
 
 

 
 

 
Analysis of Performance and Data 

Consistency in Quorum-based 
Storage with Fault Tolerance 

 
 

Group 5 
 

Longling Wang 
Jing jin 

Yuan Song 
Zhengyu Chen 

 
  

 



Abstract 
Quorum-based technique is implemented to ensure transaction atomicity and serializability in 

the presence of network partitioning. However, there is not too much research focusing on how 

to achieve the data consistency within the writing quorums while doing the write operation. 

Especially, when any node in the cluster could crash at any time during the whole process, we 

need a mechanism to handle these unpredictable situations. Three mechanisms are introduced 

in this proposal. There are No-Phase commit, Two-phase commit and Three-phase commit. 

Two-phase commit and Three-phase commit protocols are originally from the implementation of 

transactions between multiple databases. Potential problems and different solutions of applying 

these commit protocols are discussed. We expect that the Three-Phase commit model is the 

best solution with approximate 100% data consistency without blocking encountering for 

quorum-based protocol in P2P overlay network. In this project, we implement these three kinds 

of approaches and evaluate them in a quorum-based data store system simulator. The 

challenge is how to simulate the ad hoc scenario, especially simulate multi nodes randomly 

crash concurrently and continuously in the quorum-based system, to support the whole 

evaluation process. we implement an automated evaluation system, with a customized 

quorum-based data store system, which consists ten quorum nodes and provides data store 

service, and client node, which starts quorum-based write and read operation and analyze the 

result automatically. The result basically satisfies our hypotheses, especially when the 

probability of crash is high.  First, inconsistent case occurs under no-phase quorum approach. 

Second, system blocking problem occurs under two-phase quorum approach, and this problem 

increase latency greatly. Third, ​three-Phase approach solves inconsistent and blocking problems 

efficiently. 

Keywords​: Quorum, two-phase commit protocol, three-phase commit protocol, fault tolerance, 

data consistency 

 

 

  

1 



 
Content 
1. Introduction 3 

1.1 Objective 3 
1.2 What are the problems 3 
1.3 Our approach 4 
1.4 Why this is a project related this class 4 
1.5 Area or scope of investigation 4 

2. Theoretical bases and literature review 5 
2.1     Definition of the problem 5 
2.2     Theoretical background 5 
2.3     Our solution 5 
2.4     Why it is different and better? 6 

3. Hypothesis 6 
3.1 Hypothesis 1: 6 
3.2 Hypothesis 2: 6 
3.3 Hypothesis 3: 6 

4. Methodology 6 
4.1 Input data collection and generation 6 
4.2 How to solve the problem? 7 
4.3 Algorithm Design 7 
4.4 How to generate output 9 
4.5 How to test against hypothesis 11 

5. Implementation 12 
5.1 Design document and flowchart 12 

6. data analysis and discussion 13 
6.1 Output generation 13 
6.2 output analysis 13 
6.3 Compare output against hypothesis 14 
6.4 Abnormal case explanation 17 
6.5 Discussion 18 

7. conclusions and recommendations 18 
7.1 Summary and conclusions 18 
7.2 Recommendations for future studies 18 
Reference 19 

 

2 



1. Introduction 

 1.1 Objective  

● Introduce 2-phase and 3-phase commit mechanism into a strict quorum mechanism to 
improve availability and keep data consistency in a quorum-based store system with 
churn 

● Evaluate traditional quorum, 2-phase quorum, 3-phase quorum in terms of availability 
and consistency quantitatively in a simulated quorum-based store system with churn 

1.2 What are the problems  

Distributed data store system need to be high available. Replication mechanism is the 
fundamental of high availability. Quorum mechanism is a common method to distribute the 
replicas through the whole system. But in distributed environment, especially in a cloud-based 
infrastructure, a situation, which happens so much frequently that cannot be ignored, is that a 
node in the data store system are not such stable. In practice, even multiple nodes might crash 
concurrently because of failure of hardware or fatal error of software. This situation might cause 
two main problems: 

1.1.1. Data inconsistency 

● Problem description 
A traditional quorum-based node write the data into disk immediately, after it receives a write 
operation request. It is prone to cause data inconsistency in this quorum under two situations: 
The first one is if a node or multiple nodes in this quorum is/are failed to write this data into disk. 
That means the data in failed nodes is different with the one in other nodes. The second is if a 
node or multiple nodes crash after it received the write operation request but before it write the 
data into disk. 

