

Multi-Cloud API Approach to Prevent

Vendor Lock-In

Department of Computer Science and Engineering

COEN 241: Cloud Computing
Professor Ming-Hwa Wang

Santa Clara University
Winter Quarter 2021

Angeline Chen

Jayavardhani Kathika
Kent Ngo

ACKNOWLEDGEMENT

We express our deep sense of gratitude to Professor Ming-Hwa-Wang for teaching us the

fundamentals of Cloud Computing and encouraging us to complete this project.

1

Table of Contents

List of Tables 4
List of Figures 5
Abstract 6

1. Introduction 7
1.1 Objective 7
1.2 Problem 7
1.3 Why is this Project related to this Class? 8
1.4 Why other approaches are not good 8
1.5 Why you think your approach is better 9
1.6 Scope of Investigation 9

2. Theoretical Bases and Literature Review 10

2.1 Definition of the Problem 10
2.2 Related Research to Solve the Problem 10

2.2.1 Identifying Adaptation Needs to Avoid the Vendor Lock-in Effect in the Deployment
of Cloud SBAs [1] 10
2.2.2 Preventing Vendor lock-ins via an interoperable multi-cloud deployment approach
[2] 14
2.2.3 Multi-Cloud PaaS Architecture (MCPA): A Solution to Cloud Lock-in [3] 17

2.3 Advantages of the Research Paper 20
2.4 Disadvantages of the Research Paper 21
2.5 Solution to the Problem 21
2.6 Where your Solution Different from others 25
2.7 Why your Solution is Better 25

3. Hypothesis and Goals 25
3.1 Positive / Negative Hypothesis 25

4. Methodology 26
4.1 Generating Input Data 26
4.2 How to Solve the Problem 26

4.2.1 Algorithm Design 27
4.2.2 Language Used 27
4.2.3 Tools Used 28

4.3 How to Generate Output Data 28
4.4 How to Test Against Hypothesis 28

5. Implementation 29
5.1 Entity Recognition 30
5.2 Sentiment Analysis 31

2

6. Data Analysis and Discussion 32
6.1 Output Generation 32

6.1.1 Original Format of Google’s Entity Recognition API 32
6.1.2 Original Format of Google’s Sentiment Analysis API 33
6.1.3 Original Format of Microsoft’s Entity Recognition API 33
6.1.4 Original Format of Microsoft’s Sentiment Analysis API 34
6.1.5 General Format of Standardized Entity Recognition API 35
6.1.6 General Format of Standardized Sentiment Analysis API 35

6.2 Output Analysis 36
6.3 Compare Output Against Hypothesis 37
6.4 Abnormal Case Explanation 38
6.5 Discussion 38

7. Conclusions and Recommendations 40

8. Bibliography 41

9. Appendices 42

3

List of Tables

Table 1 Adaptation Cases and Interoperability Levels …………………………………. 11

Table 2 API endpoint for different APIs ……………………………………………….... 29

Table 3 Number of Lines after Generating the JSON Format ……………………………36

Table 4 Round Trip time of API calls ………………………………………………….... 36

Table 5 Various Standardization Options and Analysis ……………………………….... 38

4

List of Figures

Figure 1 Scenario without Adaptors ………………...…………………………………......... 9

Figure 2 Scenario with Adaptors ………………...………………………………….............. 9

Figure 3 Single Cloud Site Architectures - Non-Redundant 3-Tier Architecture.....................12

Figure 4 Prototype architecture...14

Figure 5 Initial High Level Architecture for MCPA...16

Figure 6 MCPA Modules, Relations and Entities...16

Figure 7 Microsoft’s speech and text processing APIs have the most features, but Google’s

speech and text processing APIs support the most languages...19

Figure 8 Google’s image analysis APIs have the most features, but Amazon’s and Microsoft’s

image analysis APIs support face recognition..20

Figure 9 Microsoft’s video analysis APIs have the most features, but Amazon’s video analysis

APIs support streaming videos..21

Figure 10 Source Code of the Web server……………………………………………………...42

Figure 11 URLs of APIs (entity-sentiment, entities)...43

Figure 12 URLs of APIs (syntax, classification, sentiment)...44

Figure 13 URLs of APIs (sentiment, Language Detection, PII recognition)..............................45

Figure 14 URLs of APIs (entity-linking, key phrase)...46

Figure 15 URLs of APIs (Entities)..46

Figure 16 URLS of APIs (Sentiment Analysis)...47

Figure 17 Entity Sentiment API call and JSON response………………………………………47

Figure 18 Language detection API call and JSON response…………………………………...48

Figure 19 Analyzing Syntax API call and JSON response……………………………………..48

Figure 20 Classify text API call and JSON response…………………………………………...49

Figure 21 Entity PII API call and JSON response……………………………………………....49

Figure 22 Entity Linking API call and JSON response…………………………………………50

Figure 23 Key Phrase Extraction API call and JSON response………………………………....50

Figure 24 Entities API call with provider “Azure”.. 51

Figure 25 Entities API call with provider “GCP”.. 51

Figure 26 Sentiment Analysis API call with combined response of GCP and Azure…………. 52

5

Abstract
Vendor lock-in is a situation where a customer gets struck with a vendor and is unable to use

services offered by another vendor. This is also known as proprietary lock-in. Also customers

have to pay huge switching costs if they plan to move to another vendor, so to overcome those

charges many customers continue with a single vendor even though their services are no longer

efficient. In cloud computing vendor lock-in is caused due to the platform dependent services

that the cloud providers offer. One solution to overcome this problem is to standardize the cloud

APIs. By standardizing the APIs the user can access multiple APIs from different cloud

providers through one standardized API call which prevents vendor lock-in. The main scope of

this project is to design and implement a web server which provides results for various machine

learning APIs by getting results from multiple clouds which offer that API.

