptop, please there are porting problems
which may take longer than you expected.

• Submit the electronic version of source code by using Submit. Programs must
pass Autotest (except cross platform client/server or distributed programs)
before submitting. Due to limited disk space, only the last submitted program
will be saved and used for grading. You should not submit too often. The order
of emails arriving may not be the same as your sending order. If you send too
often without enough time in between - roughly 15 minutes - the last one
received may not be your correct version. In this case, it is your responsibility if
you get the wrong grade.

• Your program should input from stdin (i.e., keyboard), and output to stdout
(i.e., monitor) except requested explicitly. You need to print out all input and
output to demonstrate the requested functionality in the program
specifications. You can test your program and input either by typing from
keyboard manually (and type Ctrl-D for end of input) or redirected (by “<”)
from a test file (as Autotest does it for you automatically.) Be careful about the
EOF handling to make manual testing exactly the same as Autotest.

• Your program should follow the whitespace free format convention.
• Sample input data are under /home/m1wang/test/coen<courseDigits>. You are

responsible to construct your own test data according to the requirements
specified for each programming assignment. Your test data should cover all the
possibilities because your program will be tested using the test data prepared
by the grader after the due date. You can't put any limitation on the input
size/length (using realloc if necessary or use dynamic data structures) except
specified explicitly.

• Programming is not typing. You need to debug your program and give correct
results to get a good grade. Typing is only worth 30% of the score.

Whitespace Free Format Convention
Whitespaces include spaces, tabs, comments, and new lines. When you writing
programs in any modern language, they all follow this convention, e.g., you can
write the code either like:

if (b==0) {
cout << b << endl;

}
Or equivalently, you can simply write like:

if (b == 0) { cout << b << endl; }

No-Cheating Policy
1. Any plagiarism will get a 0 score for the programming assignment and an “F”

grade for the class. Besides, it will be reported to the Student Life Office.
2. For programming assignments, you need to write all the code by yourself. If

either you copy another student’s program or let other students copy yours in
whole or partially, both are plagiarism no matter the copied code is without
change or partially modified (e.g., change variable/function names, reorder
functions, etc.) or not.

3. For programming assignments, you should not use any open source code or
source code from the Internet. If you have to use them, you must put a) where
you get the open source code from and b) what is your modifications to the
code, in the beginning of a README file and submit it with your source code. In
this case, you only get 0% of the score for the code you use, e.g., if 30% of your
code is from Internet and 70% is your own code, then you will get only the
score for 70% your own code. But if you do not provide the information as a)
and b) above in the beginning of the README file, you will be identified as
plagiarism.

4. We encourage to use open source code or source code from Internet in your
project but you if you do, you must put a) where you get the open source code
from and b) what is your contributions (e.g., bug fixes, enhancements, etc.) to
the code, in the README file and submit it with your source code. If you have
a) and b) above in your README file, there is no penalty of using them. If you
do not provide the information, you will get 20% score deduction.

Re-grading Policy
If you have any doubt regarding the grading of program assignments. You should do
the following:
1. Try re-run your program with the real test files the grader provided:

$ Autotest <num> -t /home/<grader>/test
where <num> is the program assignment number.

2. Only if your program can generate correct results for grader’s test cases, you
can ask for a regarding. If you need manual help to run your program (e.g., use
special format input), then you need to pay 5 points for special service. But if
the grader made a mistake, you can get your points back without a service
charge.

3. You have to ask for a re-grading within a week after you get your grade of the
program. After 1 week, the grader needs to clean up his limited disk space for
new program assignments.

4. Penalty for code changes (fixing bugs only) after the due date: 10% for 1-2
statements changes, 20% for 3-5 statements changes, 35% for 6-10 statements
changes, and not allowed for more than 10 changes.

Protection
• protect your source code been copied by others:

$ cd; cd ..
$ chmod go-rwx <yourLoginName>

Programming Languages
• Use C++ and compiled with g++ (include –lstdc++ automatically, read

/home/m1wang/tips/language/c++ for details) or CC (not include –lstdc++)
• Use C compiled with cc or ANSI C compiled with gcc

• function prototypes
 #ifdef ANSI
 void vFoo(int i) {
 #else
 vFoo(i) int i; {
 #endif

• comments
 use /* and */ pair instead of //
• Use Java compiled with javac and run with java

• setup jdk
• javac foo.java
• java foo

• Use Python (prefer python 3.x)
• Use Go Language
• Use debugging tool

Compiled with –g option and using dbx for cc, gdb for gcc and CC/g++, use jdb
for java, and use python3 –m pdb for Python

• C/C++ include file search path using –I<path> option
• C/C++ library

• C/C++ library search path using –L<path> option
• C/C++ uses -lm for math library, e.g.,

$ gcc -o foo foo.cpp –lm

Makefile
• a Makefile contains rules and optional definitions, please read

/home/m1wang/P0/Makefile as an example
• a definition (or macro) contains names and their actual values

• a rule contains a target, dependents source files, and actions to generate
the target, the first rule in a Makefile is the goal to achieve, e.g.,
 all: <file>.c <file>.h
 g++ -o Pn <file>.c

• Note: make file actions must start with a tab (not 8 spaces), and you must have
a clean target to remove all object files, executables, core file, or temporary
files to save bandwidth and space and prevent filtering out by spam filters

• You can use P0/Makefile for other programming assignments by changing all P0
to Pn. If you use C/C++, change info.cpp and info.hpp in the Pn/Makefile to the
source files for Pn.