● Approach description 
For this problem, we can introduce 2-phase commit into traditional quorum to solve this 
problem, and we call this method 2-phase quorum. 2-phase quorum means we divide a write 
operation into two phase. A coordinator will coordinate the two process. Same as 2-phase 
commit, 2-phase quorum consists of voting and decision phase.  

➢ Voting phase 
◆ Coordinator sends all nodes in quorum a VOTE REQUEST 
◆ All nodes in the quorum respond COMMIT or ABORT. If responding COMMIT, 

the node turn into ready status. 
➢ Decision phase 

◆ Coordinator decides commit or abort: if any participant (or coordinator) voted 
ABORT, decision must be abort.  Otherwise, commit. 

◆ Coordinator sends all nodes in this quorum decision 
◆ Participants (who have been waiting for decision) commit or abort as instructed 

and ack. 
➢ Recover 

3 



◆ When a node restart, it will check if there is pre-apply information in disk. If it 
found pre-apply information, it will check the operation result from the 
coordinator. If the result is commit, this node write the data into disk. If the result 
is abort, this node delete the pre-application information. If the coordinator is not 
online, this node will try to ask the other nodes in this quorum. 

1.1.2.  System blocking 

As mentioned before, we can use 2-phase quorum mechanism to solve the data inconsistency 
problem. But 2-phase quorum also has a fatal problem need to be solved. Because a node should 
follow the instruction of the coordinator, it will be blocked when it can’t receive and find out 
what the next step is, when coordinator crashed and all alive nodes are ready status. 

1.3 Our approach  

● 3-phase quorum 
We try to introduce 3-phase commit mechanism into quorum system to solve the blocking 
problem, and we call this method 3-phase quorum. 3-phase quorum add an additional phase, 
commit phase, to 2-phase quorum. With this additional phase, it must be possible for nodes 
in this quorum to decide the next step without waiting for the recovery of the coordinator or 
dead node 

➢ Voting phase 
◆ Same as 2-phase quorum 

➢ Decision phase 
◆ Almost same as 2-phase quorum, EXCEPT change commit to Prepare-to-commit 

and all nodes don’t execute the operation only respond ACK to coordinator 
➢ Commit phase: 

◆ After getting all ACK, coordinator sends commit command to all nodes. 
◆ All nodes execute the write operation and response ACK 

➢ Recover 
◆ Same as 2-phase quorum 

1.4 Why this is a project related this class  

Nowadays, distributed data store system is widely used in P2P or cloud environment.  
Quorum technique also be widely used in lot of popular distributed system, which usually 
deployed in cloud framework, such as Apache Cassandra, Voldemort, Amazon Dynamo, etc. 

1.5 Area or scope of investigation 
This project focus on distributed data store system and quorum technique and quorum-based 
system. 
 

4 



2. Theoretical bases and literature review 
2.1     Definition of the problem 
Replication of data is used to achieve higher availability even if during failures of some storage 
nodes. However, concurrent updates to multiple replicas may lead to inconsistent situation if 
there are no control methods while some storage nodes crash and then recovery. 