Keywords: Vendor lock-in, Cloud Computing, Standardizing APIs.

6

1. Introduction

1.1 Objective

The objective is to avoid the vendor lock-in effect in the deployment of applications to

the cloud by standardizing cloud API calls using wrappers.

1.2 Problem

Many organizations have developed their software using a single cloud service provider,

such AWS and Azure and face problems, such as interoperability and portability issues of cloud

computing due to the lack of integration between cloud service providers. There are no widely

accepted standards and each cloud service provider offers their own unique proprietary services

and technologies which are non-compatible with other cloud providers. Therefore, customers are

not able to easily port their applications or switch to vendors easily. Due to the incompatibility

issues, porting an application to another vendor would cause the customer to re-engineer their

entire application to fit their platform. As a result, customers tend to stay with their current cloud

service provider because they don’t want to pay a lot of time and money to port their

applications.

However, the problem with a single cloud service provider is that customers cannot take

advantage of using the best quality of resources and services from other cloud providers and end

up becoming “vendor locked-in”. In a vendor lock-in situation, customers have become too

dependent on using their single cloud service provider to host their application that if the cloud

service provider’s prices were to dramatically increase, the customer can’t do anything because

7

porting their application would result in starting all over. The longer a customer stays with their

cloud service provider, the more inclined the customer would want to stay because their entire

infrastructure was built on it. As a result, customers are put into risks of slowly losing a lot of

money if they’re stuck to using an inferior product. Additionally, if a single cloud service

provider were to go out of business or their database servers were to crash, this would lead to a

substantial negative impact on the customers and cause them to lose everything. Overall, from

these consequences of vendor lock-in, dominant cloud service providers can take advantage of

the situation and use these tactics to stifle competition and deprive customers of better prices.

1.3 Why is this Project related to this Class?

This project is related to this class because it tackles the business perspective issues of

cloud computing. Cloud computing is renowned for its on-the-demand services, and “pay what

you use” motto. Most companies want to save as much money as possible and with the right

circumstances, cloud computing can become very beneficial for start up companies, who are not

as experienced with IT or who want to take advantage of their microservices. However, vendor

lock-in can be a problematic obstacle for these companies as it prevents them from saving money

and achieving the best prices for the microservices. With vendor lock-in, customers are always at

risk of paying more than usual.

1.4 Why other approaches are not good

Although most papers can describe their Multi-Cloud architecture, they cannot

demonstrate how much of a positive impact it may create due to the lack of data comparisons.

They do not consider how efficient their methodology is, but rather focus on how flexible their

8

architecture is by using multiple tools and resources. It can create excessive amounts of

complexity due to their considerable amount of high-level layers.

1.5 Why you think your approach is better

Our approach abstracts all the APIs of different clouds. The customers don't have to limit

themselves to a single cloud, they can use various services from different clouds. They don't

have to think about the structure of APIs of different clouds; they can just access the services

from different clouds with a single API provided by us for a particular service and get the

relevant service from the cloud that provides it.

1.6 Scope of Investigation

In our scope of investigation, we would be looking into these terms and see how they

would help us determine how to prevent vendor lock-in:

● Multi-cloud approach: Using multiple cloud vendors to host the customer’s infrastructure

● Portability: Testing how easy it is to migrate an application

● Interoperability: Making sure the software works on various cloud platforms

● Containerization: Simplifies software deployment on various platforms

With these strategies, we would be able to create a solution to provide web services,

which would operate independent from proprietary cloud service provider’s technologies while

implementing modern standards and technologies.

9

2. Theoretical Bases and Literature Review

2.1 Definition of the Problem

The major issue of vendor lock-in is that customers are unable to port their applications

or unable to switch to another cloud vendor because of the lack of integration and

interoperability among cloud service providers. Unlike Internet service providers where

customers can switch easily to another provider when they’re not getting quality of service,

cloud service providers lock their customers in even when they’re not getting the best quality

service or the provider is beginning to decline. Large cloud vendors know that it’s very difficult

to port their applications and know that they can monopolize their resources. So the vendors have

proposed their own solutions with proprietary formats and interfaces instead of following widely

accepted standards. As a result, they control the market and prevent customers from getting the

best services. Most common causes of vendor lock-in are unique file formats, incompatible or

proprietary APIs, and lack of modern standardizations.

2.2 Related Research to Solve the Problem

2.2.1 Identifying Adaptation Needs to Avoid the Vendor Lock-in Effect in the

Deployment of Cloud SBAs [1]

2.2.1.1 Adaptation Cases

10

The paper describes the modifications of a component detached from the application and

deployed in a cloud environment in three scenarios: component-to-component,

component-to-cloud, and component-to-SaaS.

