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Abstract

This study aims to classify a collection of images based on styles. In our study, we will define
the style of images based on colors, gray scale, brightness, lightness and contrast. There are
three stages in our study. The first stage, we extract the features with Java from the images. We
also calculated the top k color clusters in each image using KMeans algorithm. Then we map
each image to 64 color ranges in color space. In the second phase,we train the model using
Random Forest, Support Vector Machine (SVM), Generalized Boosted Regression. In the third
phase, we display the classification of images in groups in webpages. The results of this study
indicates that Random Forest and Generalized Boosted Regression produces much higher
correct matching percentage of the classification against human-eye pre-labeling. The highest
match percentage of classification to be 48% in our tests for both the Random Forest model the
the Generalized Boosted Regression model. Also the parameter k in KMeans is sensitive and
could affect the output in classification. In our tests, k = 5 produces the best results for the
learning models. There are also some abnormal cases, please refer to section 7 and section 8
to see more discussion and suggestions for future studies.

The following is the link to our Github code https://github.com/susiesu2/ColorStyleClassification.
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2. Introduction

2.1 Objective

Nowadays, many websites such as Airbnb, Redfin and Pinterest own tons of customer images.
They are valuable data to generate business insights and enable recommendation system.
These images contain ample implicit information which are not fully expressed in text, such as
the design style, the clean level, the colorfulness of the home. If we manually extract such
information by tagging the images and then do data mining based on text, the process is prone
to error and requires a lot of human efforts. So we’d like to build a system to do image mining
based on the major colors in an image. In our experiment, our objective is to group a huge

amount of house interior images based on color style.

2.2 What is the problem

Different images contains different set of colors, which contains lots of meaningful information,
i.e., telling the taste of a person from what images he/she likes. In order to tell the style of
images, we want to implement a image mining model to group the images by color, that is to
find images with the similar colors. Since the style of a design is highly dependent on the colors,
we can roughly tell the style of an image based on its colors. If the colors in two images are
similar, we say the two images have similar style. The system should output groups of images of

similar style.



2.3 Why this is a project related this class

Image is one of the major data resources, which contains unbelievable hidden information.
Image mining is an important component of data mining. This area is underdeveloped and has

huge potential.

2.4 Scope of investigation

Image mining is a complex topic. In our research, we cut into this topic from color. In our
experiment, we only look at color content of images. Other features like texture, object are not
discussed in this paper. Thus our output of groups of images will only based on color

information, e.g., RGB, HSV, brightness, grayscale, etc.

3. theoretical bases and literature review

3.1 Definition of the problem

This study aims to classify a collection of images based on styles. In our study, we will define

the style of images based on colors, gray scale, brightness and lightness.

3.2 Theoretical Background of the Problem

Currently, images databases have a tendency to become too large to be handled manually. An



extremely large number of image data such as satellite images, medical images, and digital
photographs are generated every day. If these images could be analyzed, a lot of effective
information can be extracted. There are mainly two major approaches for imaging mining: one is
Functionally Driven Framework and the other is Information-Driven Framework [Zhang, (2001)].
Traditionally, images have been represented by alphanumeric indices for database image
retrieval. However, strings and numbers are not closely related to human being’s emotions and
feelings. Therefore, there are new need to develop techniques for extracting features of images
using other approaches, such as Content-Based Image Retrieval system [Gudivada--Raghavan

(1995)].

3.3 Related research to solve the problem

Content Based Image Retrieval is a popular image retrieval system which is used to retrieve the
useful features of the given image. In the research article by [Kannan, (2010)], this research
article employed the CBIR (Content-Based Image Retrieval) model to retrieve the target image
based on useful features of the given image, which including texture, color, shape, region and
others. In the color based image retrieval system, the RGB model is used. The RGB color
components are taken from each and every image. In the following step, the mean values of
Red, Green, and Blue components of target images are calculated and stored in the database.
Next, the study by [Kannan (2010)] performed a clustering of images using the Fuzzy C-means
algorithm. Fuzzy C-means (FCM) is one of the clustering methods which allow one piece of
data to belong to two or more clusters. In this clustering, each point has a degree of belonging
to clusters, as in fuzzy logic, rather than belonging completely too just one cluster. Thus, points
on the edge of a cluster may be in the cluster to a lesser degree than points in the center of

cluster.