2.2     Theoretical background 
2.2.1  Voting-based Quorum 

Originally, Thomas (1979) proposed a “majority consensus” algorithm, which based on voting 
scheme to preserve the mutual consistency of replicated data in the database. [1] 

  
Gifford (1979) proposed a quorum-based voting scheme for replication control. [2] In the 
algorithm, each copy is assigned a number of votes. And the operation needs to follow the 
following rules. Every transaction collects a read quorum of r to read a file and a write quorum 
of w to write a file, such that r + w is greater than the total votes assigned to this file. And w 
should be greater than half of the total votes. The first rule ensures that there is a non-null 
intersection between read and write quorum such that a data object cannot be read and written 
concurrently and read operation at least have a most current copy. The second rule ensures that 
two write operations cannot happen concurrently. 

  
Huang etl. (1988) introduced a quorum-based commit and termination protocol to maintain high 
data availability in case of concurrent site failures, lost messages and network partitioning. [3] 

 
Quorum based technique has been widely used to implement various services and applications in 
distributed systems which helps to achieve consistent operations, especially in distributed storage 
and replication.  

2.2.2  Three phase commit 
Three-phase commit is a model for atomic commit protocol in distributed system. It is first 
introduced by Skeen (1981) as a non-blocking protocol for preserving transactional atomicity. 
[4] It  is then used to form a formal model for atomic commit protocol in distributed systems 
(Skeen, Stonebraker, 1983). [4] 

  
2.3     Our solution 
In this paper, we proposed to implement a writing protocol to preserve the consistency when the 
storage nodes crash by using the three-phase commit protocol and compare the consistency result 
with that under two-phase commit protocol and that commit directly without any 
acknowledgements. 

5 



2.4     Why it is different and better? 
We combine the three-phase commit protocol with the quorum based distributed storage system 
in order to avoid the inconsistency which is due to nodes failure. And we compare the result 
under two-phase commit with that under three-phase commit protocol. Theoretically, by using 
the two-phase commit protocol, all the nodes inside the write quorums would be blocked if the 
initiator node crashes. While using three-phase commit protocol, the consistency can be 
preserved without blocking. 
 

3. Hypothesis 

3.1 Hypothesis 1:  

For the implementation of quorum-based protocol in P2P overlay networks, if there is no control 
for data consistency among the writing quorums, and the nodes may crash at any time during 
writing operations, then the data consistency cannot be guaranteed under this situation, which 
may cause the wrong reading results. 

3.2 Hypothesis 2:  
For the implementation of quorum-based protocol in P2P overlay networks, if combining with 
Two-Phase commit, then the data consistency will be guaranteed no matter when the nodes 
crash during writing operations. However, if there is any failure of coordinator (coordinator is 
temporary per request), then potential blocking problem can happen, which will cause low 
efficiency and long latency of writing operations. Blocking happens when the whole cluster has 
to wait until the coordinator is recovered to clarify what is the decision made by the coordinator, 
and then continue the operations.  

3.3 Hypothesis 3:  
For quorum-based protocol in P2P overlay networks, if Three-Phase​       ​ commit is implemented 

for controlling the data consistency in writing quorums, then the data consistency in the whole 

cluster will be approximately 100% without blocking problem. 

  

4. Methodology 

4.1 Input data collection and generation  

Each node will randomly generate a value as an input data and write to the quorum. And there 
is a monitor program to read the data from each node and analyze the data. 

6 



4.2 How to solve the problem? 

Because we cannot guarantee every node in the quorum can finish the writing task. So we use 
2-phase commit to ensure all node in quorum has consistent data. However, 2-phase commit 
has a potential blocking problem when nodes crash, so that we using 3-phase commit instead of 
2-phase commit to keep data consistency under any circumstances without blocking. 

4.3 Algorithm Design 

In this project, we assume each node knows the topology of the network. Each node will 
randomly invoke and write data to quorum. The node which is doing this operation would be the 
leader of this operation. 

Before write, the coordinator has to start a quorum voting. The coordinator randomly picks 
nodes add to the quorum until the size of quorum satisfies the requirement. These nodes will 
ack yes or no to the coordinator. Node who responds yes cannot respond yes to any other 
nodes. If the coordinator cannot get enough yes, it has to abort and notify nodes who has 
responded yes in order to unlock them. After randomly times, start this operation again. 