Coding Standards
• use meaningful id instead of short and brief names
• always use curly braces for if-else etc. statements
• graceful/meaningful error handling to avoid core dump
• no hard-coded numbers
• using #if for static condition instead of "if" statement for speed
• program/function/multiple-line/single-line documents
• using blank line and tab (indentation) properly
• using top-down modular design, watch reusability
• function size (150 lines including documentation)
• use module prefix for functions and global variables
• defensive programming by pre-/post-conditions and assertions
• use while and if-then-else to get rid of goto
• allocate and free an object in same function

Common Bug-prone Coding Examples
• access field of a record from the record pointer without checking if the pointer

is null
• free objects but not nullify the pointers
• using static variables in recursive calls

Test Data
The test data are put under /home/m1wang/test/coen<num>.

$ cd /home/m1wang/test/coen<num>
$ ls
t10.dat t11.dat t19.dat

An example test file name is t10.dat, where the first digit 1 is for the programming
assignment #1, and the second (and/or third) digit is a serial number from 0.
Generally, the sample test files using big serial numbers are error input files (e.g.,
t19.dat), and your program need to handle it gracefully (i.e., defensive

programming.) However, for real test cases, you can’t tell if the input is legal or not
merely by checking the serial numbers.

Directory Organization for Automation
• Directory organization:

$ cd; mkdir Pn
where n can be 0, 1, 2, 3, 4, 5, etc.

• Files: put all source files related to program n under Pn
• README file (optional)
• C/C++ Makefile (note: action should be lead by a tab)

 Pn : <file>.c <file>.h
 CC -o Pn –DANSI <file>.c
 clean:
 rm -rf *.o Pn

• Java Makefile (note: action should be lead by a tab)
NOTE: need to run setup jdk first, and run gmake
DIR = .
SRCS = $(wildcard $(DIR)/*.java)
OBJS = $(SRCS:.java=.class)
all: $(OBJS)
clean: FORCE
 rm -f *.class core *~
.SUFFIXES: .java .class
.java.class:
 javac $<
FORCE:

• header files and C/C++ files, or Java files
• test input and output files (optional)

• Manual testing: either type input through keyboard, or redirect input from a
file as:

./Pn < /home/m1wang/test/coen<num>/txx.dat
where <num> is the course number, e.g., 233, 210, etc.

• Manual submit (note: don’t do this, this just shows your why automation is
needed):
• Tar the whole directory

$ make clean
$ tar cvf Pn.tar Pn
$ compress Pn.tar
$ uuencode Pn.tar.Z Pn.tar.Z > Pn.tar.Z.uu

• Email Pn.tar.Z.uu to me and grader:
$ mailx -s Pn m1wang@scu.edu grader < Pn.tar.Z.uu

• To recover the files
save the email as Pn.tar.Z.uu and strip heading
$ uudecode Pn.tar.Z.uu
$ uncompress Pn.tar.Z

$ tar xvf Pn.tar

Automation
Always use scripts to do submission and testing. To get the most current Perl
scripts:

$ cd
$ ln –s /home/m1wang/bin/Autotest<num> Autotest
$ ln –s /home/m1wang/bin/Submit<num> Submit
where <num> is the course number, e.g., 233, 210, etc.

Submit
1. trial submission to yourself:

$ Submit <your_login_name> /home/<your_login_name>/ Pn
2. test correctness by Autotest:

// those 4 steps can be skipped except the grader
$ cd; cd AutoTestDir
$ mkdir <your_login_name>
$ cd <your_login_name>
$ mail
(save the email as Pn.m, or save attachment Pn.tar.gz)
// end of skipped steps
$ ~/Autotest n
$ cat out
(check if your out is correct, note: If no, debug your program and then go to
step 1.)

3. formal submission:
$ cd; Submit Pn

Autotest
• You can provide parameters to make Autotest more flexible. The way to call

Autotest is:
$ Autotest <num> [-k] [-t <testdir>] [<name list>]
Things in [] are optional, <num> should be 0-5, <test dir> should be a full
directory path name, and <name list> is a list of login names separated by
space. –k option is used to keep run directory.