Another study by [Dubey (2011)] used a combination of techniques, namely Color Histogram
and Edge Histogram Descriptor. The nature of the Image is based on the Human Perception of
the Image. Computer vision and image processing algorithms are used to analyze the images in
this research study. For color the histogram of images are computed and for edge density it is
Edge Histogram Descriptor (EHD) that is found. For retrieval of images, the averages of the two

techniques are made and the resultant Image is retrieved.

3.4 Advantage/disadvantage of those research

One advantage of the research article by Kannan [Kannan, (2010)] is that this study combines
the concepts of CBIR and Image mining, and also develops a new clustering algorithms to
increase the speed of the image retrieval system. The disadvantage of this study is that it only

relies on RGB color to learn the style. It might not produce the optimal results for user query.

3.5 Our solution to solve this problem

Our approach to find similar images has two phases. The first phase is to cluster the colors in
each image by k-means method, so as to find the top k major colors in an image. We also
extract other color information of an image such as grayscale, brightness and lightness. The
second phase is classification. First, we will train different machine learning models using a
sample of images and our expected output. We use the following three models to train our
model: random forests, generalized boosted regression and support vector machine. Then we

use the model to do classification of the rest images.



3.6 Where our solution different from others

. We use clustering to do color quantization, i.e., group adjacent pixels into clusters, then
compute a quantized color for each cluster.
. Our solution incorporates machine learning models, namely Random Forest, Support

Vector Machine and Generalized boosted regression.

3.7 Why our solution is better

The style of home interior design is highly dependent on color, so color has a high importance in
determining style. Color can be easily represented and summarized in number. So our

approach to find similar style home using color is efficient.

4. Hypothesis

4.1 Multiple hypothesis

e We define style of an image by color, gray scale, brightness and lightness, etc.
e After the analysis, the images are grouped by style. Beforehand, we will have a look at
the images and group them by human eyes. Our goal is the output of classification aligns

with our expected grouping.



5. Methodology

5.1 How to generate/collect input data

The input dataset is a collection of housing interior images downloaded from Google. The size
of the dataset is about 250 pictures. A random sample of the dataset will be manually classified

first and then used as training data.

5.2 How to solve the problem

The general way to find similar images consist of two phases, first extract features, and then
cluster the images based on extracted features. We will modify this model to meet our need to
find similar style images. We define design style as a list of features like color, gray scale,
brightness, and contrast. With test dataset, we classify the images into 14 different styles, and
then use machine-learning models to train the test dataset. The trained model will automatically

classify the rest of images into 14 styles.

5.3 Algorithm design

Our image classification algorithm includes two phases: feature extraction, data training and

generating output.
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5.3.1 Feature Extraction

Features like, color, gray scale, brightness, and contrast tell much about design styles. A raw
image does not contain those information, thus in this step we will extract these information from
pixels. The output for this phase is a labeled dataset with desired features.

There are two common color coordination system in use today, RGB(Red, Green, Blue) and
HSV(Hue, Saturation, Value). We use both systems and exact as much as features we can
relate to design styles. We do not decide the importance of each feature at this stage, the

relevancy will be learnt by machine learning models in training stage.

Color:

The number of pixels for an image can range from 10”2 to 10*7. Each pixel contains three
values: the amount of red, green, and blue. The comparison of color pixel by pixel is a burden
for computation. Thus we use k-means to cluster an image into k colors, with RGB value, and
weight of that color. The RGB model can represent 2553 colors. We divide the color space into
64 pools. For each of the k clustered colors, if the color falls into the range of one pool, then we
update the weight of that pool. When this is done, an image should have 64 attributes indicating

the weight of each color pool in the image.

Gray scale:
Gray scale carries intensity information. The gray scale can be calculated by RGB value based
on the luminance-preserving conversion equation. To represent the overall intensity of the

image, we use median, first quartile third quartile value of gray scale.