Writing without commit 
The coordinator send write request to all node in the quorum. Regardless of these nodes 
complete the write or not, the operation complete. 
 
Writing using 2-phase commit 

 
Fig. 1 

a) 2-PC finite state machine for the coordinator 
b) 2-PC finite state machine for a node 
 
Each node has four stages, INIT, READY, ABORT, COMMIT, and starts with INIT stage. The 
coordinator first send vote-request to all node in quorum. Node will log its decision and ack 
commit or abort back. When coordinator receives all acks, and all nodes voted commit, it send 
commit to all nodes and all nodes commit the write. Otherwise, it send abort and all nodes 

7 



abort.

 
Fig. 2 Communications in 2-phase commit 

 
Writing using 3-phase commit 

 
Fig. 3 

a) 3-PC finite state machine for the coordinator 
b) 3-PC finite state machine for a node 
 
 
Three phases: Vote, Decision, and Commit. Coordinator will start the vote request, all nodes will 
ack commit or abort. The coordinator has to wait for all nodes ack and make a decision. If all 
nodes ack commit, then it will send pre-commit to all nodes. Otherwise, send abort to all nodes. 
Nodes will change its state to pre-commit or abort correspondingly and ack to the coordinator. 
When the coordinator collects all acks from nodes, it will sends commit to all nodes, so that all 
nodes will eventually commit the write and ack to the coordinator. The operation complete. 
 
Test 
We will randomly crash nodes in specific failure rates in order to test the system can tolerate 
any failures and maintain data consistency. During the interval between transactions, a monitor 
program will read values from every node to verify the data consistency. 

8 



 
We are going to repeat this test 50 to 100 times, and generate a table to show the consistent 
rates between this three different protocols. 
 
Language used 
Java programming language to implement this project. 
 
Tools used 
Linux server in Design Center. 

4.4 How to generate output 
  
o ​   ​There will be a monitor setting outside the whole cluster. It is designed for checking the data 
consistency under different commit protocols (such as no-phase, two-phase and three-phase). 
The nodes belonging to the cluster will only perform write operations and simulate random time 
failures, while the monitor consistently reads the value of data saving in all nodes in order to 
calculate the consistency rate. 
  
o ​   ​Since the monitor will read the value of data in all nodes for each read operation and the 
number of nodes is N, if the writing quorum is equal to NW, then the number of same values we 
get out from N should be NW. If this is the case, we claim that the data for this read operation is 
consistent. The read operation will be executed by monitor for many times (approximately 50 – 
100 times), and the consistency rate will be calculated from the times of consistent reading / 
total times of reading * 100% (table 1). 
  
  

Data from 
node 1 

Data from 
node 2 

… Data from 
node 10 

Number of 
same value 

If consistent 

67 67   90 7 Yes 

55 67   90 5 No 

78 67   78 7 Yes 

… … … … … … 

167 223   233 7 Yes 

  

Times of total 
reading 

Times of consistent 
reading 

Consistency rate 

9 



1000 987 98.7% 

       

Table 1. The output for data consistency rate while number of nodes is 10 and the 
number of writing quorums is 7. 

  
o ​   ​ The read operation will only be performed while all nodes in the cluster are alive so that we 
will be able to read the values of data in all nodes and calculate the consistency rate. 
  
o ​   ​Since the read operation is performed in this quorum based protocol P2P overlay networks, 
the number of reading quorums should follow the rule as: NW + NR > Total and NW > Total / 2, 
even the monitor does not belong to the cluster. This is designed for guaranteeing the 
serializability in order to avoid reading and writing happens at the same time. Therefore, for 
every reading request, the monitor needs to get enough reading quorums and then lock these 
nodes from other operations, and eventually get the values of data from all nodes (the reading 
can be performed even not all nodes are locked). 
  