In the component-to-component scenario, adaption between components modifies

communication interfaces because the communication interfaces between the component and the

remaining components in a cloud environment and a non-cloud environment are different. The

sources of mismatch are service naming and location, different technologies, and operation

ordering mismatch because the name and the location of services and operations are different,

the technologies used by components are different, and the order of operation invocations is

different.

In the component-to-cloud scenario, adaption between components and cloud specific

services modifies service dependencies because platform specific service dependencies in a

non-cloud environment and cloud specific service dependencies in a cloud environment are

different. The sources of mismatch are service naming, different technologies, operation ordering

mismatch, SLA related requirements, and cloud-specific performance services because the name

of services and functions are different, the APIs are different, the order of operation invocations

is different, the SLAs are different, and the service composition of components is different.

In the component-to-SaaS scenario, adaption using third-party components or services

(SaaS) modifies external services because the use of external services in a cloud environment

and a non-cloud environment is different. The sources of mismatch are semantic and

context-aware functionalities because the use of external services is different.

11

Figure 1 [1]: Scenario without Adaptors

Figure 2 [1]: Scenario with Adaptors

12

2.2.1.2 Interoperability Levels

The paper also describes mismatches at four interoperability levels: signature, behavior,

service, and semantic.

Signature adaptation deals with interoperability issues and differences in service names,

parameters, data representation, encoding standards, and operation calling conventions.

Wrappers or stubs act as proxies between client components and service providers. Adaptors

translate service names, cast, reorder, and synthesize parameters, and accommodate calling

conventions and data representation mismatch. Adaptors allow the client to access a component

that moved from a non-cloud environment to a cloud environment. Mappings establish

one-to-one correspondences. Adaptors translate and transmit interactions.

Behavioral adaptation deals with protocol issues and differences in the order and

granularity of interaction messages, which are service or operation requests and responses.

Mappings establish correspondences between messages. Adaptors allow a service request issued

by a client component to correspond to several invocations of the provider’s interface.

Service adaptation deals with non-functional issues, such as security, cost, performance,

and dependability and differences in QoS policies. Adaptors allow devices with different

hardware and software resources and capabilities to negotiate SLAs.

Semantic adaptation deals with conceptual issues and differences in semantic

descriptions. An ontology is a machine-readable representation that captures the semantic

description of services and the relationships between concepts. Adaptors use ontologies to match

semantics.

13

Table 1 [1]: Adaptation Cases and Interoperability Levels

2.2.2 Preventing Vendor lock-ins via an interoperable multi-cloud

deployment approach [2]

2.2.2.1 Main idea

Vendor lock-in prevents the customers from adopting cloud services offered by various

cloud service providers. One solution for preventing vendor lock-in is to adapt multi cloud

strategy. Multi cloud enables the customers to interact with two or more cloud providers and

work with them simultaneously. The problems with multi cloud are portability and

interoperability.

Portability is the ability to move applications among multiple cloud platforms without

changing the code. But the software stack and the features the existing clouds provide are

different from one another. These differences prevent portability and promote vendor lock-in.

Interoperability among cloud providers helps in multiple cloud deployments.

14

Interoperability Levels Sources of Mismatch Involved Scenarios

signature service naming
different technologies

component-to-component
component-to-cloud
component-to-SaaS

behavior operation ordering mismatch

service SLA related requirements
cloud-specific performance
services

component-to-cloud
component-to-SaaS

semantic semantic and context-aware
functionalities

component-to-SaaS

2.2.2.2 Single Cloud Site Architecture

A single three tier web service consists of presentation tier, application tier and data tier.

In this case the application runs only on a single cloud service provider. This does not support

portability and interoperability also if the cloud provider is down the whole application stops

running. This architecture creates dependency on a single cloud provider. Avoiding dependency

on a single cloud provider

Figure 3 [2]: Single Cloud Site Architectures - Non-Redundant 3-Tier Architecture

2.2.2.3 Multi Cloud Architecture

Interoperability is achieved by adding an abstraction layer which is represented through a

container orchestration and microservice approach. In micro service architecture the whole

application can be divided into various services. These services can be deployed on various

platforms. The services which are connected to each other interact via APIs. Docker supports

microservices for deploying on Kubernetes.

15

To support replication, synchronization and scalability across various cloud service

providers a NoSQL database is used. MongoDB supports replica sets and sharding. MongoDB

instances are deployed under kubernetes.

Container orchestration helps to decouple platform specific APIs. This enables the

customer to interact with various cloud providers using APIs of container orchestration

environment. For the container orchestration Kubernetes is used. Kubernetes is an open source

software and it can deploy and manage container engines like Docker.

An application modelling tool helps in building and scaling the container orchestration

environment among different clouds. Juju charms along with Conjure-up are used in deploying

kubernetes and also connecting with different APIs of cloud providers.

Therefore Kubernetes cluster is formed with kubernetes installed on three cloud

providers. These three networks are connected via global network connection. A stateless load

balancing mechanism which can be implemented via load balancer or DNS round robin will

distribute the user requests among multiple cloud platforms and the data is redirected to the

database.

In this way portability and interoperability is promoted and vendor lock-in is reduced.