11



Hue:

Hue is the attribute of a visual sensation according to which an area appears to be similar to
one of the perceived colors: red, yellow, green, and blue, or to a combination of two of them.
The calculation of hue depends on the max of RGB color channel. So there are three equations
to calculate hue:

If Red is max, then Hue = (G-B)/(max-min) *60

If Green is max, then Hue = (2.0 + (B-R)/(max-min))*60

If Blue is max, then Hue = (4.0 + (R-G)/(max-min))*60

Lightness:
Under HSL model, lightness is defined as the average of RGB value. In order to represent the

overall lightness of the image, we use median value of lightness.

Contrast:
Contrast is the difference of gray scale value between the largest and smallest value. We

calculate it based on the k clustered colors.

5.3.2 Classification and training

5.3.2.1 Generate training data

The target vector is the style of housing. We randomly select parts of the complete dataset and
manually classify the images into n (n = 14 in this study) styles. The classified dataset will be

our training dataset and test dataset.
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5.3.2.2 Machine learning models

Our project is supervised learning, thus we will use supervised classification models for learning
purpose. In order to get the best result, we will test on several models and select the one that
generates the best result.
The models we will test on are:

Random Forest

Generalized boosted regression

Support Vector Machine

5.4 Programming Languages

The feature exaction will be implemented in Java. The training and machine learning will be

implemented in R.

5.5 Tools used

We will use ImagelO library to get pixel data from images. Several R packages will be used for
machine learning purpose, including e1071(), randomForest, and gbr (generalized boosted

regression).

5.6 Output Generation

The output is a column vector representing the style of each image like the following table.

13



ImageName | Style

img1 DS3
img2 DS1
img3 DS3
img4 DS1
imgN DS4

5.7 Methodology to test against hypothesis

We apply control variable method to test against both features and machine learning models.
We have three models to test to see which one generates the lowest error rate. When applying
one model, we change the amount of features one by one (e.g., the k parameter in the Kmeans
algorithm), and try to find the best combination. We apply this comparison to all three models
and finally pick the best matching one judged by test datasets. If any of the models can

generate good results, then we confirm the housing style is largely determined by color content.
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6 Implementation

6.1 Feature Extraction

The first phase of this study is to extract features from image collections. We implemented this
phase by using the java.awt.image.Bufferedlmage package. The following is our code API

public static List<Color> readIMG(String filePath) {
Bufferedimage bi;
List<Color> alMG = new ArrayList<Color>();
try {
bi = ImagelO.read(new File(filePath));
for (inty = 0; y < bi.getHeight(); y++) {
for (int x = 0; x < bi.getWidth(); x++) {
int[] pixel = bi.getRaster().getPixel(x, y, new int[3]);
Color aColor = new Color(pixel[0], pixel[1], pixel[2]);
alMG.add(aColor);

}

}
} catch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace();
}

return alMG;

6.2 KMeans to extraction top k colors

After we extract the pixel information (represented by red, green, blue color object), our next
step is to find out the dominant top k colors by using the Kmeans algorithm to do the clusters. In
this step, each images’ top k colors will be identified and saved. This step greatly reduces the
dimension of colors in each picture. For instance, if a picture is about 500 by 500 pixels. Then
250000 pixels of colors are saved under the picture in the first phase of feature extraction. After
we have done the Kmeans clustering, we will only store top k colors in each picture. The
following are the major APIs for implementing the Kmeans algorithm.

15



public class Cluster {

private final List<Color> points;

private Color centroid,;

private int id;

public Cluster(Color firstPoint) {
points = new ArrayList<Color>();
/faddPoint(firstPoint);
centroid = firstPoint;

}

public Color getCentroid() {
return centroid;

}
}

public class Clusters extends ArrayList<Cluster>{
private static final long serialVersionUID = 1L;
private final List<Color> allPoints;
private boolean isChanged;

public Clusters(List<Color> allPoints) {
this.allPoints = allPoints;