o ​   ​Table 1 shows the output for data consistency rate while number of nodes is 10 and the 
number of writing quorums is 7. This similar table will be created for each commit model to get 
the data consistency rate of those three commit models. 
  
o ​   ​At the end of each commit model simulation, every node will notify the monitor for the 
completion of their program execution. Then, the monitor will gather the information regarding 
on the times of blocking problem encountering. In other word, at the end of each commit model, 
every node will report how many times they encountered the blocking situation. 
  
o ​   ​Monitor will present a table at the end of whole project for a comprehensive comparison of 
data consistency rate and times of blocking encountering, which is shown in table 2 as an 
example. 
  
  

Commit model Data consistency 
rate 

Times of blocking 
encountering 

Total number of 
write operations 

No-Phase commit 87.5% 0 156 

Two-Phase commit 99.6% 43 149 

Three-Phase commit 99.8% 0 160 

Table 2. Conclusive table of comprehensive comparison between all commit models 
  

10 



 4.5 How to test against hypothesis 
As introduced previously, 5-10 nodes will form a cluster in P2P overlay network. And a monitor 
will be another machine outside this cluster to consistently read the values from all nodes. There 
will be an interface named “CommitModel” in order to switch from different commit models. 
No-Phase commit, Two-Phase commit and Three-Phase commit will implement this 
“CommitModel” interface. There is only one abstract method in “CommitModel” interface named 
“execute (args)”. This method will realize the following functions: 
1.​     ​Each node repetitively sends a write request at random time following the quorum base 
protocol. Every time before sending the request, the current node needs to make sure every 
other node is alive. Otherwise, draw back for a random period before resend the request. 
2.​     ​Therefore, before the execution of this write operation, the requesting node needs to get 
enough writing quorums and lock these nodes whoever sends back “approval” vote for this 
writing request. Otherwise, the requesting node must release all votes and unlock these nodes if 
not enough votes are gathered. 
3.​     ​After getting enough votes, the requesting node becomes temporary coordinator and 
release the actually writing operation to the writing quorums. Therefore, it is coordinator per 
request model. 
4.​     ​The followed operations and logics are differentiated with different commit models. 
5.​     ​All nodes may crash at random moments, no matter if current node is a general node or a 
coordinator node. And different commit models will have different mechanisms to handle 
different types of failures at different stages. 
6.​     ​All the nodes should be able to recover after certain time period to continue the execution. 
7.​     ​Blocking situation is defined as whenever the coordinator is failed, and all the nodes cannot 
get a certain decision by asking around their peers. Blocking problem will be detected by alive 
nodes in cluster and the counter of blocking times in local will be incremented. The counter will 
be finally reported to monitor. 
  
For testing against Hypothesis 1, 2 and 3, all the nodes may crash at anytime as mentioned 
previously, and the values of data will be tracked by monitor through consistent reading. 
Therefore, the inconsistent data should be caught by monitor. Besides, the number of blocking 
encountering will be tracked by nodes and reported to monitor eventually. Therefore, if we 
simulate those three commit model and gathered the data as we expected, then we may 
conclude that our hypotheses are solid. 
 

11 



5. Implementation 

 5.1 Design document and flowchart 

 
The flowchart of project design is shown as above. There are two sets of systems that 

are communicating between each other. The Monitor is acting as the client which will 
persistently send writing requests to update the data saving in this P2P cluster, and also read 
the data from all nodes to check consistency. Nodes system has more than one nodes to act as 
a P2P cloud network. 
Initially, monitor will collect all IP and Port information from nodes, and send the address book 
(step 1), which contains all IP and Port information to the nodes in cluster so that the nodes can 
communicate with other nodes. After that, monitor will test three protocol one by one. Starting 
from No-phase protocol, monitor will send message to all nodes and set No-Phase protocol 