16

Figure 4 [2]: Prototype architecture

2.2.3 Multi-Cloud PaaS Architecture (MCPA): A Solution to Cloud Lock-in

[3]

2.2.3.1 Fixing Issues for Cloud Standardization

Although there are current solutions to support portability between cloud vendors, such

as platform intermediation, the paper describes that they wouldn’t work for every cloud vendor.

Creating a common model transformation package from various cloud vendors is considered to

be very difficult and time consuming. As a result, the paper tries to address this issue by creating

a multi-cloud PaaS architecture that would prevent vendor lock-in.

The paper proposes to try to create a heterogenous platform that would work with

different multi-cloud vendors. By analyzing the various PaaS platforms and libraries, they would

be able to pick and choose the best resources that would support heterogenous development.

17

2.2.3.2 Tools and Architectural Design

To orchestrate the deployment, it uses P-TOSCA, which stands for Portable Topology

and Orchestration Specification for Cloud Applications. It would offer standard app synthesis

and design to PaaS platforms and would help resolve vendor lock-in situations due to its

flexibility and . Additionally, it’s an Open-Source API and it’s XML based app topology.

Another tool used by the architecture is mOSAIC, which allows for monitoring and

deploying dynamic reconfiguration. It would enhance orchestration and allow the clients to

deploy fast and efficient changes to multiple clouds by using a unified API. Clients would not

need to stop their app services, which could save them money.

Lastly, the architecture uses the Opscode-Chef as the configuration management tool. It

fixes the issue managing applications from different PaaS platforms by offering many

functionalities. It’ll help create standards among their multiple clouds and give policies of how

the cloud should be configured.

18

Figure 5 [3]. Initial High Level Architecture for MCPA

Figure 6 [3]: MCPA Modules, Relations and Entities

19

2.3 Advantages of the Research Paper

2.3.1 Identifying Adaptation Needs to Avoid the Vendor Lock-in Effect in the Deployment

of Cloud SBAs

● Advantages:

○ The paper describes problems and solutions, which helped us identify the need for

the standardization of cloud APIs.

○ The paper includes figures that compare scenarios with and without adaptors.

2.3.2 Preventing Vendor lock-ins via an interoperable multi-cloud deployment approach

● Advantages:

○ Promotes interoperability and portability between different clouds by abstracting

the software layer which reduces the vendor lock-in.

○ This prototype does not require any additional testing as the core components are

supported by major cloud service providers.

2.3.3 Multi-Cloud PaaS Architecture (MCPA): A Solution to Cloud Lock-In

● Advantages:

○ The tools they use such as P-TOSCA, mOSAIC, and Opscode-Chef are all

open-source APIs that can be accessed by multiple cloud

○ Uses an unified API to synchronize deployment and monitoring.

○ Will incorporate standardization and administration services during application

development

○ Compatible with other existing technologies and tools as well

20

2.4 Disadvantages of the Research Paper

2.4.1 Identifying Adaptation Needs to Avoid the Vendor Lock-in Effect in the Deployment

of Cloud SBAs

● Disadvantages:

○ The paper does not describe implementation, which did not help us implement

wrappers.

○ The paper does not include data.

2.4.2 Preventing Vendor lock-ins via an interoperable multi-cloud deployment approach

● Disadvantages:

○ Design is complex and this reduces productivity.

2.4.3 Multi-Cloud PaaS Architecture (MCPA): A Solution to Cloud Lock-In

● Disadvantages:

○ Does not work with all cloud platforms

○ There are no experiments to demonstrate the portability and elasticity of the

architecture

2.5 Solution to the Problem

Because different cloud providers have their own platform specific APIs for various

tasks, it is difficult to use a common API to a specific task on multiple cloud platforms. Not all

the cloud providers support all the services. As a result, users need to use various clouds for

various services, which results in a need to use different APIs on different cloud platforms.

Our solution is to standardize the APIs by getting the suitable API from a specific cloud

provider according to the service the customer requests. Because there are various services a

21

cloud can offer, there is a need to standardize various services. For example, machine learning

APIs provided by different cloud providers offer different services. While some services are

offered by all cloud providers, other services are offered by only one cloud provider. Amazon,

Microsoft, Google, and IBM provide speech and text processing APIs, image analysis APIs, and

video analysis APIs. Users often use the cloud provider that offers the most services, but users

sometimes use a different cloud provider that offers a unique service.

Figure 7 [4]: Microsoft’s speech and text processing APIs have the most features, but Google’s

speech and text processing APIs support the most languages.

22

Figure 8 [4]: Google’s image analysis APIs have the most features, but Amazon’s and

Microsoft’s image analysis APIs support face recognition.

23

Figure 9 [4]: Microsoft’s video analysis APIs have the most features, but Amazon’s video

analysis APIs support streaming videos.

Because of standardization and interoperability issues, it is difficult to switch between

cloud providers. Cloud computing services offered by different cloud providers have different

specifications. Proprietary technologies, such as cloud APIs, are incompatible. As a result, cloud

API calls need to be standardized using wrappers.

24

2.6 Where your Solution Different from others

Our solution is different from other solutions because we will standardize cloud API calls

instead of standardizing the deployment of applications to the cloud. We will standardize APIs of

various services so that we can get our required service from different cloud providers with a

single API and reduce vendor lock-in. A solution proposed by a paper is to create an abstraction

layer through container orchestration solution as well as microservice approach which supports

interoperability and portability in multi cloud. Another solution proposed by a paper that uses

Open-Source tools, such as Opscode-Chef, P-TOSCA, and mOSAIC, could be used as the

standard API.