}
[
* @param point
* @return the index of the Cluster nearest to the point
*/
public Integer getNearestCluster(Color color) {
double minSquareOfDistance = Double.MAX_VALUE;
int itsIndex = -1;
for (inti=0;i < size(); i++) {
double squareOfDistance = color.getSquareOfDistance(get(i)
.getCentroid());
if (squareOfDistance < minSquareOfDistance) {
minSquareOfDistance = squareOfDistance;
itsindex = i;

}

return itsindex;
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public class KMeans {
private static final Random random = new Random();
public final List<Color> allPoints;
public final int k;
private Clusters pointClusters; // the k Clusters
public KMeans(List<Color> allColors, int k) {
if (k <2)
new Exception("The value of k should be 2 or more.")
.printStackTrace();
this.k = k;

this.allPoints = allColors;

6.3 Color range map

The total number of possible colors are 255*3. In order to reduce the color range make the
classification more sensitive and applicable for small dataset (e.g. a few hundreds images), we
mapped all of the possible colors to 64 colorBuckets. Therefore, we will produce a table in the
following format. Each image will have top five (let’s take five for example) colors with a weight
represented how many percentage of pixels falls into that particular color cluster. Therefore,
each image have five colors mapped into the 64 colorBuckets with a weight. These parameters
will be used by all the three training models to learn images’ potential styles.
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img ID range 0 range 1 range 2 range 62 | range 63
1 0.255 0.011 0.33 0.15 0.11

100 0.233 0 0.132 0 0.212 0.235 0.1515
248 0 0.334 0 0.17 0.27 0.1313 0.3124

6.4 Training Phase

In this study, we use three different training models: Random forest, Generalized boosted
regression, and Support vector machine. In the beginning, we use human eye to label all the
images in our dataset into 14 categories. Then we use this information and also the table in the
step of color range map to train our data.

6.4.1 Random forest training model

Random forests is a notion of the general technique of random decision forests that are an
ensemble learning method for classification,regression and other tasks, that operate by
constructing a multitude of decision trees at training time and outputting the class that is the
mode of the classes (classification) or mean prediction (regression) of the individual trees.
Random decision forests correct for decision trees' habit of overfitting to their training set (cited
from wikipedia).

In this study, we tried to adjust the number of decision trees to fit our model. In the end, the
parameter of 1000 seems a good fit for our dataset. The following is our code for random forest
training model.

train<-read.csv("train.csv")

test<-read.csv("test.csv")

library(randomForest)

set.seed(415)

fit <- randomForest(as.factor(Style) ~ range0 + range1 + range2 + range3 + range4 + range5 +
range6 + range7 + range8 + range9 + range10 + range11 + range12 + range13 + range14 +

18


https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)
https://en.wikipedia.org/wiki/Overfitting

range15 + range16 + range17 + range18 + range19 + range20 + range21 + range22 + range23
+ range24 + range25 + range26 + range27 + range28 + range29 + range30 + range41 +
range42 + range43 + range44 + range45 + range46 + range47 + range48 + range49 + range50
+ range51 + range52 + range53 + range54 + range55 + range56 + range57 + range58 +
range59 + range60 + range61 + range62 + range63 + grayscale + contrast, data=train,
importance=TRUE, ntree=1000)

(VI_F=importance(fit))

varlmpPlot(fit)

Prediction <- predict(fit, test)

submit <- data.frame(ID = test$imagelD, Category = Prediction)

write.csv(submit, file = "firstforest.csv", row.names = FALSE)

6.4.2 Support vector machine model

Given a set of training examples, each marked for belonging to one of two categories, an SVM
training algorithm builds a model that assigns new examples into one category or the other,
making it a non-probabilistic binary linear classifier (cited from wikipedia). We used R to
implement the support vector machine model and the following is our code.

library("e1071")

train<-read.csv("train.csv")

test<-read.csv("test.csv")

nb<-ncol(train)

id<-test[,1]

category<-as.character(train[,nb])
attributes<-train[,c(-1,-nb)]

testattrib<-test[,c(-1,0)]

model<-svm(attributes, category, type="C", probability = TRUE)
prediction<-predict(model, testattrib, probability = TRUE)
out<-cbind(id, as.character(prediction))

write.csv(out, file = "svm.csv", row.names = FALSE)