12 



environment for testing(step 2). After setting is done, monitor will ping all nodes to make sure 
every node is alive without crashing (step 3 and 4), and initiate a writing request with a value 
randomly created. The writing request will send to a random node in cluster (step 5). After that 
node received this request, it becomes a temporary coordinator that is in charge of this writing 
request(step 6). Coordinator will randomly choose available nodes as replicas for this writing 
basing on the number of writing quorums(step 7). The number of writing quorums can be 
customised regarding on different testing purpose. Then, the process for handling the writing 
request is different according to different protocols (step 8). The detailed process of three 
protocols refer to part 4.3. Coordinator will decide if this request is successfully proceeded or 
failed due to crash encountering among the nodes or coordinator itself, and return this result to 
monitor (step 9). The execution time of every write request will be recorded. The starting time is 
right after monitor sends out the request, and the end time is whenever the monitor receives a 
fail or success response. 
After monitor gets the response from coordinator, it will send a reading request to all nodes in 
the cluster(step 12). It will also check to see if every node is alive before sending out this 
reading request (step 10 and 11). After collecting the value from all nodes, monitor compared 
the value with last writing request to see if the data gets updated to the right value. If it is, then 
we record this writing as consistent writing operation. then, step 3-13 will be repeated n times 
depending on how many writing and reading operation we want to test. After the testing on 
No-Phase protocol, a conclusive table (similar to table 1) will be shown in terminal. 
Two-Phase protocol and Three-Phase protocol will be tested one by one after No-Phase 
protocol with same number of writing/reading operation times. 

6. data analysis and discussion  

6.1 Output generation 
There are 10 participating nodes in our writing quorum system and the number of write 
quorum is set to be 6. For each experiment, the monitor will initiate 10 write operations 
under each protocol and certain crash rate. And we will collect the data including write 
operation fail rate, total and average execution time in cases of success writing and 
failed writing, consistent rate and blocking times, etc. The crash rate means each node 
will randomly crash at this rate before sending messages to other nodes. Then the 
crashed node will recover in the crash duration.  
 
The output data is generated under different crash rate of 1/3, 1/20, 1/50, 1/100, 1/1000, 
1/3000 respectively and the crash duration of 1 second. 

6.2 output analysis 
Under crash rate of 1/50, the average data output analysis. 

● No Phase 

13 



In No Phase writing protocol, failure rate is 30% and the total execution time is 343 
milliseconds. The average execution time of failed is 29 milliseconds and the average 
execution time of successful writing is 36 milliseconds. The time differentiate between 
those two times are very small, which is intuitive since no matter success or not, the no 
phase protocol will be terminated. 
 
In our test, the average consistent rate is 85.71%, because coordinator or nodes maybe 
fail during the writing operation. If the coordinator failed during the operation, the data is 
inconsistent obviously, but there is another situation that the coordinator finished the 
operation, but the node in the writing quorum failed, the data will still inconsistent. Thus, 
no matter the operation is success or not, the data still can be inconsistent. 

 
● Two-Phase Protocol 

In two-phase protocol, failure rate is 10%, and the total execution time is 3236 
milliseconds, the average execution time of failed writing is 109 milliseconds, and the 
average execution time of successful writing is 347 milliseconds and blocking 3 times. 
The execution time is much longer than no phase protocol, since we encountered 
average 3 times during the operation, nodes have to wait for nodes which has the 
commit information to recover. However, two-phase protocol can guarantee data 
consistency if the operation is success. Thus, the data consistent rate is 100%. 

 
 

● Three-Phase Protocol 
In three-phase protocol, failure rate is 10%, and total execution time is 1314 
milliseconds, the average execution time of failed writing is 60 milliseconds, and the 
average execution time of successful writing is 139 milliseconds.  

 
Three-phase protocol not only can guarantee 100% data consistent but also guarantee 
that no blocking problem during the operation. 