2.7 Why your Solution is Better

Our solution is better because it is helping customers to use different services from

different cloud providers rather than confining to a single cloud service. Also the customers don't

have to think about different APIs of different clouds rather with a single API they can access the

services. Our solution abstracts all the APIs of different cloud providers.

3. Hypothesis and Goals

3.1 Positive / Negative Hypothesis

If cloud API calls are standardized using wrappers, the number of lines in JSON

responses returned by API calls will be reduced, and the round trip time of API calls will be

reduced.

25

4. Methodology

4.1 Generating Input Data

To generate the output for this project, we would need to collect input text that we would

like to analyze, such as key words and sentient. Therefore, we would be using Google Cloud and

Microsoft Azure’s API to analyze text processing and we believed that collecting reviews, such

as restaurant reviews or hotel reviews from Yelp, would give us various and reliable input data to

be analyzed. A sample response would be:

“Villa Brazil is such a wonderful little place! It is so clean it's amazing! Super comfortable

everything! Kitchenette w fridge, microwave and coffee maker and all the supplies. I was here

for the second time, but this time during the pandemic. I would go NOWHERE else during this

time. I knew from my first visit how impeccably clean they are, so I wasn't worried. I'm sure

they added extra precautions, it smelled so clean and taken care of. But it did before too. Fatima

is a total gem! Her husband too! They go out of their way for your comfort and safety. Love

them, their Villa and all that they do! Oh! Their cafe with home cooked amazing meals is the

icing on the cake. The food is wonderful! And well worth every penny! Delivered right to

your room! Thank you Fatima and team!”

4.2 How to Solve the Problem

Our approach is to write code that makes API calls compatible with different cloud

providers, using machine learning APIs as an example. We will create a web server which makes

the API calls and use JSON responses returned by API calls to test our wrappers. We will

26

measure the number of lines in JSON responses returned by API calls and the round trip time of

API calls. If our hypothesis is correct, the number of lines in JSON responses returned by API

calls is less when users call our wrappers than when users call APIs provided by different cloud

providers, and the round trip time of API calls is less when users call our wrappers than when

users call APIs provided by different cloud providers.

4.2.1 Algorithm Design

We will use the following pseudocode to implement wrappers that call APIs provided by

different cloud providers:

if Microsoft’s API has the feature

call Microsoft’s API

if Google’s API has the feature

call Google’s API

combine the results of the API calls

If users need to call APIs provided by different cloud providers, they can combine the

results of the API calls by calling our wrappers. Because the number of lines in JSON responses

returned by API calls is reduced, users can switch between cloud providers. If users need to use

services offered by all cloud providers, they can use the cloud provider that offers the most

services. If users need to use services offered by only one cloud provider, they can use a different

cloud provider that offers a unique service.

4.2.2 Language Used

We used Python to implement wrappers that call APIs provided by different cloud

providers.

27

4.2.3 Tools Used

We used Microsoft’s and Google’s text processing APIs for our project. For the design of

web Server Flask is used. The API responses are analyzed using Postman.

4.3 How to Generate Output Data

To generate output data, we would be creating JSON files with the text processing APIs

from Google Cloud and Microsoft Azure using Python as our programming language. This

would allow us to create and view various formats from these APIs. We would first input our

desired text to be processed into the API call and would return us their own output data. With

these generated output data, we would change the structure of the JSON file that generated and it

would be used to create our own general format that would work with both Microsoft Azure and

Google Cloud.

4.4 How to Test Against Hypothesis

To test our hypothesis, we would be mainly comparing the number of lines from the

JSON file that we have generated with Google Cloud and Microsoft Azure’s APIs and compare

it with our new JSON format and the original JSON format from Microsoft and Google. We

would only be comparing the API calls that both Google and Microsoft have, such as entity

recognition and sentiment analysis. For the other API calls that are unique to the cloud service

providers, we would include them in the Python file and use them normally to avoid vendor lock

in.

28

5. Implementation

Various machine learning APIs like Sentiment analysis, Entity recognition, Content

Classification, Entity Sentiment, Analysing Syntax, Entity linking, Entity PII, Key phase,

Language detection offered by Google Cloud Platform and Microsoft Azure are used to

implement the standardisation. A web server is designed using the Flask framework.

If an API is offered by a single cloud provider then the API result of that cloud provider

is returned. If an API is offered by multiple cloud providers the APIs are standardized to a

particular format and the user can choose a particular provider, then the result of that cloud

providers API is converted to the standardized format and the result is returned. In the above

mentioned APIs Entity Recognition and Sentiment Analysis APIs are offered by both Azure and

GCP. So these APIs are standardized and returned whereas other APIs which are offered by a

single cloud provider their results are returned as it is.