6.4.3 Generalized boosted regression model

Gradient boosting is a machine learning technique for regression and classification problems,
which produces a prediction model in the form of an ensemble of weak prediction models,
typically decision trees. It builds the model in a stage-wise fashion like other boosting methods
do, and it generalizes them by allowing optimization of an arbitrary differentiable loss function
(cited from wikipedia). We used R to implement this model and the following is our model.
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train<-read.csv("train.csv")

test<-read.csv("test.csv")

library(gbm)

library(dplyr)

category = train$Style

train = select(train, -Style)

end_trn = nrow(train)

all = rbind(train, test)

end=nrow(all)

all = select(all, range0 , range1 , range2 , range3 , range4 , range5 , range6 , range7 , range8 ,
range9 , range10 , range11 , range12 , range13 , range14 , range15 , range16 , range17 ,
range18 , range19 , range20 , range21 , range22 , range23 , range24 , range25 , range26 ,
range27 , range28 , range29 , range30 , range41 , ranged4?2 , range43 , range44 , range45 ,
range46 , range47 , range48 , range49 , range50 , range51 , range52 , range53 , range54 ,
range55 , range56 , range57 , range58 , range59 , range60 , range61 , range62 , range63 ,
grayscale , contrast)

head(all)

Model = gbm.fit(x = all[1:end_trn,], y = category, distribution = "multinomial", n.trees = 5000,
shrinkage = 0.01, interaction.depth = 3, n.minobsinnode = 10, nTrain = round(end_trn*0.75),
verbose = TRUE)

#use perf to find best num of trees

gbm.perf(Model)

TestPredictions = predict(object = Model, newdata = all[(end_trn+1):end,], n.trees =
gbm.perf(Model,plot.it = FALSE), type = "response")

TrainPredictions = predict(object = Model, newdata = all[1:end_trn,], n.trees =
gbm.perf(Model,plot.it = FALSE), type = "response")

head(TrainPredictions,n=20)

head(category,n=20)

submission = data.frame(ID = test['imagelD'], category = TestPredictions)

submission$max <- apply(submission[,2:15], 1, max)

6.5 Testing against hypothese

After training phase, we begin to implement the classification of images randomly picked from
our dataset as input for testing. We implement three machine learning models as mentioned
before. Therefore, we will have three different output for our testing images. Each training model
will generate a csv file to map each testing images to a category. We calculate the correctness
of each training model by comparing the human-eye detected category with the machine
labeled category.

To assure robustness of our tests, we calculated the percentage of correctness by repeating the
same test and get the average. We used 75% of our dataset images for training purpose and
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25% of our dataset images for classification. We also adjust the k parameters in the Kmeans
algorithm. We test the range of k to be (3-8).

6.6 Data Visualization

After the classification, each training model will generate an output to map each of the testing
sample image to a specific category. To make the output more vivid and easy to read, we use
HTML, CSS to display the images dynamically according to the random testing sample. We will
display each category into the same block. Then it is very easy to judge whether the images
grouped together into a same category are similar or not.

6. 7 Design document and flowchart

o -

Design Flowchart

Map to 64
color One
Image List of y ranges, .
Colors LIRS calculate I(;Tﬁ (';;V
contrast & .
grayscale
Random Forest.R ~ forest.csv
o
Out.csv / o S Visualize in
R webpage
GBR.R gbr.csv
R —

7/ Data analysis and discussion

7.1 Output generation

In this study, we first do the image clustering using KMeans to choose the top K colors for each
individual images. Then we implement the three learning models and feed the testing samples
into the three learning models for the purpose of classification. The following are the results for
K= (3, 4, 5, 6) and for the three learning models. 0.24 refers to the correct classification
percentage using the learning model against the human-eye classification.
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7.2 Output analysis

In the output, we can see that Random Forest and GBR have much higher correct percentage
compared with the SVM model. Moreover, it seems that when we choose k equals 5, the
classification result seems best. The best matching percentage of our learning models are 48%,
which is a pretty high value. We also plotted this result using a line graph to represent the
changes of different learning models and different k values.