6.3 Compare output against hypothesis 
Performance 

Protocol Total Execution 
Time 

Average Failed 
Execution Time 

Average Success 
Execution Time 

No-Phase 343 29 36 

Two-Phase 3236 109 347 

Three-Phase 1314 60 139 

We compare the time of each operation to analysis performance of these three 
protocols. The total execution of No-Phase protocol is more than five of times faster than 

14 



the other two protocols. The reason is that No-Phase protocol does not guarantee data 
has been successfully wrote to the whole quorum, which means less messages 
communications between nodes and less network overhead. However, in Two-Phase 
and Three-Phase protocol, there are many messages between coordinator and nodes to 
ensure the data consistency, overhead slows down the whole process. 
 
 
Let us look at the average time of failed execution, the Three-Phase Protocol takes 
shorter time than Two-Phase Protocol, however, both of them are much longer than 
No-Phase Protocol. We Discussed this situation and found out the reason as the 
following: first, there is a only way a Three-Phase Protocol can fail, operation abortion. 
Nodes crash would not lead to abortion in Three-Phase Protocol. So the Three-Phase 
Protocol do not need to wait crashed nodes recover to make the final decision. On the 
other hand, No-Phase Protocol would not wait for recover as Two and Three-Phase 
Protocols. Second, the reason of Two-Phase Protocol is slower than Three-Phase is that 
Two-Phase may encounter blocking problem. We test another time, in the most cases, 
the times differentiation is relatively closed to each other. The reason is that based on 
our PC’s performance, we cannot do a large amount of writes, the result may not reflect 
the actual situation. Additionally, network congestion may affect the performance 
between Two-Phase and Three-Phase Protocols. Three-Phase needs more rounds of 
message communications, so the effect of network latency will be significant, which may 
cause worse performance. 
 
 
The average of success execution time of No-Phase is still ten times faster the other two 
due to low overhead. The most important is that the execution time of Three-Phase is 
about three times faster than Two-Phase one, which proves our hypothesis that 
Two-Phase Protocol may encounter blocking problems if nodes crash. The blocking 
problem will cause all nodes pause and wait for informed nodes recover, which costs 
plenty of time. 
 
Thus, operation time performance, No-Phase is the best and Two-Phase is the worst, 
Three-Phase is in the middle In our test cases. 

 
 
  

15 



 
Data Consistency 

Protocol Fail Rate Consistent Rate Blocking Times 

No-Phase 30% 85.71% 0 

Two-Phase 10% 100% 3 

Three-Phase 10% 100% 0 

Data consistency is another important things we concern. In hypothesis 1, we assume 
that No-Phase protocol has data inconsistency limitations. And the result also proves the 
hypothesis. Two-Phase and Three-Phase Protocols are in order to overcome the 
limitations. From the result, they did guarantee 100% data consistent rates, but 
difference between these two protocols are Two-Phase may encounter blocking 
problems, in our test, 3 times, which also proves our hypothesis 2 and hypothesis 3.  

 
Figure 6.1 Execution time under different crash rate 

 
 
 

Data Consistency in Different Crash Rate 
Protocols 3 20 50 100 3000 10000 

No-Phase 0 50 66.67 80 100 100 

Two-Phase 0 100 100 100 100 100 

Three-Phase 0 100 100 100 100 100 

16 



 
Figure 6.2 Consistent Rate in Different Crash Rate 

In high crash rate, No-Phase protocol may have low data consistency rate, 
however, both Two-Phase and Three-Phase Protocol can guarantee 100% data 
consistent rate. 
 

In real practice, we have to do some tradeoff to select the right protocol based on 
performance and data consistent rate. 

6.4 Abnormal case explanation 
We designed to run our program in Design Center’s Linux machine. So we intended to 
do 100 times of writing in ten machines. But the Design Center’s server has SSH 
connection limitations so that we simulate our program in our own laptop instead of 
servers in Design Center, which comes to a performance issue. We cannot do 100 times 
of writing, which will cause the memory leaking of the JVM, so we only can simulate 10 
times of writing of each protocol. This limitation may cause the result we collected a little 
bit different than the actual situation. We ran multiple times of test to minimize this 
impact. 
 
