Introduction to Computer Programming

Ming-Hwa Wang, Ph.D.
Department of Computer Engineering
Santa Clara University

Introduction to computer systems
- input
- output
- central process unit (CPU)
 - control
 - main memory
 - arithmetic and logic unit (ALU)
- secondary memory

Weighted number system
- polynomial with coefficients, base, and exponents (as weight)
- decimal
- binary
- octa/hexa decimal
- conversions among them
- negative numbers
 - sign bit
 - one's complement
 - two's complement
- floating point number
 - rounding error

Coding system
- EBCDIC
- ASCII
 - space (32), 0 (48), A (65), a (97)
- unicode

Problem solving
problem \rightarrow\text{math model\algorithm} \rightarrow \text{adt/pseudocode} \rightarrow \text{data structure/program}

Flowchart
- terminal: start, end, function call, function return
- input/output: input, output
- process: assignment
- subroutine: function call
- decision: selection, loop

- arrow: goto, jump
- connector:

Sequence and control model
- sequence
- control
 - selection
 - one-way: if
 - two-way: if else
 - multi-way: if else if, or switch
 - loop
 - initialization
 - decision
 - re-initialization
 - body
 - incomplete loops: while, do/while, repeat/until
 - complete loops: for

Basic techniques
- substitution
- accumulation
- swap
- producer/consumer

Algorithm verification
- pre-condition
- post-condition
- assertion

Languages
- low level or machine-like: machine, assembly
- high level or human-like: procedural, functional, object-oriented
- very high level (what instead of how): description
- compilers and interpreters

Logical
- not
- and
- or
- xor
- bitwise operators

Recursion
- base case
- progress toward base case
- tail recursion elimination
- recursion and iteration algorithms for the same problem:
 - factorial number
 - fibonacci number
 - binary search

Time complexity
- big-Oh notation: $O(\)$

Parameter passing
- call-by-value
 - pass address to mimic call-by-reference
- call-by-reference

Array
- one-dimensional memory
- one-dimensional array
- map multi-dimensional array into memory
 - column major order: FORTRAN
 - row major order

Abstract data types
- data types
- abstract data types: data and operations

Object-oriented
- objects as service providers
- reusability: generalization
- information hiding: encapsulation
- class hierarchy
- relations
 - IsA: inheritance (single/multiple), reuse the interface
 - HasA: composition, reuse the implementation
- overriding
- polymorphism by dynamic or late binding
- abstract class

Example Problems
- snail
- max, min
- gcd
- selection sort
- binary search

- account
- linked list: find, insert, delete, reverse
- double linked list: insert, delete
- multilist: registration problem
- binary search tree: find, insert, delete, traversal
- heap: heapify, build heap, heap sort

Stack and queue
- stack: LIFO with top pointer
 - operators: push, pop, isEmpty, size, etc.
- queue: FIFO with head/tail pointers
 - operators: enqueue, dequeue, isEmpty, size, etc.
- circular queue
deqeue: both stack and queue
 - operator: push, pop, shift, unshift

Linked list
- single linked list
- double linked list
- circular linked list
- operator: find, isEmpty, size, insert, remove, etc.

Tree
- tree definition
- convert tree to binary tree
- binary search tree
- traversal
 - preorder
 - inorder
 - postorder
 - level-order
- operators: find, insert, remove

Heap or priority queue
- min heap and max heap
- heapify
- buildheap

Sort
- $O(n^2)$: bubble sort, selection sort, insertion sort
- $O(n \lg n)$: shell sort, merge sort, heap sort, quicksort

Hash
- hash table and prime table size
• hash function $O(1)$: use shift instead of multiple/divide
• loading factor lambda
• collision and collision resolution
 • open hashing using linked list (or binary search tree)
 • close hashing
 • linear probing
 • quadratic probing
 • double hashing