API endpoints for various APIs

29

API Endpoint Cloud Provider/API

/api/entity-sentiment GCP Entity-Sentiment API

/api/syntax GCP Analyze syntax

/api/classification GCP content Classification

/api/language_detection Azure Language Detection

/api/pii_recognition Azure Entity PII

/api/entity_linking Azure Entity Linking

/api/key_phrase_extraction Key Phrase

/api/entities Entities based on Provider: GCP or Azure

/api/sentiment_analysis Combined API results of GCP, Azure

Table 2: API endpoints for different APIs

5.1 Entity Recognition

We converted JSON responses to a general format for entity recognition. We would only select

the features that both cloud service providers can offer and ignore the excessive features that one

Cloud API call would have. In this case, we have chosen the features “name”, category“,

“length”, and “offset” and this general format as a result would return an object with the

common values returned by Google’s and Microsoft’s API calls for each entity.

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential
import json

def convert_microsoft_entity():
 with open('entity_recog.json') as f:
 data = json.load(f)
 general_json = []

 for entity in data['entities']:
 new_entity = {}
 new_entity['name'] = entity['text']
 new_entity['category'] = entity['category']
 #new_entity['confidence_score'] = entity['confidence_score']
 new_entity['length'] = entity['length']
 new_entity['offset'] = entity['offset']
 general_json.append(new_entity)
 print(general_json)
 with open("general_microsoft_entity.json", "w") as outputfile:
 json.dump({'entities': general_json}, outputfile, indent=4)

def convert_google_entity():
 type_map = ['Unknown', 'Person', 'Location', 'Organization', 'Event', 'Work of Art',
 'Consumer Good', 'Other', 'Phone Number', 'Address', 'Date', 'Number', 'Price']
 with open('analyze_entities.json') as f:
 data = json.load(f)
 general_json = []
 #data = data[0]

30

 #print(data)
 for entity in data['entities']:
 new_entity = {}
 new_entity['name'] = entity['name']
 new_entity['category'] = type_map[int(entity['type'])]
 new_entity['length'] = len(entity['name'])
 new_entity['offset'] = entity['mentions'][0]['text']['beginOffset']
 general_json.append(new_entity)
 print(general_json)
 with open("general_google_entity.json", "w") as outputfile:
 json.dump({'entities': general_json}, outputfile, indent=4)
convert_microsoft_entity()
convert_google_entity()

5.2 Sentiment Analysis

We combined JSON responses into a general format for sentiment analysis. The general format

returns a nested object with the values returned by Microsoft’s API calls in the first object and

the values returned by Google’s API calls in the second object for each sentence.

Google’s and Microsoft’s API calls return scores for the same sentences. Google’s API calls

return the content. Microsoft’s API calls return the offset and the length. The function sentiment

adds the values returned by Microsoft’s API calls to the nested object, adds the values returned

by Google’s API calls to the nested object, and finds the nested object for the sentence by

calculating the offset.

import json

def sentiment():

google_file = open("google.json", "r")
microsoft_file = open("microsoft.json", "r")
google_json = json.loads(google_file.read())
microsoft_json = json.loads(microsoft_file.read())
google_microsoft_json = {}
google_microsoft_json["sentiment"] = {}

31

sentences = []
#add the values returned by Microsoft’s API calls to the nested object

for sentence in microsoft_json["sentiment"]["documents"][0]["sentences"]:
sentences.append({

"microsoft": sentence
})

i = 0
offset = 0

#add the values returned by Google’s API calls to the nested object
for sentence in google_json[0]["sentences"]:

#find the nested object for the sentence by calculating the offset
if (sentences[i]["microsoft"]["offset"] == offset):

sentences[i]["google"] = sentence
offset += len(sentence["text"]["content"]) + 1
i += 1

google_microsoft_json["sentiment"]["sentences"] = sentences
print(google_microsoft_json["sentiment"])

sentiment()

6. Data Analysis and Discussion

6.1 Output Generation

Note: This is not the entire JSON output. This output is just to show the format of the Microsoft
and Google’s APIs.

6.1.1 Original Format of Google’s Entity Recognition API
{
 "entities": [
 {
 "name": "owner",
 "type": 1,
 "salience": 0.23477009,
 "mentions": [
 {
 "text": {
 "content": "owner",
 "beginOffset": 195
 },
 "type": 2

32

 }
],
 "metadata": {}
 }
 ...
],
 "language": "en"
}

6.1.2 Original Format of Google’s Sentiment Analysis API
[
 {
 "sentences":[
 {
 "text":{
 "content":"We went to Contoso Steakhouse located at midtown NYC last week for a
dinner party, and we adore the spot!",
 "beginOffset":-1
 },
 "sentiment":{
 "magnitude":0.8999999761581421,
 "score":0.8999999761581421
 }
 }
 ...
]

6.1.3 Original Format of Microsoft’s Entity Recognition API
{
 "entities":{
 "documents":[
 {
 "id":"c3b55810-4282-47e2-b9f2-eae4e08802be",
 "entities":[
 {
 "text":"Contoso",
 "category":"Organization",
 "subcategory":null,
 "offset":11,
 "length":7,
 "confidencescore":0.58
 }
 ...