• For testing before submit, use
$ Autotest <num>

• For testing using your own test cases under <test dir>, do
$ Autotest <num> -t <test dir>

• For grading and only run some of the student's programs, do
$ Autotest <num> -k <name list>

Input Requirements and Example Code
When you code your program, all input should be from stdin, or keyboard. For
example, if your program input a number and prints out the square of the number
as output.
• If you are a C programmer, your C program should read an integer from

keyboard as:
// C Program : square.c
include <stdio.h>
main () {

int i;
while (scanf("%d", &i) != EOF) {

printf("The square of %d is %d.\n", i, i * i);
}

}
To compile using gcc:
$ gcc square.c
Or to compile using cc:
$ cc square.c

• If you are a C++ programmer, your C++ program should be:
// C++ Program : square.cpp
#include <iostream.h>
main () {

int i, i2;
while (cin >> i) {

// Noted that the >> operator automatically
// suppress white spaces. if you don't want
// suppress white spaces, use cin.get(ch)
i2 = i * i;
cout << "The square of " << i << " is " << i2 << "." <<
endl;

}
}
To compile using CC:
$ CC square.cpp

• To run the program
$ a.out
25 (you type in 25 and hit return)
The square of 25 is 625.
3 (you type in 3 and hit return)
The square of 3 is 9.
^D (you type ctl-D as EOF and hit return)

• In order to automate our process, the UNIX redirect is used. Where the input
can be from a file, call t0.dat:
$ cat t0.dat
25
3

$ a.out < t0.dat
The square of 25 is 625.
The square of 3 is 9.

• If you use Java:
/** StdIo.java */
import java.io.*;
public class StdIo {
 public static void main(String[] args) throws IOException {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(System.in)
);
 String s;
 while ((s = in.readLine()) != null) {
 System.out.println(s);
 }

}
}
To run using javac and java:
$ javac StdIo.java
$ java StdIo < t0.dat

• If you use Python:
#!/opt/python-3.4/linux/bin/python3
or you need to use your machine’s python3 path,
e.g, /usr/bin/python3
import sys
for line in sys.stdin:
 print(line.rstrip())
To run:
$./stdIo.py < t0.dat

• If you use Go:
package main
import (
 “fmt”
 “bufio”
 “os”
)
func main() {
 input := bufio.NewScanner(os.Stdin)

for input.Scan() {
fmt.Printf(“%s\n”, input.Text())

 }
}
To run:
$ go run stdIo.go < t0.dat

Output Requirements and Example Code
When you code your program, all output should go to stdout or stderr. By default,
both stdout and stderr will be displayed on the terminal CRT.
• Your C program tee.c can print messages to stdout and stderr:

// C Program tee.c
#include <stdio.h>
main () {

fprintf(stdout, "Output to stdout\n");
fprintf(stderr, "Output to stderr\n");

}
Compile it using gcc:
$ gcc tee.c
To compile using cc:
$ cc tee.c

• And here is your C++ program:
// C++ Program tee.cpp
#include <iostream.h>
main () {

cout << "Output to stdout" << endl;
cerr << "Output to stderr" << endl;

}
Compile it using CC:
$CC tee.cpp

• To run:
$ a.out
Output to stdout
Output to stderr
• We can redirect only the output into a file, call t0.out, by either UNIX

redirect ">":
$ a.out > t0.out
Output to stderr
$ cat t0.out
Output to stdout

• or the "tee" command:
$ a.out | tee t0.out
Output to stdout
Output to stderr
$ cat t0.out
Output to stdout

• We can redirect both stdout and stderr to a file by either UNIX redirect
">&", "2>&1", or “|&”:
$ a.out >& t0.out
$ cat t0.out
Output to stdout
Output to stderr

• or the "script" command:

$ script junk
$ a.out
Output to stdout
Output to stderr
$ exit
$ cat junk
a.out
Output to stdout
Output to stderr
exit

File Input and Output
Autotest requires you to do input from stdin and output to stdout or stderr. When a
special requirement is asked to do file input/output, the following are the rules:
• To make Autotest work for file input, all input files should be put in full path,

e.g., “/home/m1wang/test/foo”.
• You should save your file a level up by using an absolute full path file name or a

file name like “../foo” instead of “foo”, i.e., parallel to the Pn directory. Note
that the Autotest will automatically remove your Pn directory after it is done (in
order to save disk space).

Note that file input and output make Autotest less flexible, thus only can be used
when specially specified in program specifications.

Binary File Input and Output
To handle binary file input/output, you use the same way as text input/output. All
binary files have to be some multiple of bytes. To read the content of a binary file,
use the ‘od’ command. To know more about the ‘od’ command, use ‘man od’.

Run Time Comparison
Autotest not only runs your program many times, each for a test case, but also uses
the ‘time’ command to record the run time of your executable. The time command
will display the real (or elapsed) time, the system time, and the user time. To know
more about the time command, use ‘man time’. The user time is used for run time
comparison for sequential programs, the elapsed time for threaded programs.

A Reminder
Since the penalty is 20% per day, you rather start early than postpone until the near
the due date. After you finished coding, you only got about 30% done. You need
time to debug your program, which may be the longest time you need to make it
work; you need time to run the program, especially the NP-hard problem may takes
you very long time to run; you need time to do big-Oh calculation and/or
documentation; and you also need to optimize in order to get high score on speed.