K 3 4 5 6
Random 0.24 0.44 0.48 0.44
Forest

GBR 0.34 0.35 0.48 0.45
SVM 0.24 0.24 0.29 0.26

Classification result against human expectation

0.6
0.5
0.4
8
Had
E 0.3
E
3
0.2
0l
o
3 4 5 &
m——Random Forest .24 .44 .48 044
—GER 0.34 0.35 .48 045
SV 0.24 .24 .29 0.26
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7.3 Compare output against hypothesis

Generally speaking, this study confirms the two hypotheses of this study. Firstly, it is evident
from our classification results that images could be recognized mainly by their colors as styles.
This is a very important feature for images because it tells crucial information of image. In the
home interior environment, color is more vital in deciding the styles than other features, such as
furniture type. Therefore, this study may have great application for home interior search engines
and websites, such as Airbnb.

Secondly, the results of classification by our learning models match human-eye labeled styles
by 40% on average. We have implemented three learning models. The results for Random
Forest and Generalized Boosted Regression match the highest styles, by about 48% when the k
equals to 5 in the Kmeans algorithm. The matching percentage for SVM is a little bit lower,
which is about 27% on average for different k parameters in the Kmeans algorithm.

7.4 Abnormal case explanation

One of the abnormal case is that our learning models could not differentiate yellow from gold,
and could not differentiate yellow to green. Since we use human-eye to do the labeling in the
beginning, human-eye is more sensitive to tell the color difference. In our pre-labeling, we have
put yellow, green and gold into different categories. However, the learning models is not as
sensitive as human-eye in our study. One of the possible reasons is that we mapped all the
256”3 colors into 64 color space. Our color space may be too rough to distinguish light blue
from dark blue, and gold from yellow, and other similar colors.

7.5 Discussion

This study explores how to implement image classification based on color style. Results of the
three learning models indicate that color is a very important feature to recognize the style of a
picture. Also, the random forest model and the generalized boosted regression provide high
matching results of classification compared with the pre-labeling by human-eye. Overall, the
results of this study confirm our hypotheses that we can use colors to do image classification
and also that the learning models are able to learn the image color style and perform
classification based on the learning. There are also some abnormal cases as mentioned in 7.4
abnormal case explanation. It turns out that human eyes are more sensitive to vivid and
outstanding colors, while machine doesn't.
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8 conclusions and recommendations

8.1 Summary and conclusions

This study aims to classify a collection of images based on styles. In our study, we will define
the style of images based on colors, gray scale, brightness, lightness and contrast. There are
three stages in our study. The first stage, we extract the features with Java from the images. We
also calculated the top k color clusters in each image using KMeans algorithm. Then we map
each image to 64 color ranges in color space. In the second phase,we train the model using
Random Forest, SVM, Generalized Boosted Regression. In the third phase, we display the
classification of images in groups in webpages.

8.2 Recommendations for future studies

This study indicates that colors are very important features for identifying styles for the image.
This is especially relevant for home interior design. Therefore, this study is useful for house
image search engines. More importantly, the search engine could recommend house images of
similar styles based on the customer’s previous search and bookmark results. This study also
demonstrates that the Random Forest model and Generalized Boosted Regression work very
well for learning the styles of the images based on colors.

This study has two limitations: first, the sample of our study (248) is a little bit small for the
learning models. In the future, larger sample should be used to test the hypotheses of this
study.Second, we used 64 color space to represent all of 256”3 colors. Our color map might be
too loose and not catch the minor difference among colors, such as yellow, gold, and green.
One abnormal result is that the classification model could not tell the difference between the
green and yellow color. After the classification, the images of yellow color and green color are
usually mixed together. This result is quite abnormal and out of our expectation. One possible
reason is that human-eyes are more sensitive to color difference than the learning models in our
study. Another reason as mentioned above is that we may have used too narrow color space to
represent all possible colors. In the future, research could try to make the color space bigger so
that it can map images to more color space buckets.

Github code https://github.com/susiesu2/ColorStyleClassification.
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