33

]
 }
],
 "errors":[

],
 "modelversion":"2021-01-15"
 }
}

6.1.4 Original Format of Microsoft’s Sentiment Analysis API
{
 "sentiment":{
 "documents":[
 {
 "id":"c3b55810-4282-47e2-b9f2-eae4e08802be",
 "sentiment":"mixed",
 "confidenceScores":{
 "positive":0.86,
 "neutral":0.0,
 "negative":0.14
 },
 "sentences":[
 {
 "sentiment":"positive",
 "confidenceScores":{
 "positive":0.99,
 "neutral":0.01,
 "negative":0.0
 },
 "offset":0,
 "length":105
 }
 ...
]
 }
],
 "errors":[

],
 "modelversion":"2020-04-01"
 }
}

34

6.1.5 General Format of Standardized Entity Recognition API
{
 "entities":[
 {
 "name":"owner",
 "category":"Person",
 "length":5,
 "offset":195
 }
 ...
]
}

6.1.6 General Format of Standardized Sentiment Analysis API
{
 "sentences":[
 {
 "microsoft":{
 "sentiment":"positive",
 "confidenceScores":{
 "positive":0.99,
 "neutral":0.01,
 "negative":0.0
 },
 "offset":0,
 "length":105
 },
 "google":{
 "text":{
 "content":"We went to Contoso Steakhouse located at midtown NYC last week for a
dinner party, and we adore the spot!",
 "beginOffset":-1
 },
 "sentiment":{
 "magnitude":0.8999999761581421,
 "score":0.8999999761581421
 }
 }
 }
 ...
]
}

35

6.2 Output Analysis

Table 3: Number of Lines after Generating the JSON Format

Table 4: Round Trip Time of API Calls

36

 Number of Lines in
Original Format

Number of Lines in General
Format

Google’s Entity Recognition
API

396 154

Microsoft’s Entity
Recognition API

128 94

Google’s Sentiment
Analysis API

93 180

Microsoft’s Sentiment
Analysis API

99

 Round Trip Time for
Original Format

Round Trip Time for
General Format

Google’s Entity Recognition
API

679 ms 561 ms

Microsoft's Entity
Recognition API

1242 ms 1134 ms

Google’s Sentiment
Analysis API

655 ms 1587 ms

Microsoft’s Sentiment
Analysis API

1058 ms

6.3 Compare Output Against Hypothesis

Our hypothesis is correct because the number of lines in JSON responses returned by API

calls is less when users call our wrappers than when users call APIs provided by different cloud

providers.

The number of lines in the general format of the standardized Entity Recognition API

(154) is less than the number of lines in the original format of Google’s Entity Recognition API

(396). The number of lines in the general format of the standardized Entity Recognition API (94)

is less than the number of lines in the original format of Microsoft’s Entity Recognition API

(128). The round trip time of the API call for the general format (561 ms) is less than the round

trip time of Google’s Entity Recognition API call for the original format (679 ms). The round

trip time of the API call for the general format (1134 ms) is less than the round trip time of

Microsoft’s Entity Recognition API call for the original format (1242 ms). This is expected

because the general format returns an object with the common values returned by Google’s and

Microsoft’s API calls for each entity.

The number of lines in the general format of the standardized Sentiment Analysis API

(180) is approximately the same as the sum of the number of lines in the original format of

Google’s Sentiment Analysis API (93) and the number of lines in the original format of

Microsoft’s Sentiment Analysis API (99). The round trip time of the API call for the general

format (1587 ms) is less than the sum of the round trip time of Google’s Sentiment Analysis API

call for the original format (655 ms) and the round trip time of Microsoft’s Sentiment Analysis

API call for the original format (1058 ms). This is expected because the general format returns a

nested object with the values returned by Microsoft’s API calls in the first object and the values

returned by Google’s API calls in the second object for each sentence.

37

6.4 Abnormal Case Explanation

Although we have inputted the same text into the Google Cloud and Microsoft Azure’s

API, we can see that the Google’s Entity Recognition API outputs a JSON file a lot larger than

the Microsoft Azure’s output and it may be due to their different implementations of how to

recognize which word should be considered as an entity. They have used different machine

learning algorithms to classify the words, and it is arbitrary to the cloud service provider or even

the customers if they would like to include special categories, such as phone numbers and

addresses to be considered as an entity. Therefore Google’s entity recognition includes a lot

more entities and additionally, Google also has included more description and variables about the

entities as well to cause the JSON file to be larger than Microsoft’s JSON file.

6.5 Discussion

Table 5: Various Standardization Options and Analysis

38

Standardization
Type

Standardizing API
responses and giving

results of a
particular provider

Giving the exact
Response of the API

of a particular
provider

Combining
responses of various
cloud providers API

and generating a
response

Cost Charged for one
Cloud Provider

Charged for one
Cloud Provider

Charged for all the
cloud providers who
provide the API

API documentation Have to go through a
single documentation
which gives the
standardised results

Have to go through
chosen cloud
providers
documentation to
understand the API
response

Have to go through
multiple cloud
providers API
documentation to
understand the API
response

We converted JSON responses to a general format for entity recognition because users

can switch between a cloud provider if multiple cloud providers offer the service. Because the

format of the API responses are similar, the general format standardizes the values returned by

Google’s and Microsoft’s API calls. Both Google’s and Microsoft’s API calls return name,

category, length, and offset values for each entity. The general format returns an object with the

common values returned by Google’s and Microsoft’s API calls for each entity. The advantage

of this format is that only one API needs to be called when converting JSON responses to a

general format. The disadvantage of this format is that the values returned by the API calls need

to be the same.