As we mentioned above, in some cases, the performance time fluctuates too much 
between different tests. We try to use the average data in all our tests and try to give a 
better output data. 
 
Theoretically, the latency under Three-phase protocol would be longer than that under 
Two-phase protocol because Three-phase requires one more round trips of 

17 



communication. However, in our simulation, we tested the system in our local machines 
and the latency is not significant enough to show the network delay. 

6.5 Discussion 
In the industry practice, most of the companies are using eventually consistency model 
instead of strict consistency model due to performance issue. Under our test, we can 
easily find that No-Phase Protocol, which is no consistency control, has a much faster 
performance than other two protocols. If the crash rate is low, No-Phase protocol will 
have the best performance with a reasonable consistent rate. If the services is not 
sensitive to data consistency, relax the data consistency control is an option to improve 
performance. 
 
Two-Phase and Three-Phase Protocols can guarantee data consistency if the operation 
succeed. But because of potential blocking problem in Two-Phase Protocol, Two-Phase 
Protocol may encounter longer execution time than Three-Phase Protocol if crash rate is 
relatively high. However, we have to consider the message communication overhead of 
Three-Phase Protocol, and trade off the total performance and choose a better 
performance protocol from these two.  

7. conclusions and recommendations 

7.1 Summary and conclusions  
In this project, we simulated the writing operation in a quorum writing system under 
No-phase, Two-phase and Three-phase protocol and generated the performance result 
in terms of different metrics including operation fail rate, average execution time, 
consistent rate and blocking times. We execute 10 times of write operation under these 
three protocols and compared the performance under different crash rate of nodes. 

7.2 Recommendations for future studies 
Due to the SSH connection limitation of the Design Center, we can only test the system in our 
local machine. As a result, the network delay is too short. The latency of Three-phase protocol 
due to one more round trip of communication is not that longer than that of Two-phase protocol 
as we expected. However, this is not the case in reality and the execution time we get. In future 
study, we should test the result in real distributed environment. 
 
In our experiments, we focused more on the effect of different crash rates on three different 
protocols. However, in the real life, the crash duration can vary a lot. And it may cause 
significant difference of performance between different protocols. This can be more emphasized 

18 



in future study in order to test how much impact of different crash durations on these three 
protocols. 
 
In our design, node crash is simulated in each stage of sending messages to other nodes, 
which means the node will randomly crash each time it sends a message to other nodes. 
However, the crash rate we control is only for each stage and the general crash rate under 
different protocol is not well controlled. As a result, under different protocols, the situation of 
crash will not happen in exactly same basis. In the future research, we should better handle the 
simulation of crash in a comparable basis. Then we could generate more representative data to 
analyze. 
 
 

 
  

 

 

 

 

 

 

 

 
 
 

Reference 
[1] ​Thomas, Robert H. "A majority consensus approach to concurrency control for multiple copy 
databases." ​ACM Transactions on Database Systems (TODS)​ 4.2 (1979): 180-209. 
[2] Gifford, David K. "Weighted voting for replicated data." ​Proceedings of the seventh ACM symposium 
on Operating systems principles​. ACM, 1979. 
[3] Ching-Liang, Victor OK, and A. Li. "Quorum-based Commit and Termination Protocol for 
Distributed Database Systems, Foirth Int." ​Conference on Data Eng, Los Angeles, California​. 1988. 
[4] Skeen, Dale. "Nonblocking commit protocols." ​Proceedings of the 1981 ACM SIGMOD international 
conference on Management of data​. ACM, 1981. 
[5] Skeen, Dale, and Michael Stonebraker. "A formal model of crash recovery in a distributed system." 
IEEE Transactions on Software Engineering​ 3 (1983): 219-228. 

19 