We combined JSON responses into a general format for sentiment analysis because users

can switch between a cloud provider if multiple cloud providers offer the service. Because the

format of the API responses are different, the general format combines the values returned by

Google’s and Microsoft’s API calls. Google’s API calls return numerical score and magnitude

values for each sentence. Microsoft’s API calls return categorical score values (positive, neutral,

and negative) for each sentence. The values returned by Google’s and Microsoft’s API calls

cannot be standardized because the scores will not be accurate if categories are converted to

numbers. The general format returns a nested object with the values returned by Microsoft’s API

calls in the first object and the values returned by Google’s API calls in the second object for

each sentence. The advantage of this format is that the values returned by the API calls do not

need to be the same. The disadvantage of this format is that multiple APIs need to be called

when combining JSON responses into a general format.

We did not change JSON responses for unique API calls because users cannot switch

between a cloud provider if only one cloud provider offers the service.

39

7. Conclusions and Recommendations

We wrote code that makes API calls compatible with different cloud providers, using

machine learning APIs as an example. By standardizing the APIs the user can access multiple

APIs from different cloud providers through one standardized API call which prevents vendor

lock-in. In this project we designed and implemented a web server which provides results for

various machine learning APIs by getting responses from multiple clouds which offer that API.

We came up with three standardizing approaches. In the first approach, we standardize the JSON

format of an API and translate the API response of the cloud provider the user prefers to the

standardized JSON. In the second approach, we directly send the API response of the cloud

provider the user prefers. In the third approach, we combine the results of all the JSON responses

of various cloud providers which offer that API and return the modified JSON. We analyzed the

number of lines required for the original API vs the number of lines required for the standardised

API. We also analyzed round trip time for the original API response and the standardised API

response. Our recommendations for future studies are standardizing other machine learning

APIs, such as speech processing APIs, image analysis APIs, video analysis APIs, standardizing

machine learning APIs provided by other cloud providers, such as Amazon and IBM, and

standardizing other cloud APIs, such as APIs that provision resources for compute and storage

services.

40

8. Bibliography

[1] Javier Miranda, Juan Manuel Murillo, Joaquín Guillén, and Carlos Canal. 2012. Identifying

adaptation needs to avoid the vendor lock-in effect in the deployment of cloud SBAs. In

Proceedings of the 2nd International Workshop on Adaptive Services for the Future Internet and

6th International Workshop on Web APIs and Service Mashups (WAS4FI-Mashups '12).

Association for Computing Machinery, New York, NY, USA, 12–19.

DOI:https://doi.org/10.1145/2377836.2377841

[2] R. Pellegrini, P. Rottmann and G. Strieder (2017). Preventing vendor lock-ins via an

interoperable multi-cloud deployment approach. 2017 12th International Conference for Internet

Technology and Secured Transactions (ICITST), Cambridge, UK, 2017, 382-387, doi:

10.23919/ICITST.2017.8356428.

[3] Yasrab, R., & Gu, N. (2016). Multi-cloud PaaS Architecture (MCPA): A Solution to Cloud

Lock-In. 2016 3rd International Conference on Information Science and Control Engineering

(ICISCE), Information Science and Control Engineering (ICISCE), 2016 3rd International

Conference on, Icisce, 473–477. https://doi-org.libproxy.scu.edu/10.1109/ICISCE.2016.108

[4] Comparing Machine Learning as a Service: Amazon, Microsoft Azure, Google Cloud AI,

IBM Watson. Altexsoft.

https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-

microsoft-azure-google-cloud-ai-ibm-watson/.

[5] Quickstart | Cloud Natural Language API | Google Cloud. Google Cloud.

https://cloud.google.com/natural-language/docs/quickstart.

41

https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
https://cloud.google.com/natural-language/docs/quickstart

[6] Text Analytics API Documentation - Tutorials, API Reference - Azure Cognitive Services -

Azure Cognitive Services | Microsoft Docs. Microsoft Docs.

https://docs.microsoft.com/en-us/azure/cognitive-services/text-analytics/.

9. Appendices

Figure 10: Source code of the web server

42

https://docs.microsoft.com/en-us/azure/cognitive-services/text-analytics/

Figure 11: URLs of APIs (entity-sentiment, entities)

43

Figure 12: URLs of APIs (Syntax, classification, sentiment)

44

Figure 13: URLs of APIs (sentiment,language detection,pii recognition)

45

Figure 14: URLs of APIs(entity_linking, key phrase)

Figure 15: URLs of APIs (Entities)

46

Figure 16: URLs of APIs (Sentiment analysis)

Figure 17: Entity-sentiment API call and json response

47

Figure 18: Language_detection API call and json response

Figure 19 : Analyzing Syntax API call and JSON response

48

Figure 20: ClassifyText API call and JSON response

Figure 21: Entity PII API call and JSON response

49

Figure 22: Entity Linking API call and JSON response

Figure 23: Key Phrase Extraction API call and JSON response

50

Figure 24: Entities API call with provider “Azure” to get results from Azure’s Entities API

Figure 25: Entities API call with provider “GCP” to get results from GCP’s Entities API

51

Figure 26: Sentiment Analysis API call with combined response of GCP and Azure API calls

52

